

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional Oracle Weblogic Server

Introduction .xxiii
Chapter 1: Building Web Applications in WebLogic . 1
Chapter 2: Choosing a Web Application Architecture . 31
Chapter 3: Designing an Example Java EE Application . 55
Chapter 4: Building an Example Web Application . 73
Chapter 5: Packaging and Deploying WebLogic Web Applications 125
Chapter 6: Building Enterprise JavaBeans in WebLogic Server 155
Chapter 7: Building an Example EJB Application. 227
Chapter 8: Packaging and Deploying WebLogic Applications 265
Chapter 9: Developing and Deploying Web Services . 301
Chapter 10: Using WebLogic JMS. 363
Chapter 11: Using WebLogic Security. 443
Chapter 12: Administering and Deploying Applications in WebLogic

Server . 519
Chapter 13: Optimizing WebLogic Server Performance . 643
Chapter 14: Development Environment Best Practices . 691
Chapter 15: Production Environment Best Practices . 727
Index . 759

Patrick f01.tex V3 - 09/21/2009 8:29pm Page iii

Professional

Oracle® WebLogic Server

Robert Patrick
Gregory Nyberg

Philip Aston
with Josh Bregman and Paul Done

Wiley Publishing, Inc.

Patrick f01.tex V3 - 09/21/2009 8:29pm Page iv

Professional Oracle® WebLogicServer
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-48430-2

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or
the publisher endorses the information the organization or Web site may provide or recommendations it may make.
Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009930280

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Oracle is a registered trademark of Oracle Corporation
and/or its affiliates. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

Patrick f01.tex V3 - 09/21/2009 8:29pm Page v

To Chintana and Tony–
For their patience, love, and support.

— Robert

For my Father–
A good man I should have known better.

— Greg

To all who have worked to make WebLogic Server what it is today,
and to those dreaming about its future.

— Philip

Patrick f01.tex V3 - 09/21/2009 8:29pm Page vi

Patrick f02.tex V3 - 09/18/2009 2:21pm Page vii

About the Authors

Robert Patrick is a VP in Oracle’s Fusion Middleware Development organization, responsible for a
team of Solution Architects (known as the A-Team) covering EMEA, APAC, and Latin America engage-
ments. Robert has over 16 years experience in the design and development of distributed systems, and
he specializes in designing and troubleshooting large, high performance, mission-critical systems built
with various middleware technologies. Prior to joining Oracle, Robert spent 7 1

2 years working for BEA
Systems (most recently as their Deputy CTO) where he spent most of his time advising Fortune 1000
companies how to best apply middleware technology to solve their business problems. He has writ-
ten papers, magazine articles, and was one of the co-authors of the previous edition of Mastering BEA
WebLogic Server (Wiley, 2003) as well as speaking at various industry conferences.

Greg Nyberg has over 20 years of experience in the design and development of object-oriented systems
and specializes in large mission-critical systems using WebLogic Server. Mr. Nyberg is one of the co-
authors of the previous edition of Mastering BEA WebLogic Server (Wiley, 2003) and is the author of the
book WebLogic Server 6.1 Workbook for Enterprise JavaBeans, 3rd Edition (O’Reilly & Associates, 2002). Mr.
Nyberg has spoken to local and national users’ groups on a variety of topics over the last decade, focusing
on pragmatic approaches to Enterprise Java architecture and team development. Mr. Nyberg is currently
Senior Development Engineer, the Senior Director, IT, at Carlson Hotels Worldwide, and is responsible
for application development and technical architecture.

Philip Aston has specialized in WebLogic Server since joining BEA Professional Services in 2000. He
currently works for Oracle’s SOA Consulting team in the UK. Philip is hands-on with customers most
days, helping them to extract the best value from their investment in WebLogic Server. Philip is the
developer of The Grinder, a popular Java load-testing tool, is co-author of J2EE Performance Testing with
BEA WebLogic Server (Expert Press 2002, APress 2003), and has also written for the WebLogic Developers
Journal and BEA dev2dev (now part of the Oracle Technology Network).

Contributing Authors

Josh Bregman has nearly 15 years experience architecting Java and Java EE-based security and iden-
tity management solutions. Josh is a Consulting Solutions Architect at Oracle where he advises Oracle
and its key customers on technology, architecture, and implementation best practices. Prior to joining
Oracle, Josh worked at BEA Systems for 3 years as the Enterprise Security Specialist for the Americas.
In this role, Josh worked with customers to develop security solutions for WebLogic Server and related
BEA technologies. Before joining BEA, Josh worked at Netegrity/CA for 5 years where he designed
and developed a number of Java based security products, including IdentityMinder and SiteMinder
Application Server Agents for BEA WebLogic Server and IBM WebSphere. Josh has also held engineer-
ing positions at GTE/Verizon Labs and IBM Global Services. Josh holds a B.A. in Mathematics from
the University of Rochester and had spoken at a number of industry conferences including the RSA
Conference and Oracle Open World. Josh is the also the author of the Oracle Fusion Security blog at
http://fusionsecurity.blogspot.com.

Paul Done joined BEA Professional Services in early 2005, having worked for the previous 6 years for
other J2EE Application Server vendors (SilverStream, Novell eXtend). He is now an Oracle Middleware
consultant based in the UK, following Oracle’s acquisition of BEA. This is Paul’s second spell at Ora-
cle, having worked in Oracle Product Development in the ’90s, developing the Oracle’s Designer 2000
product. Paul specializes in Oracle’s WebLogic Server, Service Bus and JRockit JVM technologies. He
also is the developer of an open source monitoring tool for WebLogic, called ‘DomainHealth,’ and a is a
contributor to articles on Dev2Dev and Oracle Technology Network (OTN).

Patrick f02.tex V3 - 09/18/2009 2:21pm Page viii

Patrick f03.tex V3 - 09/18/2009 2:21pm Page ix

Credits
Executive Editor
Robert Elliott

Project Editor
Christopher J. Rivera

Technical Editors
Prasanth Pallamreddy
Matthew Shinn
Ryan Eberhard
Tom Barnes
Will Hopkins
Naresh Revanuru
Derek Sharpe

Production Editor
Eric Charbonneau

Copy Editor
Kim Cofer

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jen Larsen, Word One

Indexer
Jack Lewis

Cover Photo
© Ryan McVay / Digital Vision / Getty Images

Patrick f03.tex V3 - 09/18/2009 2:21pm Page x

Patrick f04.tex V3 - 09/18/2009 2:22pm Page xi

Acknowledgments

The authors would like to thank the many people who helped to create this book:

❑ To our editor, Robert Elliott, thank you for your patience and support.

❑ To our project editor, Christopher Rivera, thank you for juggling the crazy timelines and last-
minute edits and helping us craft a strong, readable book.

❑ To the many people who helped review the technical content and provided assistance along
the way, our heartfelt thanks. Special thanks to Duncan Mills, David Ezzio, Mike Lehmann,
Robyn Chan, Steve Harris, and Ted Farrell for their strong support and encouragement. Thanks
to our technical reviewers: Prasanth Pallamreddy, Steven Liu, Matt Shinn, Ryan Eberhard, Will
Hopkins, Tom Barnes, Naresh Revanuru, Ballav Bihani, and Derek Sharpe. Thanks also to Sal
Gambino, Dongbo Xiao, Craig Perez, Dave Felts, Jeff Tancill, Raja Mukherjee, Michael Chen,
Dave Cabelus, Greg Stachnick, Doug Clark, Gordon Yorke, Peter Bower, Loren Konkus, Shaun
Pei, Josh Dorr, Raj Inamdar, Alex Somogyi, Sandeep Shrivastava, and the many other Oracle
engineers for their assistance in helping us understand the finer points of WebLogic Server and
troubleshooting out examples. This book owes its success to these fine people.

I would like to thank my wife, Chintana, for her patience these last few months. Special thanks to Greg
and Phil for making this book possible and putting up with my constant changes and delays. Thanks
also to Josh and Paul who really made the Security and Web Services chapters what they are. Without
the four of you, this book would have never happened.

— Robert Patrick

I would like to thank my wife, Meredith, for her patience these last few months. Not as long as the first
time around, but quite an ordeal nonetheless. Special thanks also to Robert for agreeing to be lead author
and for never compromising on the quality, accuracy, or completeness. You are very good at what you
do! Finally, I am forever grateful for the blessings in my life and I know from whom they come. All things
are possible.

— Greg Nyberg

I would like to thank Robert and Greg for inviting me to join this project, and for allowing me to win one
or two of the battles.

— Philip Aston

Patrick f04.tex V3 - 09/18/2009 2:22pm Page xii

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xiii

Contents

Introduction xxiii

Chapter 1: Building Web Applications in WebLogic 1

Java Servlets and JSP Key Concepts 1
Characteristics of Servlets 1
Characteristics of JavaServer Pages 7

Web Application Best Practices 13
Ensure Proper Error Handling 13
Use JSTL Tags to Reduce Scriptlet Code 15
Use Custom Tags for Selected Behaviors 19
Use Servlet Filtering for Common Behaviors 22
Creating Excel Files Using Servlets and JSP Pages 26
Viewing Generated Servlet Code 30

Chapter Review 30

Chapter 2: Choosing a Web Application Architecture 31

Architecture Key Concepts 31
Java EE Application Tiers 31
Model-View-Controller Architecture 32
Common Java EE Design Patterns 33

Presentation-Tier Architecture Selection 33
Presentation-Tier Requirements 34
Other Architecture Considerations 45

Candidate Presentation-Tier Architectures 46
JSP-Centric Architecture 46
Servlet-Centric Architecture: Struts 48
Servlet-Centric Architecture: Spring MVC 50

Chapter Review 53

Chapter 3: Designing an Example Java EE Application 55

Application Requirements 55
Business Domain Models 56

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xiv

Contents

Presentation Requirements 57
Web Application Architecture 59
Presentation Approach 60

Self-Assembly 61
Master Page Assembly 64
External View Assembly with Tiles Framework 66

Business-Tier Interfaces 67
Controllers Call Business Services 68
Controllers Populate Forms for JSPs 69
Updates Require Explicit Service Calls 71
Relationships in Presentation Components 71

Chapter Review 72

Chapter 4: Building an Example Web Application 73

Overview of Application Components 73
Constructing the Application Skeleton 75
Constructing the User Site Components 76

Reservation Information Components 76
Core Reservation Process Components 79
Targeted Offers Components 103

Construction of Administration Site Components 105
Authentication/Authorization Components 105
Property Maintenance Components 108

Chapter Review 123

Chapter 5: Packaging and Deploying WebLogic Web Applications 125

Packaging Web Applications 125
Web Application Directory Structure 126
Web Application Descriptor Files 128
Precompiling JSP Components 137
Creating an Exploded Web Application 139
Creating a Web Application Archive File 144

Deploying Web Applications 145
Automatic Deployment 145
WebLogic Deployer Utility and Ant Task 148
WebLogic Console Deployment 150
Creating Required Users and Groups for BigRez.com 152

Chapter Review 153

xiv

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xv

Contents

Chapter 6: Building Enterprise JavaBeans in WebLogic Server 155

EJB Technology Overview 155
EJB 3.0 156

The Spring Framework 157
EJB Component Types 157

Stateless Session Beans 158
Stateful Session Beans 159
Message-Driven Beans 161
Interceptors 162

The Java Persistence API 163
JPA History 163
JPA Concepts 165
A JPA Sample 166
Applying JPA 189

WebLogic Server EJB Container 189
EJB Container Basics 190
EJB Lifecycle in WebLogic Server 190

General WebLogic Server EJB Features 192
EJB Deployment/Redeployment 192
Dynamic EJB Compilation 192
EJB Remote Business Interfaces and JNDI 193
References between EJBs 195

Session Bean Features 201
Stateless Session EJB Pooling 201
Stateful Session EJB Cache Management 202
In-Memory Replication for Stateful Session EJBs 204
Handles to Session Beans 207
Idempotent Methods 207

Message-Driven Bean Features 208
OpenJPA and Kodo Features 209

The Kodo Deployment Descriptor 209
Fetch Groups 210
Eager Fetching 212
Optimistic Locking Version Strategies 212
Large Result Sets 215
Second-level Caching 217
Controlling Flush Behavior 219
Managed Inverses 219

xv

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xvi

Contents

Mixed Inheritance Strategies 220
Prepared Statement Caching 220

Deployment Descriptors or Annotations? 221
Deployment Plans 222
Annotations, Descriptors, Plans, and Dependency Injection 223

Chapter Review 225

Chapter 7: Building an Example EJB Application 227

Business Layer Requirements 227
Business Logic Requirements 228
Object-Relational Mapping Requirements 230
Data Access Requirements 234
Other Business Layer Requirements 235
Review of Business Layer Requirements 235

Business Layer Architecture Options 235
SLSBs and the Session Façade Requirements 236
Stateless Session EJBs with JDBC 237
Stateless Session EJBs with EJB 2.1 CMP Entity Beans 238
Stateless Session EJBs with JPA 242

The bigrez.com Implementation 244
Database Schema 245
Domain Model 247
Services 252
Unit Tests 258
Adding Optimistic Locking 259

Using TopLink instead of Kodo 260
Why Would You Want to Use TopLink? 260
Changes to bigrez.com to use TopLink 260

Chapter Review 264

Chapter 8: Packaging and Deploying WebLogic Applications 265

Creating an EJB Archive File 265
EJB Deployment Descriptors 266

Packaging JPA Persistence Units 273
Enterprise Applications 274

Enterprise Application Directory Structure 277
Enterprise Application Descriptor Files 278
Exploded Deployments 282
Bundled Libraries 284
Shared Java EE Libraries and Optional Packages 286
Other Types of Modules 287

xvi

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xvii

Contents

Customizing Classloading 289
Packaging bigrez.com 291
Deploying Applications 294

Creating Required Services 295
Automatic Deployment and weblogic.Deployer 297
WebLogic Console Deployment 298

Chapter Review 298

Chapter 9: Developing and Deploying Web Services 301

Summarizing Web Services Standards 301
Creating Web Services with WebLogic Server 303

Web Services Container Architecture 303
Developing Web Services for WebLogic Server 304
Developing Web Service Clients 318

Moving Past the Basics 322
Using JAX-RPC 322
Understanding Style and Use 323
Influencing which Operation to Invoke 325
Creating More Dynamic Web Services 327
Using Web Service Handlers 334
Using SOAP Attachments 338
Implementing Stateful Web Services 342
Implementing Asynchronous Web Services 343
Customizing Mappings between Java and XML 346

Using Web Services Security 348
Defining Security Policies 349
Transport-level Security 350
Message-level Security 352
Web Service Security Configuration 358

Adding Web Services to bigrez.com 359
Chapter Review 361

Chapter 10: Using WebLogic JMS 363

JMS Key Concepts 363
Understanding the Messaging Models 363
Reviewing the JMS API 364

The WebLogic JMS Provider 370
Understanding WebLogic JMS Servers 370
Clustering WebLogic JMS 371
WebLogic JMS Clients 380
Configuring WebLogic JMS 383

xvii

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xviii

Contents

WebLogic JMS Application Design 398
Choosing a Destination Type 398
Locating Destinations 399
Choosing the Appropriate Message Type 400
Compressing Large Messages 402
Selecting a Message Acknowledgment Strategy 403
Designing Message Selectors 404
Choosing a Message Expiration Strategy 407
Handling Poison Messages 409
Handling Message Ordering Issues 412
Using Transactions 417
Using Multicast Sessions 419
Handling Request/Reply Style Message Exchange 420

WebLogic JMS Application Programming 424
Using WebLogic JMS with Servlets and EJBs 424
Consuming Asynchronous Messages on the Server 427

External JMS Providers 432
Understanding the Messaging Bridge 433
Understanding the Store-and-Forward Service 434
Using Message-Driven Beans 436
Mapping External JMS Objects to WebLogic JNDI 437
Integrating Oracle Advanced Queuing 438
Choosing an Integration Strategy 440

Chapter Review 441

Chapter 11: Using WebLogic Security 443

WebLogic Security Overview 443
Administration 447

WebLogic Security Framework 449
Embedded LDAP Server 450
Security Realms and Providers 453

Using External Security Stores 465
Managing External LDAP Authentication 465
Managing RDBMS Authentication 467

Setting Up SSL/TLS 469
Overview of SSL and X.509 Certificates 469
Obtaining X.509 Certificates 470
Configuring One-Way SSL 472
Configuring Two-Way SSL 474
Debugging SSL Problems 477

Writing Security-Aware Java Clients 478

xviii

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xix

Contents

Writing Java Clients That Use JAAS 479
Writing Java Clients That Use SSL 482

Managing Application Security 487
Application Security Models 487
Setting Up Java EE Application Security 488
Setting Up WebLogic Server Application Security 496
Booting WebLogic Server 500

Single Sign-On 501
Security Assertion Markup Language (SAML) 501
Setting Up Cross Domain Security and Single Sign-On 510
Custom Authentication Providers 516

Chapter Review 517

Chapter 12: Administering and Deploying Applications in WebLogic Server 519

WebLogic Architecture Key Concepts 519
Domain Architecture 519
WebLogic Server Architecture 521
WebLogic Server Clustering Architecture 530
Admin Server 538
Node Manager 541

WebLogic Administration Key Concepts 542
Server States 542
Server Self-Health Monitoring 544
Network Channels 545

Configuring a WebLogic Server Domain 547
Setting Up a New Domain 549
Configuring Servers 551
Configuring the Cluster 553
Configuring Network Channels 557
Setting Up the Node Manager 560
Operating System Configuration 566
Java Virtual Machine Configuration 567
Web Server Plug-in Configuration 567
Administration Port and Channel Configuration 572
Configuring Applications for WebLogic Server 575

Monitoring WebLogic Server Applications 595
Using the WebLogic Scripting Tool 595
Using the Deprecated Command-Line Administration Tool 600
Monitoring with the WebLogic Console 601
Programmatic Monitoring with JMX 603
Monitoring via SNMP 607

xix

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xx

Contents

Managing WebLogic Server Applications 615
Troubleshooting Application Issues 615
Versioning Applications 628
Managing Failure Conditions 630

Chapter Review 641

Chapter 13: Optimizing WebLogic Server Performance 643

Overview of System Performance 644
Reviewing the Core Principles 644
Tuning a WebLogic Server-Based Application 645

Performance Best Practices 665
Designing for Performance 665
Understanding Web Container Best Practices 667
Understanding EJB Container Best Practices 670
Applying Database Access Best Practices 672

Troubleshooting Performance Problems 677
Preparing for Troubleshooting 678
Bottleneck Identification and Correction 678
Problem Resolution 680
Common Application Server Performance Problems 682
Java Stack Traces 684

Chapter Review 689

Chapter 14: Development Environment Best Practices 691

Defining Required Hardware and Software 692
Sharing a Database Server 693

Installing WebLogic Server Software 695
Creating and Configuring a WebLogic Server Domain 696

Development Project Structure 697
Streamlining the Development Cycle 698

Split Directory Development 698
FastSwap 700

Establishing a Build Process 701
Continuous Integration 702
Code Inspection and Reporting Tools 704

Integrated Development Environments 704
Prerequisites 705
Configuring Eclipse for bigrez.com 705
Configuring JDeveloper for bigrez.com 711
Debugging with an IDE 714

Creating a Unit Testing Infrastructure 715

xx

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xxi

Contents

The Importance of Unit Testing 716
The JUnit Testing Framework 717
Out-of-Container Testing 719
Testing Web Interfaces 722
Web Services 724
Performance and Concurrency Testing 725

Chapter Review 726

Chapter 15: Production Environment Best Practices 727

Deployment Strategies 727
Evaluating Deployment Strategies 728
Server Deployment Strategies 729
Single-Site Deployment Strategies 731
Multiple Site Deployment Strategies 737
Designing Multiple-Site WebLogic Clusters 738
Implementing Clusters That Span Multiple Sites 741
Implementing One Cluster per Site 743

Global and Local Traffic Management 745
Using Load Balancers 745
Using Local Load Balancers with WebLogic Server 747
Using Global Load Balancers with WebLogic Server 748

Production Security Strategies 749
Understanding Application Data Flow 749
Understanding Firewall Layouts 750
Using a Connection Filter 751
Locking Down Web Applications 753
Examining Other Security Considerations 754
Using SSL Hardware Acceleration 756

Chapter Review 757

Index 759

xxi

Patrick ftoc.tex V3 - 09/21/2009 4:39pm Page xxii

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxiii

I n t roduc t ion

Professional Oracle WebLogic Server is different from other books about WebLogic Server and Java EE
technologies.

First, it is an advanced-level book designed to complement the Oracle online documentation and other
introductory books on Java EE and WebLogic Server technologies, providing intermediate- to advanced-
level developers, architects, and administrators with in-depth coverage of key Java EE development and
deployment topics. We skip the basic material, avoid duplicating basic references or information easily
obtained elsewhere, and focus on information and techniques not available anywhere else. Written by a
team of Oracle insiders and experts in the development of enterprise-class Java EE applications, this book
starts where other books and references stop.

Second, this is a book with an opinion. Rather than simply articulating the options available to solve a
given problem and leaving it up to you to decide, we share our thought process and give you concrete
recommendations and best practices for use in your own application-development and administration
efforts. Different design solutions, architectures, construction techniques, deployment options, and man-
agement techniques are presented and explained — but we do not stop there. We go on and explain the
benefits of a given alternative and when to use it. We want you to understand not just how things can be
done, but also how they should be done.

Finally, the primary example application built and described in these pages is a realistic, complex applica-
tion that highlights many of the features of Java EE technologies in general and Oracle WebLogic Server
11g in particular. The example application leverages key technologies such as JSP, Spring MVC, EJB
3.0, JPA, JMS, and Web Services to demonstrate their use, and the text walks you through each decision
made during the design, development, and deployment of the application to assist you in making similar
decisions in your own efforts.

Who This Book Is For
Professional Oracle WebLogic Server is not intended to be a primer or introductory book on Java EE
technologies or the WebLogic Server environment. Written as an advanced-level book with minimal
coverage of basic concepts, this book is for experienced developers and WebLogic Server administrators
looking to take their knowledge of these technologies to the next level.

What This Book Covers
This book is focused on Java EE development, deployment, and administration using the latest release
of Oracle WebLogic Server, 11g. Many of the technologies, frameworks, deployment techniques, and
management tools described in the book require this version of WebLogic Server and the latest versions
of the Java EE environment and various libraries and frameworks. The primary example application built
in the book, bigrez.com, also requires WebLogic Server 11g.

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxiv

Introduction

That said, the authors do not subscribe to the newer-is-always-better school of technology. Where it
makes sense, tried-and-true versions of Java EE frameworks and libraries are used in the examples if
these choices meet our requirements and get the job done.

The following is a partial list of the technologies and frameworks described, compared, and used (or not
used) in this book and its examples:

❑ EJB 3.0, JPA, OpenJPA, Kodo, TopLink

❑ Java 6, Spring 2.5 MVC, Jakarta Struts 1.2, JSP 2.0, Tiles 2.0

❑ JMS 1.1, SOAP 1.1, JAX-WS 2.1

❑ JAAS, SAML 1.1 and 2.0, XACML, SSL, TLS 1.0, JSSE

❑ JMX, SNMP, WLST, WLDF

How This Book Is Structured
Professional Oracle WebLogic Server is organized around three key themes:

❑ Walking you through the design, construction, and deployment of a realistic example applica-
tion.

❑ Discussing advanced topics and best practices in areas such as security, administration, perfor-
mance tuning, and configuration of WebLogic Server environments.

❑ Providing you with best practices for developing, deploying, and managing your own WebLogic
Server applications.

The first 10 chapters focus on the first theme, and the next 5 target the second theme; best practices are a
focus throughout the entire book. Here is a brief description of each chapter to help you understand the
scope and organization of the book:

Chapter 1 reviews key web application concepts and technologies and then discusses advanced
topics such as JSTL, the expression language, custom tags, and servlet filtering.

Chapter 2 examines the presentation-tier requirements that drive web application architectures,
compares three different candidate architectures, and makes specific recommendations to help you
choose an appropriate architecture for your WebLogic Server application.

Chapter 3 details the design of the presentation tier of a fairly large and complex Java EE applica-
tion. Topics include alternative page assembly techniques, business-tier interfaces, and the require-
ments of the example application that led to the chosen design.

Chapter 4 walks through the construction of the Spring MVC– and JSP-based example web appli-
cation. Construction techniques unique to WebLogic Server are emphasized along with the compo-
nents and techniques resulting from the choice of presentation approach, web application architec-
ture, and business-tier interaction techniques.

Chapter 5 discusses the steps required to package and deploy a WebLogic Server web application
with an emphasis on WebLogic Server–specific techniques and best practices.

Chapter 6 examines options and best practices for implementing Enterprise JavaBeans (EJB) and
related persistence technologies in WebLogic Server 11g. After a brief review of EJB technology,

xxiv

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxv

Introduction

the focus turns to the JPA persistence specification and the OpenJPA and Kodo implementations.
The final half of the chapter then discusses key EJB-related features in WebLogic Server 11g and
explains how best to leverage them in your development efforts.

Chapter 7 walks through the design and construction of the business tier of the example appli-
cation started in Chapters 1–4, highlighting key concepts and best practices. Candidate business-
tier architectures are first identified and examined in light of a representative set of business-tier
requirements. Next, the techniques required to implement the chosen EJB architecture are covered
in detail to highlight implementation details and best practices. Finally, the chosen JPA implemen-
tation (Kodo) is swapped out in favor of an alternative implementation (TopLink) to show the ease
with which this can be done.

Chapter 8 discusses the steps required to package and deploy WebLogic Server enterprise applica-
tions. The basic structures of EJB modules and enterprise applications are reviewed, techniques for
packaging JPA persistent units are discussed, Ant-based build processes are presented, options for
packaging enterprise applications are compared, and deployment techniques for WebLogic Server
development environments are examined.

Chapter 9 reviews web services technology, describes WebLogic Server 11g support for web ser-
vices, and presents key best practices related to web services. Example web services are created
using WebLogic Server utilities, advanced web services features in WebLogic Server are discussed,
and a web service is built to interface with the primary example program in the book.

Chapter 10 presents information and best practices related to the WebLogic Server JMS imple-
mentation. Topics include JMS clustering and high availability, the various JMS client options,
WebLogic JMS provider configuration, JMS application design considerations, building applica-
tions that leverage WebLogic JMS, and integrating with external JMS providers.

Chapter 11 covers important topics related to WebLogic Server security, including the WebLogic
Server Security Service, the WebLogic Security Framework and its built-in providers, integrating
with external authentication providers, setting up secure client-server and server-to-server
communication, managing application security, and configuring WebLogic Server for single
sign-on.

Chapter 12 focuses on WebLogic Server administration and the architecture of the WebLogic
Server product. This is not a users’ guide to the administration console, but rather an in-depth look
at the internal architecture of WebLogic Server, a discussion of important administrative concepts
such as server health states and network channels, and a thorough treatment of the configuration,
monitoring, and management of WebLogic Server and WebLogic Server–based applications.

Chapter 13 presents best practices for delivering and troubleshooting scalable high-performance
systems. It includes a discussion of core principles and strategies for scalable Java EE systems, a
collection of important design patterns and best practices that affect performance and scalability,
and steps and techniques you can use to improve performance and solve scalability issues in your
systems.

Chapter 14 rounds out the discussion of development-related best practices with recommenda-
tions in key areas related to the development environment. Topics include development envi-
ronment hardware and software, proper installation of WebLogic Server in the development
environment, organizing your project directory structure, establishing a build process, choosing
appropriate development tools, and creating a unit testing infrastructure for your project.

Chapter 15 discusses strategies and best practices for deploying WebLogic Server applications in
a production environment, focusing on production deployment strategies, global traffic manage-
ment solutions, and production security best practices.

xxv

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxvi

Introduction

What You Need to Use This Book
The examples and best practices in this book are based on Oracle’s WebLogic Server 11g application
server, available from the Oracle download site at http://otn.oracle.com/. Download and install this
product if you plan to build and deploy any of the example applications.

The WebLogic Server 11g installer includes a version of Eclipse suitable for viewing and editing the
example code. Alternatively, you may prefer to use Oracle JDeveloper 11g, or another Java development
tool. Chapter 14 contains full details about how to install and configure Eclipse and JDeveloper.

Finally, the main example program in this book assumes that you have a copy of the Oracle RDBMS
available in your environment. We used the full Oracle Database 10g. Oracle Database 11g, or the 10g
Express Edition (also known as Oracle XE) should also work fine. See the Oracle download site at
http://otn.oracle.com/database for a trial copy of the database software.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page to obtain
all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-48430-2.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list including
links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of
the book.

xxvi

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxvii

Introduction

Online Appendix
Within the text of this book, the authors occasionally refer you to online information available at sites like
http://otn.oracle.com/ and http://java.sun.com/ to supplement the discussions within this book.
The authors found that in many cases the desired reference URLs were both long — making them nearly
impossible to type accurately — and had a tendency to change over time as documentation was modified
and expanded. For this reason, actual addresses for additional reference material are not included in this
text. Instead, an online Appendix available at www.wrox.com/ compiles and organizes all referenced
URLs by chapter. The text itself refers to these links by number, e.g., Link 3-1. If you are interested in
locating and reading online reference information mentioned in the text, download the online Appendix
from www.wrox.com/ and use the addresses found therein.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxvii

Patrick f05.tex V3 - 09/18/2009 2:22pm Page xxviii

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 1

Building Web Applications
in WebLogic

Web applications are an important part of the Java Enterprise Edition (Java EE) platform because
the Web components are responsible for key client-facing presentation and business logic. A poorly
designed web application will ruin the best business-tier components and services. In this chapter,
we review key web application concepts and technologies and their use in WebLogic Server,
and we provide a number of recommendations and best practices related to web application design
and construction in WebLogic Server.

This chapter also provides the foundation for the discussion of recommended web application archi-
tectures in Chapter 2 and the construction and deployment of a complex, realistic web application
in Chapters 3, 4, and 5.

Java Servlets and JSP Key Concepts
In this section we review some key concepts related to Java servlets and JavaServer Pages. If you
are unfamiliar with these technologies, or if you need additional background material, you should
read one of the many fine books available on the subject. Suggestions include Head First Servlets
and JSP: Passing the Sun Certified Web Component Developer Exam by Bryan Basham et. al. (O’Reilly &
Associates, 2008), Java Servlet Programming Bible by Suresh Rajagopalan et. al. (John Wiley & Sons,
2002), and Java Servlet Programming by Jason Hunter (O’Reilly & Associates, 2001).

Characteristics of Servlets
Java servlets are fundamental Java EE platform components that provide a request/response inter-
face for both Web requests and other requests such as XML messages or file transfer functions. In
this section, we review the characteristics of Java servlets as background for a comparison of servlets
with JavaServer Pages (JSP) technology and the presentation of best practices later in the chapter.

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 2

Chapter 1: Building Web Applications in WebLogic

Servlets Use the Request/Response Model
Java servlets are a request/response mechanism: a programming construct designed to respond to
a particular request with a dynamic response generated by the servlet’s specific Java implementa-
tion. Servlets may be used for many types of request/response scenarios, but they are most often
employed in the creation of HyperText Transfer Protocol (HTTP) responses in a web application.
In this role, servlets replace other HTTP request/response mechanisms such as Common Gateway
Interface (CGI) scripts.

The simple request/response model becomes a little more complex once you add chaining and
filtering capabilities to the servlet specification. Servlets may now participate in the overall
request/response scenario in additional ways, either by preprocessing the request and passing it
on to another servlet to create the response or by postprocessing the response before returning it
to the client. Later in this chapter, we discuss servlet filtering as a mechanism for adding auditing,
logging, and debugging logic to your web application.

Servlets Are Pure Java Classes
Simply stated, a Java servlet is a pure Java class that implements the javax.servlet.Servlet inter-
face. The application server creates an instance of the servlet class and uses it to handle incoming
requests. The Servlet interface defines the set of methods that should be implemented to allow the
application server to manage the servlet life cycle (discussed later in this chapter) and pass requests
to the servlet instance for processing. Servlets intended for use as HTTP request/response mecha-
nisms normally extend the javax.servlet.http.HttpServlet class, although they may implement
and use the Servlet interface methods if desired. The HttpServlet class implements the Servlet
interface and implements the init(), destroy(), and service() methods in a default manner. For
example, the service() method in HttpServlet interrogates the incoming HttpServletRequest
object and forwards the request to a series of individual methods defined in the HttpServlet class
based on the type of request. These methods include the following:

❑ doGet() for handling GET, conditional GET, and HEAD requests

❑ doPost() for POST requests

❑ doPut() for PUT requests

❑ doDelete() for DELETE requests

❑ doOptions() for OPTIONS requests

❑ doTrace() for TRACE requests

The doGet(), doPost(), doPut(), and doDelete() methods in HttpServlet return a BAD_REQUEST
(400) error as their default response. Servlets that extend HttpServlet typically override and
implement one or more of these methods to generate the desired response. The doOptions()
and doTrace() methods are typically not overridden in the servlet. Their implementations
in the HttpServlet class are designed to generate the proper response, and they are usually
sufficient.

A minimal HTTP servlet capable of responding to a GET request requires nothing more than
extending the HttpServlet class and implementing the doGet() method.

2

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 3

Chapter 1: Building Web Applications in WebLogic

WebLogic Server provides a number of useful sample servlets showing the basic approach for
creating HTTP servlets. These sample servlets are located in the samples/server/examples/
src/examples/webapp/servlets subdirectory beneath the WebLogic Server home directory, a
directory we refer to as $WL_HOME throughout the rest of the book.

Creating the HTML output within the servlet’s service() or doXXX() method is very tedious.
This deficiency was addressed in the Java EE specification by introducing a scripting technology,
JavaServer Pages (JSP), discussed later in this chapter.

Servlets Must Be Registered in the Application
Servlets will only be invoked by the application server if they have been registered in the applica-
tion and associated with a specific URL or URL pattern. The standard mechanism for registering a
servlet involves <servlet> and <servlet-mapping> elements within the application’s web.xml file
as shown here:

<servlet>
<servlet-name>SimpleServlet</servlet-name>
<servlet-class>
professional.weblogic.ch01.example1.SimpleServlet

</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>SimpleServlet</servlet-name>
<url-pattern>/simple</url-pattern>

</servlet-mapping>

When a user accesses the specified URL, /simple, the application server will invoke the doGet(),
doPost(), or other doXXX() method on the servlet class.

WebLogic Server provides an alternate annotation-based technique for registering servlets and
specifying the mapped URL pattern: The @WLServlet annotation. The following annotation, placed
at the top of the SimpleServlet source file, eliminates the need for web.xml entries for this servlet:

@WLServlet (
name = "SimpleServlet",
mapping = {"/simple"}

)
public class SimpleServlet extends HttpServlet
{
...
}

The @WLServlet annotation syntax includes all of attributes available in the web.xml technique,
including loadOnStartup, initParams, and runAs values. This annotation technique represents a
viable, if non-standard, approach for registering and configuring servlets in your application.

Servlets Have a Life Cycle
A servlet is an instance of the Servlet class and has a life cycle similar to that of any other Java
object. When the servlet is first required to process a request, the application server loads the servlet

3

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 4

Chapter 1: Building Web Applications in WebLogic

class, creates an instance of the class, initializes the instance, calls the servlet’s init() method, and
calls the service() method to process the request. In normal servlet operation, this same instance
of the Servlet class will be used for all subsequent requests.

Servlets may be preloaded during WebLogic Server startup by including the <load-on-startup>
element in the web.xml file for the web application or by including the loadOnStartup attribute
in the @WLServlet annotation block in the servlet’s class definition. You can also provide
initialization parameters in the web.xml file using <init-param> elements or by including them
in the @WLServlet annotation block. WebLogic Server will preload and call init() on the servlet
during startup, passing the specified initialization parameters to the init() method in the
ServletConfig object.

An existing servlet instance is destroyed when the application server shuts down or intends to
reload the servlet class and create a new instance. The server calls the destroy() method on the
servlet prior to removing the servlet instance and unloading the class. This allows the servlet to
clean up any resources it may have opened during initialization or operation.

Servlets Allow Multiple Parallel Requests
Servlets are normally configured to allow multiple requests to be processed simultaneously by a
single servlet instance. In other words, the servlet’s methods must be thread-safe. You must take
care to avoid using class- or instance-level variables unless access is made thread-safe through
synchronization logic. Typically, all variables and objects required to process the request are created
within the service() or doXXX() method itself, making them local to the specific thread and request
being processed.

Best Practice
Servlets that allow multiple parallel requests must be thread-safe. Do not share
class- or instance-level variables unless synchronization logic provides thread
safety.

Servlets may be configured to disallow multiple parallel requests by defining the servlet class as
implementing the SingleThreadModel interface:

...
public class TrivialSingleThreadServlet

extends HttpServlet implements SingleThreadModel
{

public void init(ServletConfig config) throws ServletException
{

super.init(config);
System.out.println("Here!");

}
...

This simple change informs the application server that it may not process multiple requests through
the same servlet instance simultaneously. Although WebLogic Server continues to implement this
mechanism for enforcing single-threaded servlets, the Servlet 2.4 specification has deprecated its

4

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 5

Chapter 1: Building Web Applications in WebLogic

use. The specification encourages developers to protect critical sections of servlet code using syn-
chronization logic. Of course, using synchronization logic around non-thread-safe code comes
with a price — it invariably creates bottlenecks and latency in high volume systems as threads
wait for their turn to execute the protected code. If the code within the critical section takes too
long to execute, overall performance and scalability of your system will suffer. Avoid using the
SingleThreadModel interface in your applications. Design your servlets be thread-safe and mini-
mize their use of synchronization blocks.

Best Practice
Avoid using single-threaded servlets. Design your servlets be thread-safe and
minimize their use of synchronization blocks to avoid potential performance
issues.

Servlets May Access Request Data
The HttpServletRequest parameter passed in to the service() or doXXX() method contains a
wealth of information available to the servlet during the processing of the request. Useful data in
the HttpServletRequest is summarized in Table 1-1.

This is not an exhaustive list of the methods available on the HttpServletRequest class or its super-
class, ServletRequest. Refer to the servlet documentation at Link 1-1 in the book’s online Appendix
at http://www.wrox.com or a good reference book on servlets for a complete list including parame-
ter types, return types, and other details.

Servlets Use Session Tracking
A servlet is a request/response mechanism that treats each incoming request as an independent
processing event with no relationship to past or future requests. In other words, the processing
is stateless. The HTTP protocol is also a stateless protocol: Each request from the web browser is
independent of previous or subsequent requests. Linking current requests to previous requests
from the same client requires a mechanism for preserving context or state information from request
to request. A number of HTML-based techniques exist for preserving context or state information:

❑ Cookies may be set in responses and passed back to the server on subsequent requests.

❑ URL-rewriting may be used to encode small amounts of context information on every
hyperlink on the generated page.

❑ Hidden form fields containing context information may be included in forms.

These techniques all have limitations, and none provides the robust data types and flexibility needed
to implement true state management. Fortunately, the session tracking capability defined in the Java
EE servlet model provides an excellent solution.

Session tracking provides a flexible hashtable-like structure called an HttpSession that can be used
to store any serializable Java object and make it available in subsequent requests. To identify the
specific client making the request and look up its session information, session tracking uses a cookie
or URL-encoded session ID passed to the server on subsequent requests. In WebLogic Server, this

5

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 6

Chapter 1: Building Web Applications in WebLogic

session ID has the name JSESSIONID by default and consists of a long hash identifying the client
plus creation-time and cluster information. The format of the session ID is

JSESSIONID=SESSION_ID!PRIMARY_JVMID_HASH!SECONDARY_JVM_HASH!CREATION_TIME

Table 1-1: Information Available in the HttpServletRequest

Type of Information Access Methods

Parameters passed in the query string or
through form input fields

getParameterNames(),
getParameter(),
getParameterValues(),
getQueryString()

Server information getServerName(),
getServerPort()

Client characteristics getRemoteAddr(),
getRemoteHost(),
getAuthType(),
getRemoteUser()

Request information getContentType(),
getContentLength(),
getProtocol(),
getScheme(),
getRequestURI()

HTTP headers getHeaderNames(),
getHeader(),
getIntHeader(),
getDateHeader()

Cookies sent by browser getCookies()

Session information getSession(),
getRequestedSessionId(),
isRequestedSessionIdValid(),
...

WebLogic Server uses exclamation marks to separate portions of the session ID. The first portion is
used by the session tracking implementation in WebLogic Server to look up the client’s HttpSession
object in the web application context. Subsequent portions of the session ID are used to identify pri-
mary and secondary servers for this client in a WebLogic Server cluster and to track the creation time
for this session. Chapter 12 discusses WebLogic Server clustering in detail as part of the discussion
of administration best practices.

Using session tracking in a servlet is as simple as calling the getSession() method on the passed-
in HttpServletRequest object to retrieve or create the HttpSession object for this client and then
utilizing the HttpSession interface to get and set attributes in the session.

6

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 7

Chapter 1: Building Web Applications in WebLogic

WebLogic Server supports several forms of session persistence, a mechanism for providing ses-
sion failover. The two most commonly used forms are in-memory replication and JDBC persis-
tence. When using these types of session persistence, be careful not to place very large objects
in the HttpSession. WebLogic Server tracks changes to the session object through calls to the
setAttribute() method. At the end of each request, the server will serialize each new or mod-
ified attribute, as determined by the arguments to any setAttribute() calls, and persist them
accordingly.

Recognize that persisting a session attribute will result in WebLogic Server serializing the entire
object graph, starting at the root object placed in the HttpSession. This can be a significant amount
of data if the application stores large, coarse-grained objects in the session. Multiple fine-grained
objects can provide superior performance, provided that your application code updates only a sub-
set of the fine-grained objects (using setAttribute) in most cases. We talk more about in-memory
session replication and clustering in Chapter 12.

Best Practice
Use session tracking to maintain state and contextual information between servlet
requests. When using session persistence, avoid placing large objects in the session
if your application tends to update only a small portion of these objects for any
particular request. Instead, use multiple fine-grained objects to reduce the cost of
session persistence.

To summarize, servlets are a reliable pure Java mechanism for processing HTTP requests. It can be
tedious to generate the HTML response through the simple println() methods available on the
response Writer object, however. As we discuss in Chapter 2, servlets are better suited for process-
ing incoming requests and interacting with business objects and services than for the generation of
HTML responses.

If servlets are a tedious way to create HTML, what is available in the Java EE specification for effi-
ciently creating HTML responses? JavaServer Pages technology, the subject of the next section of
this chapter, is specifically design to be a powerful tool for creating HTML.

Characteristics of JavaServer Pages
JavaServer Pages (JSP) technology was introduced in the Java EE platform to provide an alternative
to servlets for the generation of server-side HTML content. Although a detailed discussion of JSP
technology is beyond the scope of this book, some key concepts and characteristics are worth a
brief review.

JSP Is a Scripting Technology
Recall that one of the important characteristics of servlets is their pure Java nature. Servlets are
Java classes that are written, compiled, and debugged much like any Java class. JavaServer Pages,
on the other hand, are a script-based technology similar to Microsoft’s Active Server Pages (ASP)
technology or Adobe’s Cold Fusion scripting language. Like these scripting languages, special tags
and script elements are added to a file containing HTML to produce a combination of static and
dynamic content. In the case of JSP, these added elements are Java code or special JSP tags that
interact with JavaBeans and other Java EE components in the application.

7

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 8

Chapter 1: Building Web Applications in WebLogic

JSP Pages Are Converted to Servlets
The key to understanding JSP pages is to recognize that the JSP file itself is simply the input for
a multistep process yielding a servlet. In the key processing step, the JSP page is parsed by the
application server and converted to the equivalent pure Java servlet code. All text that is not
part of JSP tags and scripting elements is assumed to be part of the HTTP response. This text is
placed in output writing calls within the generated servlet method that processes requests. All Java
scripting elements and tags become additional Java code in the servlet. The generated servlet is
then compiled, loaded, and used to process the HTTP request in a manner identical to a normal
servlet.

Figure 1-1 depicts this process for a trivial JSP page with a small amount of scripted Java
code embedded on the page. The sample.jsp page is converted to the equivalent pure Java
servlet code, compiled into a servlet class, and used to respond to the original and subsequent
HTTP requests.

sample.jsp

<html>
<head>
<title>A Sample Servlet</title>
</head>
<body>
<H1>A Sample JSP Page</H1>
<H2>Counting Fun</H2>
<% for (int jj=1; jj<=10; jj++) { %>
 <%= jj %>

<% } %>
</body>
</html>

<html>
. . .
<H2>Counting Fun</H2>
 1

 2

. . .
</html>

_sample.java

_sample.class

Servlet Source Code

Servlet Class

HTTP Response

HTTP Request
from Browser

Figure 1-1: JSP page is converted to a servlet.

The parsing, conversion, compiling, and classloading steps required to accomplish this transforma-
tion are handled by the application server. You don’t have to perform any of these steps ahead of
time or register the resulting servlet — all of this is done automatically by the server. Note that the
processing and compiling can be done prior to deployment using utilities provided by WebLogic
Server, a technique known as precompiling the JSP pages.

In WebLogic Server, the resulting servlet is a subclass of weblogic.servlet.jsp.JspBase by
default. JspBase is a WebLogic-provided class that extends HttpServlet and forwards service()
calls to a method called _jspService(). You may also create a custom base class for JSP-generated
servlets to replace the default JspBase class.

Many Tags and Scripting Elements Are Available
JSP technology provides a rich set of scripting elements and tags for creating dynamic content.
Table 1-2 lists some of the important elements available.

8

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 9

Chapter 1: Building Web Applications in WebLogic

Table 1-2: JSP Syntax Elements

Element Syntax Description

Scriptlet <% scriptlet code %> Java code placed directly in
_jspservice() method at this location.

Declaration <%! declaration %> Java code placed within the generated
servlet class above the _jspservice()
method definition. This usually defines
class-level methods and variables.

Expression <%= expression %> Java expression evaluated at run time and
placed in the HTML output.

page <%@ page
attribute=’’value’’ ... %>

Controls many page-level directive
attributes and behaviors. Important
attributes include import, buffer,
errorPage, and extends.

include <%@ include
file=’’filename’’ %>

Inserts the contents of the specific file in
the JSP page and parses/compiles it.

taglib <%@ taglib uri=’’...’’
prefix=’’...’’ %>

Defines a tag library and sets the prefix
for subsequent tags.

jsp:include <jsp:include
page=’’...’’/>

Includes the response from a separate
page in the output of this page.

jsp:forward <jsp:forward
page=‘‘...’’/>

Abandons the current response and
passes the request to a new page for
processing.

jsp:useBean <jsp:useBean id=‘‘...’’
class=‘‘...’’
scope=‘‘...’’/>

Declares the existence of a bean with the
given class, scope, and instance name.

Many more elements and tags are available. A detailed discussion of these elements is beyond the
scope of this book. Consult one of the books listed at the beginning of this chapter for a complete
list of JSP elements and tags, or browse Sun’s JSP area at Link 1-2 for more information.

All Servlet Capabilities Are Available
Because JSP pages are converted to servlets, all of the capabilities and techniques available in
servlets are also available in JSP pages. The HttpServletRequest and HttpServletResponse param-
eters are available, along with a number of predefined variables available in the JSP page, as listed
in Table 1-3.

JSP scriptlet code may access these implicit objects directly because all scriptlet code is placed in
the generated _jspService() method code below the definition of these objects. Nevertheless, the

9

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 10

Chapter 1: Building Web Applications in WebLogic

direct use of implicit objects in JSP scriptlet code is considered poor form. The JavaServer Pages
Standard Tag Library (JSTL), discussed later in this chapter, provides access to data stored within
these implicit objects — and many others — in a much safer and more standard way.

Table 1-3: JSP Implicit Objects

Object Type Description

request javax.servlet.http.HttpServletRequest Provides access to request
information and attributes set at the
request scope.

response javax.servlet.http.HttpServletResponse Reference to the response object
being prepared for return to the
client.

pageContext javax.servlet.jsp.PageContext Provides access to attributes set at
the page scope.

session javax.servlet.http.HttpSession Session object for this client;
provides access to attributes set at
the session scope.

application javax.servlet.ServletContext Application context; provides
access to attributes set at the
application scope.

out javax.servlet.jsp.JspWriter PrintWriter object used to place text
output in the HTTP response.

config javax.servlet.ServletConfig Reference to the servlet
configuration object set during
initialization; provides access to
initialization parameters.

Session tracking is available by default in JSP pages. If your application is not using session tracking,
you should disable it to avoid unnecessary session persistence. Although there is no explicit way
to disable session tracking for the entire web application, servlets will not create sessions unless
the servlet code calls the getSession() method. JSP pages may disable sessions using the page
directive:

<%@ page session="false" %>

Even if your JSP does nothing with the session information, WebLogic Server must persist the last
access time for the session at the end of the request processing. It is best to disable session tracking
explicitly in JSP pages that do not use it.

10

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 11

Chapter 1: Building Web Applications in WebLogic

Best Practice
Disable session tracking in JSP pages that do not require this feature to avoid
unnecessary session persistence.

Like servlets, JSP pages are normally multithreaded and may process multiple requests simultane-
ously. The same thread-safety restrictions that apply to servlets also apply to JSP pages unless the
JSP is configured to be single threaded. In a JSP page a special page directive is used to configure
this attribute:

<%@ page isThreadSafe="false" %>

If the isThreadSafe attribute is set to false, the resulting servlet will implement the
SingleThreadModel interface. This technique, like the related servlet technique, is deprecated in
the Servlet 2.4 specification and should be avoided.

Best Practice
Avoid declaring JSP pages to be single threaded. Code that is not thread-safe
should be encapsulated in some other Java class and controlled using synchro-
nization blocks.

JSP Response Is Buffered
As we said, servlets and JSP pages are request/response mechanisms: An HTTP request is made
by the browser, and an HTML response is generated by the servlet or JSP page. In both cases, this
response is normally buffered, or held in memory on the server temporarily, and sent back to the
calling browser at the end of the processing.

By default, output created in the generated servlet code is buffered, along with HTTP head-
ers, cookies, and status codes set by the page. Buffering provides you with these important
benefits:

❑ Buffered content may be discarded completely and replaced with new content. The
jsp:forward element relies on this capability to discard the current response and forward
the HTTP request to a new page for processing. Note that the errorPage directive uses
jsp:forward to send the processing to the error page if an error is caught in the JSP page,
so buffering is also required for proper error page handling.

❑ Buffering allows the page to add or change HTTP headers, cookies, and status codes after
the page has begun placing HTML content in the response. Without buffering, it would
be impossible to add a cookie in the body of the JSP page or change the response to be a
redirect (302) to a different page once output is written because the headers and cookies
have already been sent.

11

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 12

Chapter 1: Building Web Applications in WebLogic

When the buffer fills, the response is committed, and the first chunk of information is sent
to the browser. Once this commit occurs, the server will no longer honor jsp:forward,
HTTP header changes (such as redirects), or additional cookies. The server will generate an
IllegalStateException if any of these operations is attempted after the buffer fills and the
response is committed.

The default size of the JSP output buffer is 8KB in WebLogic Server, which you can control using
the page directive in each JSP page:

<%@ page buffer="32kb" %>

Output buffering may also be turned off using this directive by specifying none for a size, but this
practice is not recommended.

Output buffers should be set to at least 32KB in most applications to avoid filling the buffer and
committing the response before the page is complete. The minor additional memory requirement
(32KB times the number of threads) is a small price to pay for correct error page handling and the
ability to add cookies and response headers at any point in large pages.

Best Practice
Always use output buffering in JSP pages. Increase the size of the buffer to at least
32KB to avoid redirect, cookie, jsp:forward, and error page problems.

JSP Pages Have Unique Capabilities
Unique capabilities are available in JSP pages that are not present in servlets. The most important of
these is the ability to embed custom XML tags within the JSP page.

Custom tags provide a mechanism to interact with a custom developed Java class that encapsulates
business logic, presentation logic, or both. Custom tag elements are placed in the JSP page by the
developer and then parsed and preprocessed by the application server during the conversion from
JSP to servlet. The tag elements are converted by the server to the Java code required to interact
with the tag class and perform the desired function. Later in this chapter we discuss custom tags
and commonly used tag libraries in more detail and present best practices for their use in WebLogic
Server.

To summarize, JavaServer Pages technology is a scripting language used to create HTML responses.
JSP pages are converted to pure Java servlets by the application server during processing, and they
can perform nearly any task a pure Java servlet can perform. JSP pages also have unique directives,
features, and customization capabilities unavailable to servlets.

Why not use JSP for everything and forget servlets completely? Although it is possible to do
so, servlets often provide a better mechanism for implementing presentation-tier business
logic. Chapter 2 addresses this issue in detail and provides guidance for the proper use of each
technology.

12

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 13

Chapter 1: Building Web Applications in WebLogic

Web Application Best Practices
Now that you have reviewed some of the key concepts related to web applications in WebLogic Server,
it’s time to dig in and discuss best practices. So many options are available to designers and developers of
Java EE web applications that it would require an entire book to list and explain all of the web application
best practices we could conceivably discuss. In this section, we’ve attempted to discuss the best practices
we feel are applicable to the widest variety of development efforts or are most likely to improve the
quality or performance of your WebLogic Server web applications.

The best practices contained in this chapter cover everything from recommended techniques for using
custom tags to proper packaging of your web application to caching page content for performance.
They are presented in no particular order of importance, because the importance of a given best practice
depends greatly on the particular application you are building.

Ensure Proper Error Handling
Unhandled exceptions that occur during the execution of a servlet or JSP-generated servlet cause the
processing of that page to stop. Assuming the response has not been committed, the JSP output buffer
will be cleared and a new response generated and returned to the client. By default, this error response
contains very little useful information apart from the numeric error code.

What you need is a friendly, informative error page containing as much information as possible to help
during debugging. Fortunately, there is a built-in mechanism for specifying a custom error page for use
in handling server errors during processing.

First, you construct an error page to present the error information to the user in a friendly fashion. At
a minimum, it should display the exception information and a stack trace. To be more useful during
debugging, it can display all request and HTTP header information present using the methods available
on the HttpServletRequest object. Portions of an example error page are shown in Listing 1-1. The entire
page is available on the companion web site located at http://www.wrox.com/.

Listing 1-1: ErrorPage.jsp.

<%@ page isErrorPage="true" %>
<html>
<head><title>Error During Processing</title></head>
<body>
<h2>An error has occurred during the processing of your request.</h2>
<hr>
<h3><%= exception %></h3>
<pre>
<%

ByteArrayOutputStream ostr = new ByteArrayOutputStream();
exception.printStackTrace(new PrintStream(ostr));
out.print(ostr);

%>
</pre>

Continued

13

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 14

Chapter 1: Building Web Applications in WebLogic

Listing 1-1: ErrorPage.jsp. (continued)

<hr>
<h3>Requested URL</h3>
<pre>
<%= HttpUtils.getRequestURL(request) %>
</pre>

<h3>Request Parameters</h3>
<pre>
<%
Enumeration params = request.getParameterNames();
while(params.hasMoreElements()){

String key = (String)params.nextElement();
String[] paramValues = request.getParameterValues(key);
for(int i = 0; i < paramValues.length; i++) {

out.println(key + " : " + paramValues[i]);
}

}
%>
</pre>

<h3>Request Attributes</h3>
<pre>
...
</pre>

<h3>Request Information</h3>
<pre>
...
</pre>

<h3>Request Headers</h3>
<pre>
...
</pre>

Second, place a <%@ page errorPage=" . . . " %> directive on all JSP pages in the application specifying
the location of this error JSP page. Listing 1-2 presents a simple example JSP page that declares the error
page explicitly. Normally, you would do this through a common include file shared by all pages rather
than including the directive on every page.

Listing 1-2: ErrorCreator.jsp.

<%@ page errorPage="ErrorPage.jsp" %>
<html>
<head></head>
<body>
<!-- Do something sure to cause problems -->
<% String s = null; %>
The string length is: <%= s.length() %><p>
</body>
</html>

14

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 15

Chapter 1: Building Web Applications in WebLogic

Accessing the ErrorCreator.jsp page from a browser now causes a useful error message to be displayed
to the user. The page could conform to the look and feel of the site itself and could easily include links to
retry the failed operation, send an email to someone, or go back to the previous page.

As an alternative to specifying the errorPage on each individual JSP page, a default error-handling page
may be specified for the entire web application using the <error-page> element in web.xml:

<error-page>
<error-code>500</error-code>
<location>/ErrorPage.jsp</location>

</error-page>

These two mechanisms for specifying the error page may look very similar but are, in fact, implemented
quite differently by WebLogic Server. The <%@ page errorPage=" . . . " %> directive modifies the generated
servlet code by placing all JSP scriptlet code, output statements, and other servlet code in a large try/catch
block. Specifying the error page in web.xml does not affect the generated servlet code in any way. Instead,
uncaught exceptions that escape the _jspService() method in the original page are caught by the web
container and forwarded to the specified error page automatically.

Which technique is best? Unless the target error page must differ based on the page encountering the
error, we recommend the <error-page> element in web.xml for the following reasons:

❑ A declarative and global technique has implicit benefits over per-page techniques. Individual
pages that require different error pages can easily override the value in web.xml by including the
page directive.

❑ The information describing the original page request is more complete if the <error-page>
element is used rather than the page directive. Specifically, calling request.getRequestURL()
in the error page returns the URL of the original page rather than the URL of the error page,
and additional attributes are placed on the request that are not present if the page directive is
employed.

Best Practice
Create a friendly and useful error page, and make it the default error page for all server
errors using the <error-page> element in web.xml. Override this default error page
using the page directive in specific pages, if necessary.

Use JSTL Tags to Reduce Scriptlet Code
The JavaServer Pages Standard Tag Library (JSTL) is a custom tag library that encapsulates many core
functions required within JSP pages and virtually eliminates the need for JSP scriptlet code. Common
constructs, such as conditionals, loops, accessing request or session data, placing data in the response
HTML output, formatting output, displaying language-sensitive strings, and many other functions, are
implemented in the JSTL library in a standard way. JSTL represents a huge improvement over the old
jsp:useBean and jsp:getProperty techniques.

Custom tags can be difficult to create, but no knowledge of their construction is required to use them
successfully. All you need is a good reference on the tag library you are trying to use and a basic
understanding of the syntax for calling custom tags within your JSP pages.

15

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 16

Chapter 1: Building Web Applications in WebLogic

Calling Custom Tags in JSP Pages
Custom tags are invoked within JSP pages by embedding the appropriate XML tags in your page using
the syntax

<prefix:tagname attribute1="value1" . . . attributeN="valueN" />

or

<prefix:tagname attribute1="value1" . . . attributeN="valueN" >
...

</prefix:tagname>

The prefix represents the short name you gave a particular library when it was declared in your page, the
tagname is the specific tag or function identifier within the library, and the attribute/value pairs are the
data or settings needed by the tag for proper operation.

For example, if you’ve declared the JSTL core library using a prefix c with a taglib directive
like this:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

you would invoke the out tag within the JSTL core library to display the contents of the request parame-
ter employeeNum using the following syntax:

<c:out value="${requestScope.employeeNum}"/>

The equivalent scriptlet code, for comparison purposes, might look like this:

<%= request.getParameter("employeeNum") %>

Although this JSTL example does not appear to be significantly shorter or simpler than using
scriptlet code in this trivial example, the difference becomes much larger with more complex
operations.

Using Expression Language in JSTL Calls
The JSTL libraries support the use of Expression Language (EL) within many of the attribute/value pairs
supplied to the custom tags. To understand the difference between an invocation with and without EL
support, consider the following two calls to the out tag in the core JSTL library:

<c:out value="requestScope.employeeNum" />

<c:out value="${requestScope.employeeNum}" />

The first call passes a simple string to the tag implementation via the value attribute. This string is
simply placed in the output response being generated by the JSP, and the users would see the string
requestScope.employeeNum on their web page.

The second call informs the custom tag implementation that it is using the EL syntax by including
${ . . . } characters within the value attribute passed to the tag. The tag sees this syntax and treats the

16

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 17

Chapter 1: Building Web Applications in WebLogic

string within the braces as an expression that should be parsed and treated as a request for data from
some source available to the page.

By specifying requestScope in the expression, we are indicating that the tag should look only in the
HttpServletRequest object, and by specifying employeeNum we are telling the tag which parameter or
attribute we want from the request object. The tag will find the object located in the request under this
key, invoke toString() on it, and place the result in the output. The users will, hopefully, see a valid
employee number on their web page.

As a second example, consider the following tag invocation:

<c:out value="${employee.myAddress.line1}" />

This example does not specify a source scope (requestScope, sessionScope, and so on), and has
three parts. The tag implementation will perform the following steps as it parses and processes this
expression:

❑ It will first search within all of the scopes available to it (starting with pageScope and ending
with applicationScope) for some attribute stored using employee as the key. Let’s assume it
finds an object of the class CompanyEmployee located in the HttpSession stored with this key.

❑ The tag will then examine the retrieved CompanyEmployee object and attempt to invoke a get
method based on the next identifier in the expression. In this case the method attempted would
be getMyAddress(). Assuming such a method exists, the underlying Address object is extracted
and the processing continues.

❑ The tag will next attempt to invoke getLine1() on the Address object and extract the resulting
object, most likely a simple String object in our example.

❑ Finally, the tag will invoke toString() on the object returned by getLine1() to obtain the text
that should be placed in the HTML response output.

This chaining of identifiers using the dot operator is very common in JSTL attribute values. It allows
access to specific nested properties within objects stored on the request or session with a simple,
compact syntax.

Entries in a List or Map object can be accessed with the same dot operator or through the use of an
alternate bracket syntax as shown in these two equivalent tag invocations:

<c:out value="${sessionScope.stateNames.NY}" />

<c:out value="${sessionScope.stateNames["NY"]}" />

Hard-coding the map’s key into the JSP page is clearly of limited value, and it too can be replaced by an
expression that returns the key to be used in the Map lookup. The following example replaces the fixed
value of NY with the value passed in through a request parameter called stateCode:

<c:out value="${sessionScope.stateNames[param.stateCode]}" />

In this example we look in the session for the Map, and look in the passed-in request parameters for
the key. These are two examples of implicit objects that are available within the Expression Language.
Table 1-4 presents a complete set of these implicit objects.

17

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 18

Chapter 1: Building Web Applications in WebLogic

Table 1-4: JSP Implicit Objects

Identifier Description

pageScope Map containing page-scoped attributes

requestScope Map containing request-scoped attributes

sessionScope Map containing session-scoped attributes

applicationScope Map containing application-scoped attributes

param Map containing the primary values of the request parameters

paramValues Map containing all values of the request parameters as
String arrays

header Map containing the primary values of the request headers

headerValues Map containing all values of the request headers as String
arrays

cookie Map containing all cookies accompanying the request

initParam Map containing the context initialization parameters of the
web application

pageContext The PageContext instance for the page, providing access to
all JSP implicit objects

Although the Expression Language syntax is very powerful, it can be a bit confusing at times. Find a
good reference on JSTL, including the EL, and refer to it often until you get the hang of it. You’ll find that
95% or more of your custom tag invocations will use the EL syntax for one or more of the attributes in
the tag, because it is the only recommended way to pass dynamic data into the tags.

Above all, resist the temptation to use the old-style scriptlet code in your JSP pages. With a little exper-
imentation, you’ll find there is very little you can do in scriptlet code that you cannot accomplish with
JSTL and the Expression Language syntax.

Best Practice
Master the Expression Language (EL) syntax and use it extensively in the JSTL tags
within your JSP pages. Use expressions in a clear and consistent manner to improve
readability, choosing appropriate operators and constructs. Avoid JSP scriptlet code if
at all possible.

18

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 19

Chapter 1: Building Web Applications in WebLogic

JSTL Contains Five Tag Libraries
The JavaServer Pages Standard Tag Library (JSTL) contains the following tag libraries:

❑ The JSTL core library contains tags for common operations such as flow control (conditionals,
looping), generating output, setting variables, and creating standard HTML links. Nearly every
application makes use of the core library.

❑ The JSTL fmt library contains tags that perform formatting operations such as looking up and
displaying localized messages, generating formatted output using templates, parsing text, and
so on. Many applications use this library.

❑ The JSTL sql library provides a tag-based approach for executing SQL statements from within
JSP pages. Because this is rarely a good idea, this library is rarely used.

❑ The JSTL XML library provides tags that query and display elements and attributes within XML
documents using the XPath syntax. It can be a viable alternative to using complex XSLT transfor-
mations when trying to display XML data as HTML output.

❑ The JSTL functions library contains tags that reproduce the String functions available in Java
code. The use of this library should be avoided in favor of performing text-related searches, sub-
strings, or other functions in Java code prior to invoking the JSP page.

A detailed look at the tags, attributes, and correct usage of each of these JSTL libraries is beyond the scope
of this book. The example web application built in subsequent chapters will make extensive use of the
core and fmt libraries within its JSP pages, and there will be ample opportunity at that time to highlight
the important tags and their correct usage.

Best Practice
Plan to use the JSTL core and JSTL fmt libraries in all of your web applications. These
two libraries provide the most generally useful tags and will be required for all but the
simplest JSP pages.

Use Custom Tags for Selected Behaviors
Custom tags are a powerful mechanism for extending the basic JSP tag syntax to include custom devel-
oped tags for interacting with Java components, modifying response content, and encapsulating page
logic. The JSTL tag libraries discussed previously are good examples of custom tags that can reduce or
eliminate the need for scriptlet code in the JSP page and improve maintainability.

The power of custom tags comes with a cost, of course: complexity. Custom tags add an entirely new
layer to the architectural picture and require a strictly defined set of classes and descriptor files to
operate. Although a detailed description of the steps required to create custom tags is beyond the
scope of this text, it is instructive to review the key concepts to frame the recommendations we will
be making.

19

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 20

Chapter 1: Building Web Applications in WebLogic

Custom Tag Key Concepts
Custom tags require a minimum of three components:

❑ The Tag Handler Class is a Java class implementing either the javax.servlet.jsp.tagext.Tag
or BodyTag interfaces. The tag handler class defines the behavior of the tag when invoked in the
JSP page by providing set methods for attributes and implementations for key methods such as
doStartTag() and doEndTag().

❑ The Tag Library Descriptor (TLD) file contains XML elements that map the tag name to the tag
handler class and provide additional information about the tag. This file defines whether the tag
contains and manipulates JSP body content, whether it uses a tag extra information class, and the
name of the library containing this tag.

❑ JSP Pages contain <%@ taglib . . . %> declarations for the tag library and individual tag elements
in the page itself to invoke the methods contained in the tag handler class.

Custom tags may also define a Tag Extra Information (TEI) class, extending javax.servlet.jsp.
tagext.TagExtraInfo, that defines the tag interface in detail and provides the names and types of
scriptlet variables introduced by the tag. During page generation, the JSP engine uses the TEI class to
validate the tags embedded on the page and include the correct Java code in the generated servlet to
introduce variables defined by the custom tag.

Custom Tags are Different from Tag Files
Don’t confuse custom tags with the new tag files functionality added in the JSP 2.0 specification: They are
quite different in both intent and implementation.

As stated above, custom tags provide a powerful mechanism for extending the basic JSP tag syntax to
include custom developed tags for interacting with Java components. They efficiently and safely replace
the use of scriptlet code required to call methods on these Java components.

Tag files, on the other hand, provide a new way to include shared pieces of JSP-generated output within
a main page. They are essentially an alternative to the use of <jsp:include> actions or <%@ include
file="..." %> directives, and provide no direct access to utility Java classes or other Java components.
Shared JSP pages and page fragments previously located with other JSP content are renamed to end with
a .tag suffix and moved to a special tags directory below WEB-INF. These shared pages and fragments
are then included in the main page content using new custom tags.

Apart from simplifying the passing of parameters to a shared JSP page, and providing the ability for the
called tag file to control when the body of the calling tag is evaluated and inserted in the output, it is
difficult to find any advantage that would pay for the complexity tag files add to an application. If you
find the older, simpler methods for sharing JSP pages and fragments unable to accommodate your needs,
consider using the new tag files mechanism, but don’t convert simple JSP pages and fragments to tag
files without a good reason.

We will not be covering the creation or use of tag files in this book, nor will we be using them in the
example programs.

20

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 21

Chapter 1: Building Web Applications in WebLogic

Best Practice
The JSP 2.0 tag files mechanism provides a new approach for sharing and including JSP
pages and page fragments that might make sense if the older <jsp:include> action and
<%@include file="..." %> directive do not meet your needs. Be sure there is sufficient
value in changing to the new approach since it represents additional complexity.

Custom Tag Use Is Easy — Development Is Complex
It is important to keep the appropriate goal firmly in mind when evaluating a new technology or feature
for potential use on your project. In the case of technologies such as custom tags, the goal is to improve
the readability and maintainability of the JSP pages. The assumption is that by reducing or eliminating
scriptlet code the page will be easier to understand and maintain, which is true enough, but the JSP pages
are only one part of the total system being developed. The beans and custom tags are part of the system as
well, and any improvement in maintainability of the JSP pages must be weighed against the complexity
and maintenance requirements of the beans and tags themselves.

Custom tag development, in particular, is complex. The complexity is not evident until the tasks being
performed become more realistic, perhaps requiring TEI classes, body content manipulation, handling
of nested tags, or other more advanced behaviors. Examine the source code for some tag libraries avail-
able in the open source community to get a sense of the requirements for a realistic, production-ready
tag library. Is your development team ready to tackle this level of development? Are the people being
earmarked for maintenance of the application capable of maintaining, extending, or debugging problems
in the tag library? These are valid questions you should consider when making your decision to build a
custom tag library.

Using custom tags, on the other hand, is relatively easy. As you saw in the discussion of the JSTL libraries,
it requires a simple declaration at the top of the JSP page and a few straightforward XML elements in the
page to invoke a custom tag and produce the desired behavior.

In the end, the decision comes down to the benefits of using custom tags versus the effort to develop
and maintain the custom tags. Clearly a tag that is developed once and used on many pages may pay for
itself through the incremental benefits accrued across multiple uses. Taken to the limit, the most benefit
will come from a tag used in many pages that is acquired rather than internally developed, eliminating
all development and maintenance effort on the tag itself. This should be your goal: Use custom tags, but
don’t develop them.

Best Practice
Custom tags are easy to use but difficult to develop and maintain, so make every effort
to locate and use existing tag libraries from reputable sources rather than developing
your own custom tags.

21

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 22

Chapter 1: Building Web Applications in WebLogic

Table 1-5: Custom Tag Sources

Location Description

http://jakarta.apache.org/taglibs This source has a number of open source tag
libraries, providing everything from string
manipulation to regular expression handling to
database access. It also hosts an implementation of
the JSTL specification.

http://jakarta.apache.org/struts Struts is a model-view-controller framework that
includes a number of useful tag libraries.

http://www.servletsuite.com/jsp.htm This commercial vendor, with more than 350
different tag libraries, offers free binary download
and evaluation.

In additional to the standard JSTL tag libraries packaged in WebLogic Server, useful tag libraries are
available from various vendors and open source communities. Table 1-5 provides a short list to get you
started in your search.

We will be using selected custom tags from the Spring MVC framework in the example application
in Chapters 3 and 4 to create HTML form elements with automatic handling of posted data during
processing.

Use Servlet Filtering for Common Behaviors
Servlet filtering, a feature of servlets introduced in the Servlet 2.3 specification, provides a declarative
technique for intercepting HTTP requests and performing any desired preprocessing or conditional
logic before the request is passed on to the final target JSP page or servlet. Filters are very useful for
implementing common behaviors such as caching page output, logging page requests, providing debug-
ging information during testing, and checking security information and forwarding to login pages.
Figure 1-2 illustrates the basic components of the filtering approach and shows the incoming HTTP
request passing through one or more Filter classes in the FilterChain collection defined for this
page request.

Filter Chain
Servlet

Filter 1
HTTP Request

HTTP Response

Filter 2

Figure 1-2: Servlet filtering.

Placing a filter in the path of a particular servlet or JSP request is a simple two-step process: Build a class
that implements the javax.servlet.Filter interface, and register that class as a filter for the desired

22

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 23

Chapter 1: Building Web Applications in WebLogic

pages and servlets using either entries in the web.xml descriptor file or annotations in the filter class. To
illustrate this process, we will build and deploy a simple but useful filter that intercepts servlet and JSP
requests and logs HttpServletRequest information before passing the request on to the intended JSP
page or servlet.

Building a Simple SnoopFilter Filter Class
The first step is the construction of a filter class called SnoopFilter that implements the
javax.servlet.Filter interface and performs the desired logging of request information. Sim-
ply put, the doFilter() method writes information from the HttpServletRequest object to System.out
before forwarding to any additional filters in the filter chain or to the final destination page itself. The
source for SnoopFilter is available from the companion web site (http://www.wrox.com/).

Registering SnoopFilter in the Application
Registering a filter normally requires a set of elements in the web application descriptor file, web.xml.
These elements declare the filter class and define the pages or servlets to which the filter should be
applied. In this simple example, you want all pages and servlets in the application to be filtered through
SnoopFilter, and the web.xml file includes the following elements:

<filter>
<filter-name>SnoopFilter</filter-name>
<display-name>SnoopFilter</display-name>
<description></description>
<filter-class>
professional.weblogic.ch01.example1.SnoopFilter

</filter-class>
</filter>

<filter-mapping>
<filter-name>SnoopFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

The <url-pattern>/*</url-pattern> element declares that all pages and servlets in the applica-
tion should be filtered using SnoopFilter, so every page request will go through the filter before
normal processing begins. The server’s stdout stream will therefore contain detailed request
information for every page request, which is potentially very useful during development and
debugging.

Clearly the same general logging capability could have been placed in a helper class, custom tag, or
simple scriptlet included in each JSP page or servlet, but the ability to control the specific pages or groups
of pages using the SnoopFilter in a declarative manner (via <url-pattern> elements) has significant
advantages.

WebLogic Server also supports an annotation-based approach for registering a filter and specifying the
URL pattern. The following @WLFilter syntax is equivalent to the web.xml entries shown above:

@WLFilter (
name = "SnoopFilter",
mapping = {"/*"}

23

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 24

Chapter 1: Building Web Applications in WebLogic

)
public class SnoopFilter implements Filter
{

...
}

Although this is obviously a simple example, SnoopFilter illustrates the value of filters for prepro-
cessing activities such as logging, auditing, or debugging in Java EE web applications. Filters are not
limited to writing output to stdout; they can easily write information to separate log files, insert rows
in database tables, call EJB components, add or modify request attributes, forward the page request
to a different web application component, or perform any other desired behavior unconditionally
or based on specific request information. They are a very powerful tool in the Java EE servlet
specification.

Best Practice
Use filters to implement common behaviors such as logging, auditing, and security
verification for servlets and JSP pages in your web applications.

Response Caching Using the CacheFilter
WebLogic Server includes a filter called CacheFilter that provides page-level response caching for web
applications. This filter operates at the complete page level rather than surrounding and caching only
a section of JSP content in a page. The CacheFilter may also be used with servlets and static content,
unlike the related wl:cache custom tag, which works only in JSP pages.

The CacheFilter is registered like any other servlet filter. Define the filter in the web.xml file, and
specify the <url-pattern> of the page or pages to cache. Use initialization parameters in the filter
registration to define timeout criteria and other cache control values. For example, to cache the
response from a specific JSP page for 60 seconds, register the CacheFilter using elements similar to
the following:

<filter>
<filter-name>CacheFilter1</filter-name>
<filter-class>weblogic.cache.filter.CacheFilter</filter-class>
<init-param>
<param-name>timeout</param-name>
<param-value>60</param-value>

</init-param>
</filter>
...
<filter-mapping>

<filter-name>CacheFilter1</filter-name>
<url-pattern>CacheFilterTest1.jsp</url-pattern>

</filter-mapping>

The CacheFilterTest1.jsp page will execute the first time the URL is accessed by any client, and the
content of the HTTP response will be cached by the filter and used for all subsequent access requests for
60 seconds.

24

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 25

Chapter 1: Building Web Applications in WebLogic

Additional initialization parameters for the CacheFilter include the following:

Name The name of the cache. It defaults to the request URI.

Timeout Timeout period for the cached content. It defaults to seconds, but it may be specified in
units of ms (milliseconds), s (seconds), m (minutes), h (hours), or d (days).

Scope The scope of the cached content. Valid values are request, session, application, and cluster.
Note that CacheFilter does not support page scope. It defaults to application scope.

Key The names of request parameters, session attributes, and other variables used to differenti-
ate cached content. The key is supplied using a scope.name syntax, with possible scope values of
parameter, request, application, and session. Multiple keys can be supplied, separated by commas.

Vars The names of variables used or calculated by the page that should be cached alongside the
HTTP output. When the cached version of the page is retrieved and used, these cached variables
will be placed in their respective scopes as if the page had executed again. It uses the same syntax
as the key parameter.

Size The maximum number of unique cache entries based on key values. It defaults to unlimited.

Max-cache-size The maximum size of a single cache entry. It defaults to 64k.

Very simple JSP pages or servlets may be cacheable using only a timeout setting as long as the output
does not depend on any request or session variables. Most pages, however, will require the use of the
key initialization parameter to create multiple cached versions of the page, one for each value of the key
specified in this setting.

The CacheTest2.jsp example program in Listing 1-3 is an example of a page that depends on a single
request parameter, howmany, and will require a different cached version of the output for each value of
that parameter.

Listing 1-3: CacheTest2.jsp.

<HTML>
<BODY>
<%
int jj = Integer.parseInt(request.getParameter("howmany"));
System.out.println("Inside JSP page with howmany of " + jj);
%>
<H2>We’re going to count from 1 to <%= jj %><H2>
<%
for (int ii = 1; ii <= jj; ii++) {

out.print(ii + "
");
}
%>
</BODY>
</HTML>

The CacheFilter would be registered to cache this page content with a dependency on the howmany
request parameter as follows:

<filter>
<filter-name>CacheFilter2</filter-name>

25

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 26

Chapter 1: Building Web Applications in WebLogic

<filter-class>weblogic.cache.filter.CacheFilter</filter-class>
<init-param>
<param-name>timeout</param-name>
<param-value>60</param-value>

</init-param>
<init-param>
<param-name>key</param-name>
<param-value>parameter.howmany</param-value>

</init-param>
</filter>
...
<filter-mapping>

<filter-name>CacheFilter2</filter-name>
<url-pattern>CacheFilterTest2.jsp</url-pattern>

</filter-mapping>

Accessing this page with a specific value of howmany in the query string causes the entire page to be
executed one time. Subsequent page hits with the same howmany parameter value will return the same
content without executing the page. Supplying a different value for howmany will cause the page to be exe-
cuted for that value and the contents cached using that key value. In other words, if you hit the page five
times with different howmany values, you’ve created five different cached versions of the HTTP response
using the howmany value as the key. This technique is very slick and very powerful for improving site
performance.

WebLogic Server also includes a wl:cache custom tag that provides a very similar caching capability
for any JSP content placed in the body of the custom tag. It has the ability to cache based on key values,
like CacheFilter, and can cache small portions of a JSP page rather than an entire page. However, the
CacheFilter approach has an obvious advantage over the wl:cache technique: Caching is performed
using a declarative technique rather than embedding custom tags in the page itself. This defers the def-
inition of caching behavior to deployment time and allows easier control of the caching parameters and
scope using the web.xml descriptor elements.

Best Practice
Use the CacheFilter instead of wl:cache tags for page-level response caching when-
ever possible to provide better flexibility during deployment.

Note that a JSP page included using the <jsp:include> action is considered a separate page for the
purposes of caching. It can therefore be configured to cache independently from the parent page, which
may be helpful. Recognize, however, that this included page will not be invoked if the parent page
execution is skipped due to caching. Plan accordingly!

Creating Excel Files Using Servlets and JSP Pages
Creating spreadsheets using servlets and JSP pages is a useful way to provide users with results they
can sort, manipulate, and print using Microsoft Excel or other spreadsheet applications. Servlets are the
preferred mechanism, but JSP pages can also be used if you take steps to avoid unintended newline
characters in the output stream.

26

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 27

Chapter 1: Building Web Applications in WebLogic

To create a spreadsheet using a servlet, build the servlet in the normal manner but set the content type to
application/vnd.ms-excel in the response header to indicate that the response should be interpreted
as a spreadsheet. Data written to the response Writer object will be interpreted as spreadsheet data,
with tabs indicating column divisions and newline characters indicating row divisions. For example, the
SimpleExcelServlet servlet in Listing 1-4 creates a multiplication table using simple tabs and newlines
to control the rows and columns in the result.

Listing 1-4: SimpleExcelServlet.java.

package professional.weblogic.ch01.example2;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SimpleExcelServlet extends HttpServlet
{

public static final String CONTENT_TYPE_EXCEL =
"application/vnd.ms-excel";

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException
{

PrintWriter out = response.getWriter();
response.setContentType(CONTENT_TYPE_EXCEL);

out.print("\t"); // empty cell in upper corner
for (int jj = 1; jj <= 10; jj++) {

out.print("" + jj + "\t");
}
out.print("\n");

for (int ii = 1; ii <= 10; ii++) {
out.print("" + ii + "\t");
for (int jj = 1; jj <= 10; jj++) {

out.print("" + (ii * jj) + "\t");
}
out.print("\n");

}
}

}

Normal registration of this servlet in web.xml is all that is required in most cases.

<servlet>
<servlet-name>SimpleExcelServlet</servlet-name>
<servlet-class>
professional.weblogic.ch01.example2.SimpleExcelServlet

</servlet-class>
</servlet>

<servlet-mapping>

27

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 28

Chapter 1: Building Web Applications in WebLogic

<servlet-name>SimpleExcelServlet</servlet-name>
<url-pattern>/simpleexcel</url-pattern>

</servlet-mapping>

As noted earlier, WebLogic Server supports a @WLServet annotation for registering servlets and
specifying URL patterns. In this case, the SimpleExcelServlet source file could include the following
@WLServlet annotation to eliminate the need for web.xml entries:

@WLServlet (
name = "SimpleExcelServlet",
mapping = {"/simpleexcel"}

)
public class SimpleExcelServlet extends HttpServlet
{

...
}

In both registration approaches, users accessing the /simpleexcel location will be presented with a
spreadsheet embedded in their browser window. The servlet may also be registered for a <url-pattern>
that includes an .xls file extension to assist the users by providing a suitable default file name and type
if they choose to use Save As... from within the browser:

<servlet-mapping>
<servlet-name>SimpleExcelServlet</servlet-name>
<url-pattern>/multitable.xls</url-pattern>

</servlet-mapping>

Simple tab- and newline-based formatting may be sufficient in many cases, but you can achieve addi-
tional control by building HTML tables and using HTML formatting options such as and <i> in the
generated output. Because the content type was specified as ms-excel, these HTML tags are interpreted
by the browser and spreadsheet application as equivalent spreadsheet formatting options.

The FancyExcelServlet example servlet in Listing 1-5 builds the same multiplication table as
SimpleExcelServlet but uses HTML to control formats and cell sizes.

Listing 1-5: FancyExcelServlet.java.

package professional.weblogic.ch01.example3;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FancyExcelServlet extends HttpServlet
{

public static final String CONTENT_TYPE_EXCEL =
"application/vnd.ms-excel";

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException

28

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 29

Chapter 1: Building Web Applications in WebLogic

{
PrintWriter out = response.getWriter();
response.setContentType(CONTENT_TYPE_EXCEL);

out.print("<table border=1>");
out.print("<tr>");
out.print("<td> </td>"); // empty cell in upper corner
for (int jj = 1; jj <= 10; jj++) {

out.print("<td>" + jj + "</td>");
}
out.print("</tr>");

for (int ii = 1; ii <= 10; ii++) {
out.print("<tr>");
out.print("<td>" + ii + "</td>");
for (int jj = 1; jj <= 10; jj++) {

out.print("<td>" + (ii * jj) + "</td>");
}
out.print("</tr>");

}
out.print("</table>");

}
}

You can also use JSP pages to create spreadsheets with one complication: The output of a JSP page often
contains many unintended newline characters caused by extra whitespace around directives and script-
let tags, making it difficult to control the spreadsheet formatting when using simple tab and newline
techniques. HTML formatting similar to the FancyExcelServlet works better in JSP pages used to create
spreadsheets. Listing 1-6 presents the JSP equivalent to the FancyExcelServlet.

Listing 1-6: FancyExcelPage.jsp.

<% response.setContentType("application/vnd.ms-excel"); %>
<html>
<body>
<table border=1>
<tr>

<td> </td>
<% for (int jj = 1; jj <= 10; jj++) { %>
<td><%= jj %></td>

<% } %>
</tr>
<% for (int ii = 1; ii <= 10; ii++) { %>

<tr>
<td><%= ii %></td>
<% for (int jj = 1; jj <= 10; jj++) { %>

<td><%= (ii * jj) %></td>
<% } %>

</tr>
<% } %>
</table>
</body>
</html>

29

Patrick c01.tex V3 - 09/18/2009 12:15pm Page 30

Chapter 1: Building Web Applications in WebLogic

Viewing Generated Servlet Code
Viewing the servlet code generated for a particular JSP page can be instructive while learning JSP tech-
nology and useful during the testing and debugging process. Often the error report received during the
execution of the JSP page indicates the line in the generated servlet code, but finding the JSP scriptlet
code or tag that caused the error requires inspection of the Java code.

Generated Java servlet code will be kept alongside the generated servlet class files if the keepgenerated
parameter is set to true in the <jsp-descriptor> section of the weblogic.xml descriptor file. The equiv-
alent option for keeping the generated Java code for JSP pages compiled using the weblogic.appc utility
or wlappc Ant task is keepgenerated placed on the command line or within the Ant task invocation.

By default, the generated servlet classes and Java code will be placed in a temporary directory struc-
ture located under the domain root directory. The name of this temporary directory depends on the
names of the server, enterprise application, and web application, and it typically looks something like
servers/myserver/tmp/_WL_user/_appsdir_myapp_dir/wx8qxk/jsp_servlet. This default location
may be overridden using the <working-dir> option in the weblogic.xml descriptor file.

Chapter Review
In this chapter we reviewed the key concepts related to web applications in WebLogic Server and pre-
sented a number of important best practices designed to improve the quality and performance of your
web applications.

Most of this chapter has been at the detailed design and implementation level, the trees, in a sense. In the
next two chapters we step back and look at the forest for a few minutes by examining the importance of
the overall web application architecture, the selection of a suitable presentation template technique, and
the application of a model-view-controller pattern and framework for form and navigation handling.

30

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 31

Choosing a Web
Application Architecture

The Java EE specification defines many different technologies in great detail, but it does not actually
define the architecture of a Java EE application. For example, the EJB specification describes the
behaviors and characteristics of Enterprise JavaBean components and the rules that dictate how
they are to be managed by the application server, but the specification does not define the proper
choice for a given application. It is up to the system architect on the project to define rules governing
the use of session beans, message-driven beans, and other EJB components.

Similarly, the Java EE specification defines the three key technologies for web applications, Java
servlets, JavaServer Faces, and JavaServer Pages, but it does not specify how they should be used in
an application. As a result, the Java EE community has adopted a wide variety of de facto standards
and design patterns for designing web applications based on lessons learned by early adopters.

This chapter examines the presentation requirements that drive web application architectures and
makes specific recommendations to help you choose an appropriate architecture for your WebLogic
Server application.

Architecture Key Concepts
Before embarking on a discussion of presentation requirements and architecture drivers, we need
to step back and review some key concepts related to Java EE architecture.

Java EE Application Tiers
The Java EE specification and related documentation from Sun describe the Java EE platform as a
distributed application environment organized in three tiers: client, business, and enterprise infor-
mation systems (EIS) or data. Although this is a useful organization, it lumps all of the application
server–hosted components in the business tier. It is more common to break up this middle tier

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 32

Chapter 2: Choosing a Web Application Architecture

into two separate tiers, presentation and business, containing presentation-related components and
business-related components, respectively. This organization is depicted in Figure 2-1.

Client Tier

Java Clients
Web Browsers
D/HTML
Java Applets

Presentation Tier

JSP Pages
Servlets
JavaServer Faces

Business Tier

JavaBeans
EJB Components
Services

Data Tier

Databases
Legacy Systems

Figure 2-1: Java EE application tiers.

A related rule of thumb states that a component in a given tier may communicate directly only
with components in adjacent tiers. JSP pages may not access the database directly, for example.
Presentation-tier components must request information from components in the business tier,
which then request data from the database or other data-tier systems as required. The advantages
of this approach include the flexibility to leverage the same business components across multiple
presentation-tier components and the reduction in coupling between nonadjacent layers.

There is nothing particularly new or revolutionary about organizing components in tiers. Three-
tier and n-tier client/server technologies have followed this model for years, and even so-called
two-tier systems often had stored procedures and other middle-tier business services. The benefits
of organizing components in tiers or layers are well known and accepted in the industry, but this
layered organization hardly defines an application architecture.

Model-View-Controller Architecture
One design pattern often cited as a web application architecture is the model-view-controller (MVC)
pattern. This pattern has its roots in the Smalltalk world, where applications often used sophisti-
cated techniques for viewing business information (the model) using interfaces (views) that were
updated and managed automatically by controller objects whenever business objects changed state.

When architects discuss the model-view-controller pattern today, they usually mean a watered-
down version of the original. Essentially, the MVC pattern has become another layered architecture,
where view components must interact with a controller component to gain access to model data.
As shown in Figure 2-2, the Java EE technologies have shuffled around a bit, but the left-to-right
interactions implicit in a tiered architecture are still present.

View

Java Clients
Web Browsers
D/HTML
Java Applets
JSP Pages
JavaServer Faces

Controller

Servlets
Session Beans
Services

Model

JavaBeans
Databases
Legacy Systems

Figure 2-2: Java EE components mapped to MVC pattern.

32

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 33

Chapter 2: Choosing a Web Application Architecture

There is more to the model-view-controller pattern than simply layering components and mandat-
ing left-to-right communication paths, of course. The MVC design pattern also commonly defines
an approach for important presentation-tier behaviors such as defining navigational flow through
the site and processing HTML form submissions.

Common Java EE Design Patterns
The Java EE architectural community has rallied around a number of important design patterns
based on the seminal work, Design Patterns, by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (Addison-Wesley, 1995) and more recent books such as Core J2EE Patterns: Best Prac-
tices and Design Strategies 2nd Edition by Deepak Alur, John Crupi, and Dan Malks (Prentice Hall
PTR, 2003) and Expert One-on-One J2EE Design and Development by Rod Johnson (Wrox, 2002). Pat-
terns such as the session façade and value object are so prevalent now in application design that they
have become, in a sense, part of the Java EE platform. Every architect should read these works and
be well versed in the advantages and disadvantages of each design pattern before sitting down to
build a system.

These common Java EE design patterns still have some rough edges, however. Often they tackle
problems individually, leaving the proper combination of many different (and possibly conflicting)
patterns as an exercise for the architect. Some of the patterns introduce additional layers in the
architecture, ostensibly to reduce coupling between the layers already defined. We wonder how
much decoupling is truly advantageous to the development and maintenance effort taken as a
whole. By the time you implement the business delegate, service locater, session façade, value object
assembler, and composite entity patterns in the business tier, for example, the resulting system may
not be an improvement over the starting point.

The Java EE community has not yet reached the point where complete, end-to-end architectures
incorporating a select set of well-understood design patterns are documented and available for
new architectural efforts. We hope to address this deficiency in some small way in this chapter
and subsequent chapters on EJB architecture by presenting complete, realistic example applications
employing a consistent set of Java EE design patterns. The success or failure of your WebLogic
Server project may depend more on the proper selection of architecture than on any other decision
you make during development, so take the time to understand the issues involved before you start
designing or coding.

Now that we have discussed some basic concepts related to web application architecture, it is time
to dig in and discuss the issues that drive presentation-tier architecture design decisions.

Presentation-Tier Architecture Selection
The high-level depiction of Java EE application tiers in Figure 2-1 defined the presentation tier as con-
taining Java servlets, JavaServer Faces, and JSP pages. When we talk about presentation-tier architecture,
we are essentially defining the manner in which these three types of components will be combined to
create a user interface that meets the explicit and implicit requirements for the presentation tier of the
application.

Understanding these explicit and implicit requirements is the goal of the next section.

33

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 34

Chapter 2: Choosing a Web Application Architecture

Presentation-Tier Requirements
Defining the presentation-tier architecture is much like designing the application itself: It must depend
on the requirements. You don’t build a customer management system if the users want an accounting
system, and you shouldn’t design the presentation tier without understanding presentation-tier require-
ments.

We’re not talking about understanding the user-interface requirements of the system, but rather the
general requirements of any well-behaved web application. Examples include good form validation and
error handling, robust handling of bookmarks and browser Back buttons, ability to change graphics or
page arrangements quickly, and helpful pop-ups and dialogs. Users are becoming more familiar and
comfortable with the Web and are demanding robust behavior from their custom-built web applications.
Meanwhile, the large commercial sites keep raising the bar with respect to usability. Users see constant
improvements in areas such as page layout customization, form validation, pick lists and pop-ups, and
many other areas, and they wonder why you can’t implement something similar for their project.

A detailed discussion of state-of-the-art AJAX-powered technologies and site design is beyond the scope
of this book. If you are interested in user-controlled page layout and content customization, you should
investigate Oracle’s WebLogic Portal product. Our focus is presentation-tier architecture rather than
detailed site design and human factors engineering.

Achieving many of the basic usability and flexibility requirements of a site can be helped or hindered a
great deal by the choice of presentation-tier architecture. These are some of the presentation-tier require-
ments:

❑ Display requirements

❑ Form/update requirements

❑ Navigation requirements

The following sections document these requirements and the ways they affect the required architecture.

Display Requirements
Display requirements include all of the user-interface requirements related to the presentation of data on
web pages. As discussed in Chapter 1, JSP pages are considered the best mechanism for creating HTML
responses containing dynamic content. We assume you’re using JSP pages for display behavior unless
otherwise noted.

In this section, we discuss some of the key display-related requirements that affect presentation-tier
architecture decisions. At a minimum, the architecture must support the following:

❑ Displaying model data in various modes and forms

❑ Displaying lists of objects with flexible sorting, paging, and form input capabilities

❑ Controlling page availability and model data presentation based on user authorization

❑ Internationalization of all appropriate content on pages

❑ Producing flexible and maintainable pages allowing for multiple deployments and efficient future
modifications

34

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 35

Chapter 2: Choosing a Web Application Architecture

Displaying Model Data
Applications must be able to display model data on view-only web pages for inspection by the user. The
architecture must provide a straightforward mechanism to retrieve the model object and place properly
formatted attribute values in the HTML response. JSP pages offer expression scriptlets and custom tags in
the JSTL core library for the purpose of embedding the model data in the response, and they require only
some mechanism for retrieving the proper model object and making it available in the proper context for
display.

Displaying Model Data in a Form
You will often want to allow the creation and modification of model objects through an HTML form
with input elements corresponding to the model object attributes. The presentation-tier architecture must
provide a mechanism to retrieve the proper model object (or create an empty object) and populate the
form elements with the properly formatted attribute values.

Techniques for populating form elements with model data are simple enough for text input fields, requir-
ing a snippet in the JSP page something like this:

<tr>
<td nowrap>Middle name:</td>
<td><INPUT TYPE=’text’ NAME=’middleName’

value=’<c:out value="${person.middleName}"/>’ size=’50’></td>
</tr>

Techniques become more challenging when the form elements are formatted dates, select lists, check-
boxes, radio buttons, and other fields requiring some form of mapping from the attribute value in the
model object to the proper display format or selected value on the page. Your presentation-tier archi-
tecture must recognize the need for these complex form elements and provide convenient and reliable
mechanisms for producing them.

Displaying a List of Model Objects
No web application is complete without a search page for choosing criteria and a results page showing a
list of model objects meeting the search criteria. Search criteria pages are typically straightforward HTML
forms with no new requirements for the presentation-tier architecture. Search result pages, on the other
hand, can often present a host of interesting challenges for the presentation tier:

❑ You should be able to sort results by different columns, perhaps by clicking the desired column
title.

❑ You may need to buffer and page results, presenting only a subset of the results on the page at
one time and allowing the user to scroll through the results via Previous and Next buttons.

❑ Although most search result pages are simple views of the model data with perhaps a link to
drill in and edit the corresponding object, some list pages may require form elements such as
checkboxes or input fields associated with each row. The architecture should therefore support
the creation of HTML forms containing multiple model objects in a list.

Creating search result pages containing lists of model objects can be accomplished with JSP pages using
straightforward scriptlet looping code or iterator custom tags without much trouble. You can also accom-
modate sorting, results pagination, and multi-object forms through relatively simple techniques. The

35

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 36

Chapter 2: Choosing a Web Application Architecture

presentation-tier architecture should define the standard approach for accomplishing these tasks in a
manner consistent with the solutions for other display-related requirements.

Presenting Role-Based Views of Data
Most web applications require user authentication in some form or another, and many applications
limit or modify the data presented to the user depending on their authorization. It may be as simple
as identifying pages in the site available to particular users and using the declarative security provided
through the web.xml descriptor file for the web application. If that’s the case for you, consider yourself
fortunate. Web applications commonly require much more sophisticated role- or user-based control of
the pages and data presented. Some typical requirements include the following:

❑ Selected pages or whole areas of the site are available or off limits based on user or role.

❑ Navigation devices such as menus, navigation bars, and hyperlinks must reflect the user or role
by eliminating or disabling links leading to off-limit pages.

❑ Pages may be available to certain users or roles but exhibit display differences or limited func-
tionality depending on the user. Forms may treat some fields as read-only for certain users, for
example, or omit certain information completely.

❑ Page display and functionality may differ depending on both user information and attribute
information in the model object itself. For example, modifying customer information might
require that the user be a salesperson in that customer’s region.

Are you beginning to get the picture? Many application development efforts have abandoned the sim-
plistic declarative security model offered by Java EE in favor of a custom-built authorization framework
providing some or all of these features. The presentation-tier architecture you select should provide a
mechanism for integrating with your chosen security system and meeting your role- and user-based
display requirements.

Of course, writing your own authorization framework comes at a price. You are depending on your
developers not only to understand all of the facets of writing a security framework but also to use it prop-
erly to protect your application’s resources. Chapter 11 describes the WebLogic Server security model in
detail, including the WebLogic Server extensions that allow you to address some of these authorization
flexibility issues without writing your own security framework.

Internationalization
Your web application may need to support internationalized content and display formats as part of a
comprehensive globalization, localization, and internationalization (GLI) strategy.

Internationalization, often abbreviated as i18n, requires the removal of all language- and culture-specific
items from the application source code and display pages. All displayed text, images with embedded
text, informational and error messages, button labels, and other language-specific resources should be
packaged independently from the application and presented using language-specific mechanisms in the
display pages. Date formats, monetary and numeric formats, and other display formats may also require
internationalization.

Localization, abbreviated l10n, takes this process one step further by tailoring the application look and
feel, site content, currency conversions, business processes, and design considerations based on lan-
guage and cultural considerations. More than just translating content, localization ensures that users feel

36

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 37

Chapter 2: Choosing a Web Application Architecture

the site has been designed specifically for them. Applications cannot be localized unless they are first
internationalized.

Globalization seeks to ensure that all customers receive a similar quality of experience regardless of
language, culture, and location. It builds on internationalization and localization and ensures the proper
language- and location-specific handling of customer interactions at all levels in the system. This might
include global site hosting, global content management, multilingual customer support facilities, global
invoicing and fulfillment, and many other issues not directly related to the web application itself.

A complete discussion of internationalization is beyond the scope of this book. We will consider inter-
nationalization requirements when choosing a web application architecture, but we will not include
internationalized content or behavior in our example applications.

Display Flexibility and Maintainability
The final display-related requirement emphasizes planning for the future in the design of the web appli-
cation.

First, unless the application is a short-lived throwaway, it will undergo maintenance and enhancement
at some time in the future. Plan for this eventuality by designing in the right level of flexibility and
modularity from the start.

Next, don’t assume that the layout, look and feel, style sheets, images, logos, or any other visual elements
will remain constant over time. Customer-facing web sites are part of the brand image of the company,
and companies are continually updating their sites to adopt the latest marketing and branding directions.
Even internal sites can undergo significant modification in display characteristics when functionality is
added or removed or usability issues necessitate major changes to the site.

Finally, your site may need to be flexible enough to use in an application service provider (ASP) envi-
ronment. The site appearance, colors, behaviors, and even layout may need to be easily customizable for
multiple clients. You cannot copy the site and tweak it for the new client; you’ll end up with multiple
copies of the site to maintain, enhance, and update with desired functionality and look-and-feel changes.
That’s not where you want to be.

How might these relatively fuzzy requirements for flexibility and maintainability affect the presentation-
tier architecture?

❑ Style sheets are critical for defining fonts, sizes, colors, and other display attributes. Every single
table cell, input field, and piece of text on the site should use a class attribute.

❑ Define page layout details such as the overall HTML table structure in a way that allows mod-
ification in the future. For example, if the header, body, footer, and gutter contents and sizes
are specified on every page in the site (a technique often referred to as the composite view pat-
tern), how easy will it be to shuffle the table structure around and move advertisements from the
left to the right gutter? Not easy at all if you must edit every page to change the location of the
<jsp:include> actions.

❑ Modularity of display content is important. Any common element, whether it is a copyright
message or a navigation bar, should be separated from surrounding content and placed in
its own JSP page for inclusion via <jsp:include> actions or <%@ include file="..." %>
directives.

37

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 38

Chapter 2: Choosing a Web Application Architecture

We discuss various template and page assembly options in Chapter 3 to provide some best practices
related to display flexibility and maintainability, and in Chapter 4 we build an example web application
that demonstrates many of the topics outlined here.

Form/Update Requirements
The requirements in the previous section dealt primarily with the flow of data from the model to the
view and with the proper formatting and display of that data. This next set of presentation-tier require-
ments deals with data flow in the opposite direction, from the view back to model components, normally
through the posting of HTML forms. Figure 2-3 illustrates the basic flow of this data and the role of
the presentation tier in the transfer process. Remember that we’re talking about only presentation-tier
requirements in this section, so this discussion does not cover business-tier requirements, such as trans-
actional behavior or object-relational mapping.

Client Tier

HTML Form

Client-Side
Validation

Business Tier

Model Object

Coordinate
Update Operation

Presentation Tier

Error
Display

Extract
Form Data

Server-Side
Validation

Figure 2-3: Steps required during form processing.

In this section we walk through the process from the HTML form to the model object, highlighting the
presentation-tier requirements. At a minimum, the architecture must support the following:

❑ Client-side validation to provide immediate feedback to users when input does not meet con-
straints

❑ Extraction of HTML form data to facilitate subsequent validation and transfer steps

❑ Server-side validation to catch input errors before transferring data to model objects

❑ Display of errors and original data in the HTML form to allow user correction and resubmission

❑ Efficient interaction with the business tier to coordinate transactions properly and meet the interface
requirements imposed by the business-tier architecture without undue complexity

Client-Side Validation
Although client-side validation is not strictly part of the presentation-tier architecture, it’s commonly
used, and it’s important in the overall design of the view-to-model transfer process. Users expect form
pages to warn them if required fields are left blank or inconsistent selections are made, without requiring
a round trip to the server. You can apply client-side validation techniques in a light manner, perhaps
checking only for required fields, or your design can include heavier levels of validation, such as checking
fields for valid formats and content consistent with other fields.

Client-side validation is almost universally performed with JavaScript code that is executed just before
submitting the form contents to the target. Errors are often displayed in a JavaScript alert window, and

38

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 39

Chapter 2: Choosing a Web Application Architecture

the cursor is placed in the offending field. A detailed examination of the mechanisms for providing
client-side validation is beyond the scope of this book.

You should recognize that including client-side validation of fields in your application does not eliminate
the need for server-side validation of the same required fields and formatting rules. Users may turn off
JavaScript in their browsers or bypass the validation in other ways, causing invalid data to be passed to
the server for processing.

Best Practice
Use client-side validation to enhance the usability of the application, but do not rely
solely on it for field validation. Perform the same validation in the server-side process-
ing.

Remember that all fields appearing on the HTML form are visible to the user if he or she looks at the
HTML source, so creating spurious form submissions with bad input data or even different hidden field
values is a trivial matter for someone who wants to bypass your validation and security requirements.
Design accordingly.

Extracting Form Data
The HTML form data is presented to the server-side processing component, normally a servlet or con-
troller class, as a series of parameters in the HttpServletRequest object. The first step in server-side
processing is normally extracting the form data and placing it in an intermediate Java object appropriate
for server-side validation and subsequent transfer operations. The type of Java object is determined by
the presentation-tier architecture, but it is often a simple JavaBean, value object, or other straightforward
data structure.

Note that you can perform most server-side validation by examining the HttpServletRequest param-
eters themselves without first extracting the data to an intermediate object, but this direct inspection
technique has at least two negative effects:

❑ Directly examining request parameters places the validation logic in the presentation-tier com-
ponent itself rather than encapsulating the validation rules in an object used exclusively for this
purpose. Many server-side validation rules involve multiple form fields and their interrelation-
ships, and this logic is best encapsulated in the object containing all the attributes.

❑ If errors are encountered during server-side validation, the intermediate object plays a valuable
role in preserving the original form input data for redisplaying it to the user. Without this object,
it can be difficult to redisplay the HTML form properly to the user. We discuss this requirement
in more detail in a moment.

Best Practice
Extract HTML form data to a special purpose intermediate object before performing
server-side validation to improve encapsulation and assist in redisplaying the form
data in case of validation errors.

39

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 40

Chapter 2: Choosing a Web Application Architecture

You can extract HTML form data with an ugly and error-prone process of retrieving the parameter
values field by field from the HttpServletRequest and placing them in the corresponding attributes of
the intermediate object using code like this:

person.setLastName(request.getParameter("lastName"));

Instead, the presentation tier should provide helper methods or standard techniques for extracting form
data and placing it in the intermediate object.

Server-Side Validation
Once the HTML form data has been placed in an intermediate object, the presentation-tier components
should perform server-side validation to identify problems with the incoming data, collect all of the
resulting error messages, and display them to the user. Server-side validation should include simple
required field checks as well as all formatting validation, interrelated field rules, and foreign key con-
straints.

Do not use the database constraints to perform input validations. The database may very well have the
same validation rules embedded in constraints, but you should not use these constraints as the primary
line of defense against such data errors. Catching the problems during server-side validation will avoid
starting and rolling back transactions in the business tier of your application. This will improve system
performance and reduce database-related exceptions, which might mask or be confused with true errors
needing attention during testing or production operation.

Best Practice
Perform all server-side validation in application code rather than by relying on database
constraints. This improves performance and reduces confusion during testing.

Don’t stop performing server-side validation upon encountering the first error. The validation process
should collect all errors encountered and make them available for display to the user for input correction
and resubmission, as discussed next.

Best Practice
Server-side validation should collect and return all errors encountered in the submitted
data rather than stopping with the first error. This provides a clearer picture of the
validation requirements and reduces user frustration.

Displaying Errors
Errors discovered in server-side processing must be sent back to the client for display. This is easier said
than done because users expect to see the original form and input data along with the error messages.
The presentation-tier architecture must therefore include a mechanism for displaying the errors on the
original HTML form and allowing resubmission through the same validation process.

40

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 41

Chapter 2: Choosing a Web Application Architecture

Note that normally the input data is not contained in a model object yet, so the redisplayed form cannot
simply be an instance of the typical HTML form display of a model object (a requirement outlined ear-
lier in this chapter). Instead, you need to display the input data submitted during the previous iteration
without having created a model object. This represents a new display requirement not previously iden-
tified because previously you always displayed the contents of a model object in the HTML form. How
the presentation tier preserves the submitted input data and makes it available for the redisplay of the
HTML form depends on the architecture.

The error messages themselves may be presented in a separate section of the redisplayed form, as shown
in Figure 2-4, or may cause individual error messages to appear near the offending fields. Other designs
may present the errors as a pop-up alert window and highlight offending fields with appropriate colors
or formats. The type of error display is an application-specific requirement negotiated with the users,
but the presentation-tier architecture may need to support general or field-specific errors and should be
selected with this flexibility in mind.

Figure 2-4: Typical validation error display.

Interacting with the Business Tier to Update Model Objects
Once the form data has been extracted and validated, the presentation tier must interact with the
business-tier components to perform the desired object creation, update, or deletion. The details of this
interaction will depend greatly on the business-tier architecture and the type of intermediate object
created during HTML form extraction.

In most cases the business-tier architecture utilizes a different set of model objects than the intermediate
objects used in the presentation tier. The data in the intermediate objects must therefore be transferred
to the model objects before invoking the business-tier services. This is very common in real-world

41

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 42

Chapter 2: Choosing a Web Application Architecture

applications, because the presentation-tier objects are typically designed to support individual web pages
in the application whereas model objects are mapped more closely to the database entities or backend
services.

You must consider business-tier and presentation-tier architecture together to produce a good, efficient
design. A key goal is to provide the right level of separation and encapsulation of the work required to
perform the overall HTML form-to-model object transfer process without requiring numerous extra bean
objects and hundreds of lines of related get/set transfer code. Don’t lose sight of this goal in your zeal to
minimize coupling between the tiers or create reusable services.

Best Practice
Presentation-tier architecture requirements depend on the business-tier architecture
and interfaces. Design the overall architecture with the requirements of both tiers in
mind to avoid unnecessary complexity.

Obviously, the presentation-tier architecture is a little more complicated than just some JSP pages and a
servlet for handling forms. The next few sections round out the presentation-tier requirements.

Navigation Requirements
The previous sections outlined the requirements for the presentation of model data and the processing of
form submissions as an isolated event, but in a large web application, the individual search pages, results
pages, model display pages, HTML forms, and other pages are all connected to form the overall web site.
Users navigate through the web site performing the desired activities and receiving the proper display
pages by clicking appropriate hyperlinks or navigation control elements in the site. These navigation
activities impose significant requirements on the presentation-tier architecture.

Defining the related presentation-tier requirements depends less on how navigation is accomplished
visually than on the answers to questions such as these:

❑ How are these navigational controls and links established? Does each page have hard-coded
links representing all of the paths available to the user?

❑ Will individual pages or sections of pages be reused in multiple areas of the current application
or in other applications?

❑ Does the presence or absence of navigation links depend on some state in the system, such as an
attribute of a model object or the identity of the user? Where are these rules implemented?

❑ On which page does the user end up after submitting a form and performing a processing
step? Is this target page hard-coded in the processing component? How is branching logic that
depends on the outcome of the processing implemented?

❑ Does the site guard against multiple form submissions and improper use of the back/forward
capability of browsers? Can the user safely bookmark pages deep within the site?

These are significant and involved questions. The answers applicable in your application may drive your
presentation-tier architecture in many different ways and require significant infrastructure development.
We’ll boil these questions and issues down to three main requirements: basic navigation definition,
outcome-based navigation, and submission/bookmark controls.

42

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 43

Chapter 2: Choosing a Web Application Architecture

Basic Navigation Definition
Web applications are complex, interconnected sets of pages tied together with hyperlinks and other
navigational controls. The specific target page for each link or control must obviously be specified some-
where in the architecture, but not necessarily in the JSP pages themselves. It may be more consistent with
good maintainability and flexibility to defer the target page definition to some other component in the
presentation-tier architecture.

Consider the following example snippet from a display JSP page that establishes a simple link to edit a
particular person.

...
Display person elements
...
[Edit]

The target page, EditPerson.jsp, is hard-coded in the JSP page, making it painful to change the name of
the target page without affecting every page that links to this target page. Reusing this display page else-
where in this application or subsequent applications is also made more difficult. The coupling between
pages is strong and implemented in the pages themselves.

Contrast that snippet with a different JSP snippet using a general servlet as a controller to accept requests
and pass the user to the proper page.

...
Display person elements
...
[Edit]

The ActionServlet would receive the action parameter in the HttpServletRequest and perform a
lookup or conditional branching of some sort to determine the name of the target page, forwarding or
redirecting the user to that page, as appropriate. The specific technique used to perform this activity is
determined by the presentation-tier architecture.

We recommend that you use some form of controller servlet or other similar mechanism outside of the
JSP pages themselves to define basic site navigation. Therefore, the presentation-tier architecture must
enable and support this capability.

Best Practice
Avoid hard-coding navigational links and controls in JSP pages. Use controller servlets
or other presentation-tier components to define basic navigational logic.

Outcome-Based Navigation
Defining outcome-based navigation is, in some ways, the flip side of the previous section. In the previous
section, the navigational information was removed from the JSP pages and placed in a controller layer of
some sort. In this section, the outcome of a processing step defines the next page displayed for the user,
and this navigational information too must be removed from an inappropriate place and delegated to the
controller layer.

43

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 44

Chapter 2: Choosing a Web Application Architecture

For example, a processing step that creates new users on the site may want to send a user to the
CreationComplete.jsp page if the creation was successful and to the CreationProblem.jsp page if not.
Where are these specific page names defined in the application? The name could be embedded in the
processing component itself, as indicated by the following code snippet.

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

...
boolean result = service.createUser(userinfo);
String nextpage =

(result ? "CreationComplete.jsp" : "CreationProblem.jsp");
RequestDispatcher disp = request.getRequestDispatcher(nextpage);
disp.forward(request, response);

}

In this crude example, the processing servlet will forward control depending on the outcome of the call
to the service. Clearly, the hard-coding of the target pages in the servlet affects the maintainability and
reusability of this component, making the coupling with the JSP page names and locations very strong.
Although the controller or processing servlet is the right layer to determine the target page, hard-coding
the names in the controller is not appropriate.

We recommend that navigation information that depends on outcomes of processing steps, model object
states, or other branching conditions should be defined in the controller layer using an external defi-
nition mechanism, such as a properties file or XML descriptor, to define the target page names. This
minimizes coupling between controller-layer components and the display pages and allows for efficient
maintenance and reuse of both controller and display components.

Best Practice
Avoid hard-coding page names in controller servlets and other components. Use an
external file or descriptor to define page names based on outcomes or branch condi-
tions.

Submission/Bookmark Controls
It’s a common lament for web application designers: site development would be easy if it weren’t for the
users! Users will explore every corner of the site, set and use bookmarks deep in the site, and make use
of the Back and Forward functions of their browsers with wild abandon. Be prepared for the worst!

Although a complete discussion of this topic is beyond the scope of this book, there is at least one concrete
requirement that you should impose on the presentation-tier architecture: the site must guard against
multiple submissions or out-of-order submissions of HTML forms. Users may, by accident or intent,
submit a form one time and perhaps continue to navigate through the site, then back up to the HTML
form page again, and resubmit the form with the same or modified data. How will your site react if the
form was used to place an order or create a new record?

Solutions to this problem vary from architecture to architecture, but they normally employ some form
of token or timestamp in the form that is good for only a single submission. Preventing multiple form

44

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 45

Chapter 2: Choosing a Web Application Architecture

submissions and handling them properly when they occur represent important requirements for the
presentation-tier architecture.

Best Practice
Include safeguards in your presentation-tier components to prevent erroneous form
submissions and handle user bookmarking and back/forward navigation properly.

We’ve barely scratched the surface of issues related to navigation definition and the handling of spe-
cial situations and conditions caused by user activity. Clearly, additional requirements might affect the
presentation-tier architecture, such as support for navigation bars or menus, security-based navigation
behavior, customizing navigation on a per-user basis, and many others. The important thing to note
is that achieving good maintainability and reusability of presentation-tier components imposes signifi-
cant requirements on the presentation-tier architecture, which must be taken into consideration during
architecture selection and design.

Building a Presentation-Tier Architecture
The preceding sections identified a number of important requirements imposed on the presentation-tier
architecture based on typical user interface requirements and good design principles. These requirements
represent a tall order for any architecture and may seem somewhat daunting at this point.

Fortunately, you don’t have to build a presentation-tier architecture from scratch unless you feel com-
pelled to do so. A number of good presentation-tier frameworks are available in the open source com-
munity, including Spring MVC and Struts.

We need to finish up our general discussion of the presentation-tier architecture selection process with a
few additional items, and then we will present a brief comparison of a typical hand-made presentation-
tier architecture, the Spring MVC framework, and the Struts 1.2 framework using the requirements
discussed so far as the basis for comparison.

Other Architecture Considerations
Requirements imposed on the presentation-tier architecture are important but are not the only con-
siderations that affect the selection or design of an architecture. Essentially, the requirements specify a
minimum set of behaviors for the presentation tier but do not actually define the solution. The solution
itself should take into account other factors, such as the following:

❑ What is the experience level of the Java EE development team? What about the team expected to
perform ongoing maintenance and enhancements after the application rolls out? There is almost
always a trade-off between flexibility and maintainability of the design and the apparent com-
plexity of the original development. Find the right balance.

❑ Does it make sense to impose requirements such as the elimination of hard-coded navigation
links based on the site size, need for reuse, and other factors? Can a compromise set of rules be
established that mandates the use of controller navigation control in some areas but not others?

❑ Will performance be adversely affected by presentation-tier design decisions? Creating
additional layers in the architecture and steps in processes such as form submission have a

45

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 46

Chapter 2: Choosing a Web Application Architecture

performance cost associated with them. Weigh this cost against the benefits of the additional
design elements to justify the design.

❑ Is the design consistent with WebLogic Server clustering and other production environment
deployment practices and options? Don’t preclude the use of clustering through some design
feature or assumption, for example, or assume that the web application will always be collocated
with the EJB components if this is not true.

In the end, the presentation-tier architecture design or selection process comes down to a judgment call
based on all of the available information and requirements. There is no single correct answer or even a
set of hard-and-fast rules to go by. What makes sense for one application or development team may not
make sense for a different development effort.

One fact remains: The presentation tier defines the behaviors closest to the user, and because of this it
is subject to the highest variability of inputs, must react to the need for constant change, and can make
or break your development effort. Don’t rush the design decisions or jump on any given framework
bandwagon unless you understand the details and have a clear picture of the costs and benefits for your
application.

Candidate Presentation-Tier Architectures
In this section, we briefly compare three candidate presentation-tier architectures, summarizing their
individual solutions to the presentation-tier requirements outlined in the previous section. The first
architecture, a JSP-centric architecture, uses JSP pages alone to meet the presentation-tier requirements in
a fairly low-tech approach to the problem. The second architecture, Struts 1.2, is a servlet-centric architecture
that uses JSP pages and servlets in a more complex and flexible model-view-controller design and repre-
sents an established, well-understood option. The third architecture, Spring MVC, is newer alternative,
very similar to Struts, that represents a more state-of-the-art presentation-tier architecture.

The comparison will be performed by examining the components and techniques necessary to build a
simple Person Tracker web application using each architecture. The Person Tracker application maintains
a list of people and allows users to view the list and edit individuals. It employs a simple stateless service
Java object, PersonService, as the business-tier component responsible for managing model objects.
PersonService is a simple Java class that maintains a list of Person objects in memory and provides a
straightforward interface for retrieving, creating, and updating people.

The complete source code for all three solutions is available on the companion web site
(http://www.wrox.com/).

JSP-Centric Architecture
The JSP-centric architecture we chose for this comparison uses only a single presentation-tier technology,
JSP pages, to produce a web application meeting the presentation-tier requirements. The emphasis is on
reducing complexity by eliminating all layers, technologies, and components not absolutely necessary to
the design.

Figure 2-5 presents a high-level picture of the JSP components and their interactions in the architec-
ture. Note that although everything in the presentation tier is implemented as JSP pages, there is still

46

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 47

Chapter 2: Choosing a Web Application Architecture

a controller component (called an action page in this architecture). This approach is basically an all-JSP
implementation of the model-view-controller architecture.

The following list summarizes the JSP-centric solution according to the major presentation-tier require-
ments outlined in the previous section. Examine the downloadable example programs to understand
better how these requirements were satisfied in the JSP-centric architecture.

ShowPeople.jsp

Name1
Name2
Name3
...

EditPerson.jsp

Salutation
...
Last Name

FindByID

Failure

Success

Save

EditPerson_action.jsp

PersonService

Create,
Update

Person

Figure 2-5: JSP-centric architecture components.

JSP pages perform display tasks JSP pages are responsible for all of the display-related require-
ments outlined in the previous section. JSP pages fetch data from the service using scriptlet code or
custom tags, create list displays by looping through collections of model objects, and create HTML
forms containing model data for display and modification.

Action JSP pages process form submissions Specialized JSP pages, called action pages, are used
to process HTML form submissions. Action pages extract form data using scriptlet code, custom
tags, or similar techniques, validate the data, and interact with the business-tier components.
Errors are handled by forwarding back to the form page after creating a list of errors in the
HttpServletRequest. Form data is redisplayed on the form for correction by special code that
looks for it in the request. Significant scriptlet code is required on form pages and action pages to
implement all of the form submission and error redisplay rules outlined previously.

Navigation controlled by view and action pages Basic navigation definition and outcome-based
navigation are implemented in the JSP display pages and action pages using straightforward
links and URLs. Navigation information could be stored in external files to reduce coupling at
the expense of complexity. Submission controls are implemented using a custom token–based
approach involving a hidden HTML form field and matching session attribute. HTTP redirects
are used after form submissions, where possible, to alleviate bookmark and browser-navigation
issues.

The benefits of the JSP-centric approach include the following:

❑ The number of components required to build a given application is small.

❑ The number of technologies used is small, reducing the learning curve for inexperienced devel-
opers.

❑ JSP pages can be modified and redeployed to a running instance of WebLogic Server very
quickly, speeding turnaround time in a prototyping or UI brainstorming effort.

47

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 48

Chapter 2: Choosing a Web Application Architecture

The drawbacks include the following:

❑ Architecture tends to produce a tightly coupled application with hard-coded page names.

❑ Action JSP pages are primarily Java code but cannot be developed, compiled, and debugged as
easily as pure Java code.

❑ Large amount of scriptlet code is required in JSP pages to implement all presentation-tier
requirements.

❑ Reuse of processing and validation logic is hampered by its placement in form-specific action JSP
pages.

Given the existence of good open source frameworks such as Struts and Spring MVC, the wealth of
documentation and examples available using these frameworks, and the availability of developers with
experience using these frameworks, it is difficult to recommend a JSP-centric architecture under any
circumstances. Whatever time you might save during construction by keeping the number of components
and technologies minimal will be lost, eventually, as you maintain and tweak your custom-built JSP
components to handle changing business or navigational requirements.

JSP-centric architectures might be appropriate in throwaway prototyping efforts, given the quick
turnaround JSP pages enjoy when it comes to redeployment, but otherwise this architecture and others
like it should be avoided.

Best Practice
Consider a simple JSP-centric approach for throwaway prototyping efforts to speed
redeployment, but avoid it for all other applications.

Servlet-Centric Architecture: Struts
The first servlet-centric architecture chosen for this comparison leverages an open source framework
called Struts to avoid building the required support components and logic from scratch. We’re going to
use a small subset of the components and features in the Struts 1.2 framework, concentrating primarily
on the features related to form handling and navigation.

Figure 2-6 presents a high-level view of the JSP, servlet, form, and model components and their interac-
tions in the Struts architecture chosen for this application.

There are still two main JSP pages, ShowPeople.jsp and EditPerson.jsp, but the components responsi-
ble for processing forms and controlling navigation have changed considerably in the new architecture.
A new PersonForm object has been introduced for use by the EditPerson.jsp page and related process-
ing, and new action components are present for processing user actions. More components are required
in the Struts servlet-centric approach, overall, than in the JSP-centric architecture depicted in Figure 2-5.

Let’s list the presentation-tier requirements in the same manner as before and examine how the Struts
architecture meets them in our example application. We again refer you to the downloadable source code
for a detailed examination of this solution.

48

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 49

Chapter 2: Choosing a Web Application Architecture

ShowPeople.jsp

EditPerson.jsp

Name1
Name2
Name3
...

Salutation
...
Last Name

FindByID

Failure

Success

Save

EditPersonAction

ShowPeopleAction

PersonForm

PersonForm

PersonService

Validate
Create,
Update

Person

Figure 2-6: Struts servlet-centric architecture components.

JSP pages perform display tasks JSP pages are again responsible for all of the display-related
requirements. JSP pages use special Struts custom tags to create HTML forms, favor retrieving
model data from JavaBeans located in the HttpServletRequest rather than fetching it directly, and
avoid hard-coding links to other pages by referencing controllers rather than display pages. Struts
also provides tags for internationalization and simple role-based conditional logic.

Controller components process form submissions A centralized controller servlet invokes action
classes to process HTML form submissions and interact with business-tier components. Specialized
Java objects, called form beans, are used to extract and validate the HTML form data. Errors are han-
dled by forwarding back to the form page after creating a list of errors in the HttpServletRequest
for display by Struts tags on the form. Form data is automatically redisplayed on the form for cor-
rection. No scriptlet code is required to satisfy form submission requirements.

Navigation controlled by configuration files Basic and outcome-based navigation information is
stored in an external configuration file, struts-config.xml. This file is also used by the controller
servlet to relate JSP display pages, form beans, and action classes across the application. Submis-
sion controls are implemented using a built-in, token-based approach involving a hidden HTML
form field and matching session attribute. HTTP redirects are used after form submissions, where
possible, to alleviate bookmark and browser navigation issues.

The benefits of the Struts-based servlet-centric approach include the following:

❑ Display logic, processing logic, and form validation are encapsulated in different components,
improving application flexibility and reuse.

❑ Pure Java code in controller components is easier to develop with IDE tools than scriptlet code
within JSP action pages.

49

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 50

Chapter 2: Choosing a Web Application Architecture

❑ Navigation information is external to the components and code, improving flexibility and reuse.

❑ Developers can be found with experience using the Struts framework, jump-starting your devel-
opment effort.

Drawbacks of this approach include the following:

❑ The learning curve increases, due to additional components and files required for operation.

❑ Dependence on an older open source framework such as Struts 1.2 may become an issue in the
long term.

We recommend a servlet-centric architecture such as the Struts 1.2 framework for all but the smallest
web applications, especially if they require flexible organization and have a substantial potential for
component reuse. Using a prebuilt framework helps reduce the development effort and complexity of
the application and is important in long-term maintenance.

Best Practice
Favor the servlet-centric approach for all web projects. The flexibility and reuse benefits
of a servlet-centric approach almost always exceed the costs of learning and adopting
the architecture for all but the simplest projects.

Servlet-Centric Architecture: Spring MVC
The second servlet-centric architecture chosen for this comparison leverages the Spring 2.5 MVC frame-
work as an alternative to the Struts framework. Spring MVC is part of a larger Spring open source
framework that defines a comprehensive approach for building Java EE applications that are modu-
lar, easy to test, and easily reusable. Spring uses a technique known as Dependency Injection to connect
objects and services via declarative mechanisms rather than runtime lookups or hard-coded connections.
Spring MVC uses this same technique to wire together the model, view, and controller components in the
presentation tier to achieve the desired navigational and form submission logic in your web application.

The newer Spring 2.5 MVC framework, though much more configurable and extensible than Struts,
actually shares many key concepts with its older brother.

❑ Both have Java classes, acting as controllers in the MVC parlance, whose job it is to prepare data
for display on view components and process data coming in via HTML form submissions. Struts
calls these action classes; Spring MVC calls these controllers.

❑ Both make use of standard view components such as JSP pages for rendering HTML output, and
both provide custom tag libraries for accessing functions and data on JSP pages in a standard
way.

❑ Both also have intermediate objects used by the controllers to pass data to and receive data from
the view components. Struts uses form beans for this function; Spring MVC has command classes.

❑ Both of these frameworks make use of a dispatcher servlet for accepting and forwarding HTTP
requests to the proper controller class depending on configuration information.

❑ Finally, both use an external configuration file to specify all of the mappings, relationships, navi-
gational rules, and other connections between components in the web tier.

50

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 51

Chapter 2: Choosing a Web Application Architecture

A dyed-in-the-wool Spring MVC fan might take issue with this simplistic comparison by pointing out
some of the significant differences between the frameworks. For example, Spring MVC provides a wide
variety of controller types tailored for different types of activity, whereas Struts 1.2 basically supports
a single action interface. Spring MVC also has a richer set of interception points available in the flow
that handles form submittal and other complex tasks, making it easier to override default behaviors.
These and other differences notwithstanding, there is value in recognizing the similarities — especially if
you are migrating from Struts to Spring MVC and need to get a handle on all the new terminology and
classes!

Figure 2-7 presents a high-level view of the JSP, controller, command, and model components and their
interactions in the Spring MVC architecture chosen for this example application.

ShowPeople.jsp

ShowPeopleController

Success

Failure

Create,
Update

PersonList
PersonForm

PersonForm

Person

Save

Name 1
Name 2
Name 3
. . .

EditPerson.jsp

Salutation
. . .
Last Name

EditPersonController
(View Mode)

EditPersonController
(Submit Mode)

PersonService
FindByID

Figure 2-7: Spring MVC Servlet-centric architecture components.

As in the Struts version, two main JSP pages are responsible for view-related functions: ShowPeople.jsp
displays a list of people and EditPerson.jsp allows the viewing and editing of a single person. The action
classes in the Struts version were replaced with controller classes in the Spring MVC version with some
rearrangement to make proper use of the built-in SimpleFormController form-handling functionality in
the EditPersonController class.

The Spring MVC version utilizes two command classes as intermediate objects between the controllers
and the JSP pages: the PersonList object is created by the SimpleFormController and displayed
by the ShowPeople.jsp page, and PersonForm is created by EditPersonController and displayed
by the EditPerson.jsp page. HTML form submissions from the edit page come back into the
EditPersonController and are validated and processed in a manner very similar to the Struts version
of this same process.

51

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 52

Chapter 2: Choosing a Web Application Architecture

The number of components and complexity of the Spring MVC application is comparable to the Struts
version. Let’s examine the presentation-tier requirements again and see how the Spring MVC architecture
meets them in our example application.

JSP pages perform display tasks JSP pages continue to be responsible for all of the display-
related requirements. Spring-provided custom tags retrieve data from the command classes and
create HTML forms. Links point at controllers via mappings in the Spring MVC configuration file.

Controller components prepare data for views and process form submissions A centralized dis-
patcher servlet invokes controller classes to prepare data for viewing, process HTML form submis-
sions, and interact with business-tier components. Specialized Java objects, called commands, are
used to pass data to view pages and to extract and validate the HTML form data. Errors are han-
dled by forwarding back to the form page after creating a list of errors in the HttpServletRequest
for display by Spring tags on the form. Form data is automatically redisplayed on the form for cor-
rection. No scriptlet code is required to satisfy form submission requirements.

Navigation controlled by configuration files Basic and outcome-based navigation information
is stored in an external configuration file, in this case exampleapp-servlet.xml. This file connects
components together via dependency injection and allows the Spring MVC infrastructure to relate
JSP display pages, controller classes, and command classes across the application. Although there
is no built-in submission control technique, a session-token approach is easily added to the form
processing controllers.

The benefits of the Spring MVC–based approach are, essentially, the same as the Struts-based approach.

❑ Display logic, processing logic, and form validation are encapsulated in different components,
improving application flexibility and reuse.

❑ Pure Java code in controller components is easier to develop with IDE tools than scriptlet code
within JSP action pages.

❑ Navigation information is external to the components and code, improving flexibility and reuse.

❑ Developers can be found with experience using the Spring MVC framework, jump-starting your
development effort.

Benefits unique to the Spring MVC approach include:

❑ Rich flow of control within the form submission process provides a very good mechanism for
intercepting and overriding selected default behaviors.

❑ Dependency injection provides a mechanism to mock up or simulate business-tier components
within the controller components, easing unit testing of presentation-tier logic.

Drawbacks of this approach include:

❑ The learning curve increases, due to additional components and files required for operation.
Spring MVC is worse than Struts in this respect due simply to the breadth and depth of the
framework and its component classes and flows.

❑ Dependence on an open source framework such as Spring MVC may become an issue in the long
term.

52

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 53

Chapter 2: Choosing a Web Application Architecture

Given Spring MVC’s similarity to Struts, and our earlier recommendation that you consider Struts for
almost all web projects, it should come as no surprise that we feel the same, in general, about Spring
MVC. It is a very powerful and flexible servlet-based MVC framework that meets nearly all of the
presentation-tier requirements out of the box and will undoubtedly replace Struts as the framework
of choice very soon, if it hasn’t already.

Our only reservation in recommending Spring MVC is simply that many web applications do not require
the power and flexibility it provides. Is your development team ready and able to decide how best to use
the flexibility of Spring MVC without false starts and rework? It’s not as easy as you might think — there
are many ways to achieve the same ends, each with its own set of pros and cons.

The bottom line is this: If you are comfortable with Struts, and find that it does the job for you, it may
be hard to justify the expense of converting all of your existing applications to Spring MVC. If you are
fortunate enough to have no applications requiring migration, and feel confident in your team’s ability
to tackle Spring MVC, then go for it.

Best Practice
Spring MVC is a step above Struts in flexibility and power, and is fast becoming the
de facto standard for Java EE web development. If you have the technical prowess to
handle the complexity, it definitely makes sense to use Spring MVC, but don’t chase
new technology for technology’s sake — make it earn its way into your environment!

Chapter Review
We’ve covered a lot of information in this chapter. We began by defining some key architecture concepts
and design patterns related to web applications, including the model-view-controller pattern.

We then defined the requirements of a robust presentation-tier architecture in terms of display capabili-
ties, form submission and processing requirements, and navigation controls. We discussed how meeting
these requirements represents a significant design challenge for a home-grown, custom developed archi-
tecture, thereby leading us to search for a prebuilt presentation-tier framework to speed development
and improve maintenance.

Three candidate architectures were then compared in the context of the presentation-tier requirements
defined earlier, and recommendations were provided to guide your selection of presentation-tier archi-
tecture based on project and team attributes.

It’s time to apply what you learned in Chapters 1 and 2. In the next two chapters, we design and build the
presentation-tier components of a larger example application. This example program, a hotel reservation
web site, will provide a realistic platform for our examination of deployment issues, JMS best practices,
security, application management, Web Services, and business-tier architecture selection in succeeding
chapters.

53

Patrick c02.tex V3 - 09/18/2009 12:15pm Page 54

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 55

Designing an Example Java
EE Application

In this chapter and the next, we explore the design and construction of a realistic example appli-
cation. By realistic, we mean an example of sufficient size and complexity that key technology
elements are useful and demonstrated in the example. The example also helps you explore deci-
sions you must make during application development in WebLogic Server and provides a context
for sidebars and notes on best practices.

This chapter details the design of the presentation tier of a fairly large and complex Java EE applica-
tion. We cover different topics related to the example program throughout the book. For example,
Chapter 4 walks through many of the presentation-tier components and discusses the techniques
used in their construction. Chapter 7 details the design and development of the business-tier com-
ponents and their interaction with the database.

We discuss issues and decisions in roughly the same order they were encountered during the actual
design and development of the example application. We begin by examining the system require-
ments for the example application, a web-based hotel reservation system.

Application Requirements
The example application is a web-based reservation system for hotels, bed-and-breakfasts, and
resorts.

Specific requirements include the following:

❑ The system must provide a user site with a basic property search, pricing, room availability,
and reservation capability.

❑ Property information must be created and maintained through an administration site pro-
viding pages for maintenance of property data including basic property information, room
types, rate, inventory, and targeted marketing offers. Properties must be able to view and
maintain their own information through the administration site.

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 56

Chapter 3: Designing an Example Java EE Application

❑ Users must be able to create profiles containing guest information to speed subsequent
reservations.

❑ Marketing offers should be targeted to users based on the last property search performed
or hotel selected.

❑ The application must employ a relational database to store all property, guest, and reserva-
tion information.

Sound challenging enough? Don’t forget the ever-present requirements for high performance and
good scalability, maintainability, and reliability. Sounds like a job for Java EE and WebLogic Server!

We’re going to call our web-based reservation application bigrez.com.

Business Domain Models
The bigrez.com system employs a relational database to store all business domain objects. Although
Chapter 7 provides object models and discusses the business domain and business-tier components in
more detail, we present the database model at this point to illustrate the scope of the business domain
and provide a framework for discussing presentation-tier design. Figure 3-1 shows the logical database
design of bigrez.com.

ID
PROPERTY_ID
IMAGEFILE
CAPTION
DESCRIPTION

Offer
ID
DESCRIPTION
FEATURES
ADDRESS1
ADDRESS2
CITY
. . .

Property

ID
ROOMTYPE_ID
STARTDATE
ENDDATE
RATE

Rate

ID
PROPERTY_ID
DESCRIPTION
FEATURES
. . .

RoomType

ID
ROOMTYPE_ID
DAY
ROOMSAVAIL

Inventory

ID
CONFIRMNUM
GUESTPROFILE_ID
ROOMTYPE_ID
ARRIVE
DEPART
. . .

Reservation

ID
RESERVATION_ID
STARTDATE
NUMNIGHTS
RATE

ReservationRate

ID
LOGON
PASSWORD
FIRSTNAME
LASTNAME
. . .

GuestProfile

Figure 3-1: bigrez.com logical database design.

56

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 57

Chapter 3: Designing an Example Java EE Application

The data model in Figure 3-1 illustrates the key objects and relationships present in the business domain
of this system. For example, each property has a set of room types, with related inventory and rate records
defining the availability and price for that type of room for a particular date.

Our task in the user-facing web application portion of bigrez.com is to hide this complex set of business
objects and related processes and give the user an easy-to-use, step-by-step process for finding and
booking the right room on the right dates. The administration site will present a view of this data more
directly related to the database design.

Presentation Requirements
The bigrez.com user-facing site must walk the user through the reservation process by presenting forms
and pages in a logical order and building the reservation visually on one side of the screen. The basic
layout illustrated in Figure 3-2 shows the key elements of the display.

Figure 3-2: bigrez.com basic presentation layout.

The user will interact primarily with HTML forms and content presented in the work area, while the
progress of the reservation is displayed in the reservation information area. The reservation information
area can also be used as a navigation device to revisit a previous page in the process (for example, to
change dates) by clicking links in the area.

57

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 58

Chapter 3: Designing an Example Java EE Application

The basic reservation process is illustrated by Figure 3-3. This diagram represents the basic course
through the reservation process. The actual process is subject to many detours and alternate courses
not depicted in this figure, based on user navigation decisions. We cover some of these alternate courses
during the discussion of the reservation information area later in the chapter.

Property Search

Select Property

Select Dates

Select Room Type

Sign In or Enter
Guest Information

Review Reservation

Thank You

Figure 3-3: bigrez.com reservation process.

Figure 3-4: bigrez.com administration site example page.

58

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 59

Chapter 3: Designing an Example Java EE Application

We must implement many business rules related to site navigation and the reservation process in the
presentation tier of the application. For example, the user may not skip ahead and choose a room type
before selecting a property and arrival/departure dates because the available room types are dependent
on these choices. The user may, however, skip ahead and sign in or provide guest information at any
point in the process. Note that the web application architecture defines, among other things, where
business rules such as these are implemented in the presentation tier.

The bigrez.com application also requires an administration site allowing authorized users to create and
maintain the properties and related information used by the reservation process. Figure 3-4 presents an
example page in the administration site, showing the basic structure of a page.

Both the user site and the administration site must meet all of the presentation-tier requirements dis-
cussed in Chapter 2, including display-related requirements, form/update requirements, and navigation
requirements.

The bigrez.com site is not a small application. There are more than 20 JSP pages in the user site and
another 15 pages in the administration site. We believe an example application of this size provides a
more realistic platform for the construction, deployment, and management discussions to follow.

Web Application Architecture
Chapter 2 discussed the selection of a web application architecture and presented a brief comparison of
three specific architectures: a JSP-centric approach and two servlet-centric frameworks (Struts and Spring
MVC). We need to choose an architecture for bigrez.com that will meet the requirements and provide
good maintainability and flexibility.

As discussed in Chapter 2, there are advantages and disadvantages to all three architectures. Although
the JSP-centric approach is simpler, and might make our job easier in this chapter and the next as we
design and construct the example application, the resulting architecture would not be suitable for many
medium to large applications. We’re focusing on best practices in this book, and we feel a servlet-centric
approach should be considered a best practice for most production applications.

We’ve chosen to use the Spring MVC framework, rather than Struts, simply as an acknowledgment that
examples using newer technologies and frameworks are of more interest to the developer community.
Either framework would have met the requirements.

The web application architecture for bigrez.com will therefore adopt the Spring MVC architecture
described in Chapter 2 and implemented in the Person Tracker example program. Display JSP pages will
present beans, forms, and business data to the user, and user actions and submitted HTML forms will
be processed by the page-specific Controller classes. The difference is that bigrez.com requires much
more sophistication both in terms of navigation and interaction with the business layer. We discuss both
of these areas in detail in a later section.

One key aspect of the chosen architecture is that controller components are responsible for loading
required data into the proper context for display in the JSP pages. Controller classes should interact
with the business-tier components to retrieve the desired data and place it in the HttpServletRequest
before forwarding to the next display JSP page. If the JSP page includes an HTML form, the Controller
class will populate the form bean and place it in the request for use by the page.

59

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 60

Chapter 3: Designing an Example Java EE Application

Presentation Approach
The Spring MVC architecture selected for bigrez.com uses JSP pages for all display-related components.
JSP pages will therefore be used to display business data, forms, search results, and all visual elements
that define the overall design of the site. As shown in Figure 3-2, the site includes navigation bars, headers
and footers, and a left-side gutter containing the current reservation information and targeted offers.
We must now decide how this overall table structure will be defined and who will be responsible for
assembling the generated HTML into a single response to the user.

A very common design pattern, the composite view pattern, is often used for this purpose. This pattern rec-
ognizes the importance of placing individual pieces of content in separate view components, in our case
either standalone JSP pages or snippets of JSP code. As discussed in the literature, the overall page is then
assembled by some manager or controller in the architecture that knows the proper placement of each
view component on the final page and is responsible for creating the top-level HTML tags and structure
for the page. The specific technique used to include the separate view components is not defined by the
pattern and can include translation-time <%@ include file="..." %> directives, dynamic <jsp:include>
actions, or more sophisticated techniques using helper objects or custom tags.

We’ll employ the composite view pattern in the construction of our example application by breaking
the overall page into six different view components, as illustrated by Figure 3-5. Each of these view
components will be a separate, standalone JSP page included in the overall HTML response using some
type of dynamic include capability. The information generated by the primary display page will be
located in the framed area to the right of the reservation information and offers areas in the left gutter.

RezInfo.jsp

Offers.jsp

(Display Page Contents Here)

Footer.jsp

TopNav.jsp

Header.jsp

Figure 3-5: bigrez.com primary view components and layout.

So far, so good, but we’re not done yet. Which component or page, exactly, is going to define the overall
page structure, generate the top-level HTML tags such as <body> and <table>, and use <jsp:include>

60

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 61

Chapter 3: Designing an Example Java EE Application

actions or other techniques to assemble the page? Will each display page in the site include the proper
view components to assemble the overall response, a commonly used technique we’ve labeled self-
assembly? Will some master page or template be responsible for creating the overall HTML response
and including the specific display page in the response, a technique we’ve called master page assembly?
Or, should a separate view assembler combine layout or template information with individual page con-
tents to create the overall response, a technique we’ve labeled external view assembly? We examine these
options in more detail and make a design decision for the bigrez.com example application.

Self-Assembly
In the self-assembly technique, the display page assembles all of the supporting pieces of the overall
response. The display page basically includes the view components or code snippets required to create
the proper HTML table structure and embed all of the headers, footers, and other visual elements in their
proper locations. The SimpleHome_SA.jsp page, presented in Listing 3-1, illustrates how the bigrez.com
home page might be constructed using the self-assembly technique.

Listing 3-1: SimpleHome_SA.jsp showing self-assembly.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
<head>

<title>Welcome to BigRez.com!</title>

<link rel=stylesheet type="text/css" href="css/StyleMaster.css">
<script src="/js/DatePicker.js"></script>

</head>

<body bgcolor="#FFFFFF">

<table align="center" width="725" cellpadding="0" cellspacing="0" border="0">
<tr>
<td>

<table align="center" cellpadding="0" cellspacing="10">
<tr>

<td align="center">
<jsp:include page="/Header.jsp"></jsp:include>

</td>
</tr>
<tr>

<td>
<jsp:include page="/TopNav.jsp"></jsp:include>

</td>
</tr>

</table>
</td>

</tr>
</table>

Continued

61

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 62

Chapter 3: Designing an Example Java EE Application

Listing 3-1: SimpleHome_SA.jsp showing self-assembly. (continued)

<table align="center" width="725" cellpadding="0" cellspacing="0"
border="0">

<tr>
<td width="175" valign="top" bgcolor="#EEEEEE">

<table width="175" border="0" cellpadding="0" cellspacing="0">
<tr>
<td><jsp:include page="/RezInfo.jsp"/></td>

</tr>
<tr>
<td><jsp:include page="/Offers.jsp"/></td>

</tr>
</table>

</td>
<td width="1" >

</td>
<td width="550" valign="top">

Home Page Contents Here..
</td>

</tr>
</table>

<table align="center" width="725" cellpadding="0" cellspacing="0"
border="0">

<tr>
<jsp:include page="/Footer.jsp"/>

</tr>
</table>

</body>
</html>

The five common components (Header.jsp, TopNav.jsp, RezInfo.jsp, Offers.jsp, and Footer.jsp)
are included in the HTML response at the proper location in the overall page structure and table layout.
In this simple technique, a large amount of the structure and layout would have to be copied to all display
pages in the site, making maintenance and customization for different installations difficult. This simple
type of self-assembly is suitable for only the smallest web applications.

The basic self-assembly approach can be improved by combining the sections above and below
the display page content itself in additional intermediate view components, as illustrated in the
BetterHome_SA.jsp example in Listing 3-2.

Listing 3-2: BetterHome_SA.jsp showing improved self-assembly.

<jsp:include page="/Top_SA.jsp">
<jsp:param name="title" value="Welcome to BigRez.com!"/>

</jsp:include>

62

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 63

Chapter 3: Designing an Example Java EE Application

<table align="center" width="725"
cellpadding="0" cellspacing="0" border="0">

<tr>
<jsp:include page="/LeftSide_SA.jsp"/>
<td width="1" >

</td>
<td width="550" valign="top">

Home Page Contents Here..
</td>

</tr>
</table>

<jsp:include page="/Bottom_SA.jsp"/>

These new intermediate view components, Top_SA.jsp, LeftSide_SA.jsp, and Bottom_SA.jsp, basically
contain the HTML and lower-level <jsp:include> tags previously contained in the display page itself,
thereby reducing the amount of content copied on each display page. This technique represents a sig-
nificant improvement over the simple technique, although it too has limitations as the complexity of the
page structure surrounding the display content increases.

Because the title of the HTML page is now defined in the common Top_SA.jsp, each display page must
provide the title to the included JSP using a request parameter:

<jsp:include page="/Top_SA.jsp">
<jsp:param name="title" value="Welcome to BigRez.com!"/>

</jsp:include>

The Top_SA.jsp page must define the title using the passed-in request parameter:

<head>
<title><%= request.getParameter("title") %></title>
...

</head>

Note that these self-assembly examples did not include all of the visual elements desired for the
bigrez.com site (see Figure 3-2) in order to keep the examples simple. For example, the table containing
the LeftSide_SA.jsp component and the actual display page content should have been surrounded by
a two-color border. This would complicate the table structure copied in each display page.

One thing to keep in mind before including scriptlet code such as request.getParameter("title") in
your JSP pages is the danger this creates in the form of cross-site scripting (XSS) vulnerabilities. As writ-
ten, the contents of the title request parameter will be copied directly into the output HTML response
without any filtering or checking. A malicious user could create a URL with the title parameter set
to inject JavaScript in the response, cause an unsuspecting user to invoke that URL via a redirect from
another site or other mechanism, and thereby gain access to protected data or services. XSS vulnerabilities
can be avoided by filtering request parameters through a utility such as the built-in WebLogic Server util-
ity method weblogic.servlet.security.Utils.encodeXSS() to replace dangerous characters with their
safe ‘‘escaped’’ HTML equivalents before displaying them on your pages. For more information on XSS
vulnerabilities and their mitigation, see Link 3-1 in the book’s online Appendix at http://www.wrox.com.

63

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 64

Chapter 3: Designing an Example Java EE Application

Some form of self-assembly would probably work for the bigrez.com site, but we’re looking for a tech-
nique that provides more flexibility and is easier to maintain. Imagine, for example, that we want to move
the reservation information and targeted offers from the left gutter to the right gutter or that we need to
add a completely new view component, perhaps something like a bread-crumb navigator, in the table
containing the display page. Both of these changes would require touching all of the display pages to
modify the table structure and <jsp:include> actions to reflect the new layout and components.

We’d also like to be able to deploy the same application for multiple hotel chains or customers. What
if a potential new customer demands a different layout? The display pages or intermediate view com-
ponents would have to be copied and edited to create a new layout, hurting maintainability, or would
require conditional code to assemble the page differently based on the client, adding complexity. Neither
solution provides a clean, easy mechanism to reuse the application in the face of significant layout
changes.

No matter how sophisticated the include process becomes through the use of custom tags, view helpers,
or even framework components meant for this purpose, the basic concept of self-assembly is inherently
flawed. The individual display pages should know little or nothing about the way in which they are
assembled to form the overall page, and self-assembly in all its forms breaks this rule.

What we need is an implementation of the composite view pattern that completely separates the overall
structure and layout of the page from the contents of the display area. In the next section, we discuss one
useful solution: master page assembly.

Master Page Assembly
The self-assembly approach, discussed in the previous section, separated the complete page contents
into individual view components and made it the responsibility of the display page itself to include these
components in the correct manner to build the full HTML response. The display page was in charge of the
assembly process. In the master page assembly approach, on the other hand, the display page is simply
another piece of content included in the overall response by a master page. As shown in Figure 3-6, the
master page is now in charge of the assembly process and defines the overall page structure and layout.

This seems simple enough as a concept, but how can the same master page be used for all the different
display pages in the site? How does the master page know which display page to include?

The trick to making this technique work is the runtime evaluation of a <jsp:include> action placed in
the master page to include the proper content page. Recall that the <jsp:include> action had two basic
forms. The first is a version using a statically defined page name:

<jsp:include page="/Home.jsp" />

The second is a version with the page name defined using a runtime expression:

<jsp:include page="<%= variablename %>" />

The version using a runtime expression as the page name provides one straightforward way to share
the same master page across many display pages. In its simplest form, the Master.jsp page looks for a
particular request parameter, page, and uses it in a <jsp:include> action to include the proper page in
the display area in the overall template defined in the master page.

64

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 65

Chapter 3: Designing an Example Java EE Application

Home.jsp

Self-Assembly

<html>
 <table>
 ...
 ...
 ...
 </table>
</html>

Header.jsp
include

request

response

TopNav.jsp

...

include

Footer.jsp
include

Master.jsp

Master Page Assembly

<html>
 <table>
 ...
 ...
 ...
 </table>
</html>

Header.jsp
include

request

response

TopNav.jsp

...

include

Home.jsp
include

Footer.jsp
include

Figure 3-6: Comparison of self-assembly and master
page assembly.

...
<% String pagename = request.getParameter("page"); %>
...
<body>
<table>
...

<% try { %>
<jsp:include page="<%= pagename %>"/>
<% }

catch (IOException e) {
%>
<jsp:include page="Blank.jsp"/>

<% } %>
...
</table>
</body>

All of the display pages are then accessed using URLs with the master page name and a query string
parameter defining the display page. For example, http://servername:port/Master.jsp?page=
Home.jsp would invoke the Master.jsp master page and provide the name of the display page to
include, in this case Home.jsp. Hyperlinks within the pages would likewise specify URLs containing this
syntax:

...

65

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 66

Chapter 3: Designing an Example Java EE Application

We can now make changes to the overall site look and feel by modifying a single page, Master.jsp,
without touching any of the display pages. These changes can include a wholesale rearranging of the
page structure, the addition or deletion of included view components, and any other desired changes.

We could select the master page assembly technique outlined earlier for bigrez.com and be content, but
better alternatives are available. One such alternative is the use of an external view assembly framework
such as Tiles, an approach we examine in the next section.

External View Assembly with Tiles Framework
The master page assembly approach described in the previous section has, at its heart, the idea of a
single master page or layout template that is invoked for every HTML response. That master page was
responsible for assembling the component pieces and creating the response using simple <jsp:include>
actions within the master page itself. Though this technique achieves the core requirement for reusing
shared JSP elements across multiple pages, it is difficult to specify the dynamic content and elements
that differ from page to page. Our solution used a magic request parameter, page, to specify the included
content page, for example.

The Tiles framework retains the idea of a master page or layout template, but eliminates the awkward
dynamic <jsp:include> actions in favor of Tiles-supplied custom tags that perform the same basic func-
tion. The content inserted by each custom tag in the master page is determined by an XML configuration
file containing tiles definitions that map tile names to content, often JSP page snippets.

As a simple example, consider the Master_Tiles.jsp page in Listing 3-3.

Listing 3-3: Master_Tiles.jsp showing simple Tiles master page.

<tiles:insertAttribute name="top"/>

<table align="center" width="725"
cellpadding="0" cellspacing="0" border="0">

<tr>
<tiles:insertAttribute name="leftside"/>
<td width="1" >

</td>
<td width="550" valign="top">

<tiles:insertAttribute name="body"/>
</td>

</tr>
</table>

<tiles:insertAttribute name="bottom"/>

A simple tiles definition using this master page might look as follows:

<definition name="homepage" page="Master_Tiles.jsp">
<put name="top" value="Top.jsp" />
<put name="leftside" value="LeftSide.jsp" />
<put name="body" value="Home.jsp" />
<put name="bottom" value="Bottom.jsp" />

</definition>

66

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 67

Chapter 3: Designing an Example Java EE Application

Struts actions or Spring MVC controllers now specify the homepage tiles definition as their destination,
rather than a specific JSP page or servlet. The Tiles framework prepares the request context with the
attributes specified in the definition and invokes the master page to create the HTML response by assem-
bling the output from the specified pages.

Tiles definitions can inherit from each other, making it very easy to create multiple definitions that use a
single master page without having to re-specify the static attributes in each definition, as shown here.

<definition name="defaultlayout" page="Master_Tiles.jsp">
<put name="top" value="Top.jsp" />
<put name="leftside" value="LeftSide.jsp" />
<put name="body" value="Empty.jsp" />
<put name="bottom" value="Bottom.jsp" />

</definition>

<definition name="homepage" extends="defaultlayout">
<put name="body" value="Home.jsp" />

</definition>

<definition name="profilepage" extends="defaultlayout">
<put name="body" value="Profile.jsp" />

</definition>

The Tiles framework provides a very powerful mechanism for assembling JSP pages from reusable con-
tent components. We make use of Tiles in the bigrez.com example program in the next chapter and show
you more details on the proper configuration and setup of this framework.

Business-Tier Interfaces
Now that we’ve identified the mechanisms for displaying data and handling navigation and form sub-
mission, it is time to discuss the heart of any presentation-tier architecture: interfacing with business-tier
components.

First, we need to look ahead a bit to Chapter 7, where we discuss the design and development of the
EJB components for this application. Clearly the business-tier interfaces available to the web application
depend on the architecture of the business tier. Although we thoroughly discuss the choice of business-
tier architecture in Chapter 7, what you need to know here is that we decided to use EJB 3.0 stateless
session beans (SLSB) for services, use JPA for persistence management, and pass the JPA-managed
domain objects freely between the web layer and the business services. The implications of these deci-
sions on business-tier interfaces include:

❑ Presentation-tier components will call the SLSB business services, passing in whatever param-
eters or domain objects are required by the services. Services will, in most cases, return data to
the presentation components in the form of domain objects or lists of domain objects, which the
presentation layer can then freely use in rendering pages.

❑ Controller components will normally place domain objects in forms, thereby giving the view JSP
pages direct access to domain object data for view or edit operations.

❑ Relationships between domain objects may or may not be populated within results returned to
the presentation tier by the business services. The presentation components need to be aware

67

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 68

Chapter 3: Designing an Example Java EE Application

of the rules for automatic population of children within various domain objects, for example,
and not simply assume that all children are available within any domain object returned by the
services.

❑ Changes made to domain objects must be explicitly sent back to the services for update in the
database. The presentation tier is responsible for knowing which domain objects need to be sent.

❑ Optimistic locking techniques in JPA mandate certain presentation-tier behavior to store version
information in the HTTP session and provide it again during update requests.

❑ By default, transactions will always start and end at the session bean boundary. If multiple
service calls must be in a single coordinated transaction, a separate service request should be
defined that manages the transaction and calls other back-end services from within this single
transaction.

All in all, the decision to pass the JPA-managed domain objects between tiers saves considerable work
creating and populating separate data transfer objects. This represents one of the huge benefits of EJB 3.0
with JPA persistence over EJB 2.0 container-managed persistence (CMP) entity beans. The use of CMP
entity beans created a whole host of problems when we tried to use them directly in the presentation tier
(a technique we called direct interaction and covered in the previous edition of this book), and mandated
the creation of a full set of data transfer objects for inter-tier communication purposes if we did not.

The following sections provide more detail on the key implications of our decision to use EJB 3.0, SLSB
services, and JPA-managed domain objects.

Controllers Call Business Services
Consistent with basic tenets of the model-view-controller architecture, only the controller components
will request business services from the stateless session bean (SLSB) components. The JSP view compo-
nents will never call business services, either directly or indirectly, to acquire model data required for
presentation on the page.

Controllers that require business services will define attributes for the desired SLSB components, with
associated get/set methods, and have references to these EJB components injected via the Spring MVC
configuration file.

<beans>
<bean id="propertyServicesReference"

class="org.springframework.jndi.JndiObjectFactoryBean">
<property name="jndiName"

value="java:/comp/env/ejb/PropertyServices"/>
</bean>

...

<bean id="propertySearchController"
class="com.bigrez.web.PropertySearchController">

<property name="formView" value="chooseproperty"/>
<property name="successView" value="propertylist"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="propertySearchForm"/>
<property name="commandClass"

68

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 69

Chapter 3: Designing an Example Java EE Application

value="com.bigrez.web.PropertySearchForm"/>
<property name="propertySearchForm">

<bean class="com.bigrez.web.PropertySearchForm"/>
</property>
<property name="propertyServices"

ref="propertyServicesReference"/>
</bean>

...

</beans>

Note that we are using a special Spring utility class, JndiObjectFactoryBean, to find the EJB component
in the web application’s local JNDI tree and inject a reference into our Spring MVC controller object. In
order for the factory to find it in the JNDI tree, we must also create a reference in the web application’s
web.xml file.

<ejb-local-ref>
<ejb-ref-name>ejb/PropertyServices</ejb-ref-name>
<local>com.bigrez.service.PropertyServices</local>
<ejb-link>PropertyServicesImpl</ejb-link>

</ejb-local-ref>

With this wiring process complete, the controller can simply invoke business services through the injected
reference without performing any JNDI lookup or other steps.

List<Property> propertyList =
propertyServices.findByCityAndState(form.getCity(), form.getStateCode());

form.setPropertyList(propertyList);

The ability to inject EJB 3.0 SLSB components into the Spring MVC controllers is very powerful. It sim-
plifies the controller code dramatically, stays true to inversion-of-control principles, and makes it easy to
inject mock versions of the services for unit testing. All in all, a simple and elegant solution.

Best Practice
Use the JndiObjectFactoryBean to inject references to EJB 3.0 components into your
Spring MVC controllers and avoid explicit JNDI lookups.

Controllers Populate Forms for JSPs
The JSP view components assume that all model data required for the rendering of the page is located on
a single form object placed in the request or session context by the controller class preceding the JSP page.
The required data might be made available to the JSP page in two ways:

❑ We could define attributes on the form object for all required data and have the controller class
copy values from domain object attributes into corresponding form attributes.

❑ We could simply attach domain objects to the form and allow the JSP to access the nested model
data directly.

69

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 70

Chapter 3: Designing an Example Java EE Application

We’ve chosen the second approach for most controllers and pages. Although there are cases where addi-
tional attributes are required on the form object to support specific presentation logic or formatting,
generally it is fine to have the JSP components access the model data through the form-to-object reference
without duplicating fields in the form itself.

When this approach is used, the JSP page will have JSTL and Spring form-related tags that use the dot
operator to access the nested data within the domain object held by the form.

In the previous section we showed how the controller class fetches a list of properties from the business
service and attaches the list to the form object. The following code snippet shows how a JSP page can
loop over the list and display information about each property using the nested notation.

<c:forEach var="property"
items="${propertySearchForm.propertyList}">

<tr>
<td width="80" align="center">

<img src="<c:url value=’/images/${property.imageFile}’/>"
alt="" width="70" height="70">

</td>
<td width="100%" align="left">

<table cellspacing="0" cellpadding="0" border="0">
<tr>

<td align="left">
<c:url var="viewproperty" value="/viewproperty.do">

<c:param name="id"
value="${property.externalIdentity}"/>

</c:url>
<a class="table-link"

href="<c:out value=’${viewproperty}’/>">
<c:out value=’${property.description}’/>

</td>

</tr>
<tr>

<td align="left">

<c:out value=’${property.address.address1}’/>

</td>
</tr>
<c:if test=’${not empty property.address.address2}’>
<tr>

<td align="left">

<c:out value=’${property.address.address2}’/>

</td>
</tr>
</c:if>
...

</table>
</td>

</tr>
</c:forEach>

70

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 71

Chapter 3: Designing an Example Java EE Application

Updates Require Explicit Service Calls
The chosen approach to business layer interaction allows the presentation layer to acquire, hold, store
in the session, modify, and otherwise manipulate domain objects and their relationships. These domain
objects are disconnected from the entity manager in the service layer and become the responsibility of the
presentation layer components.

This approach has a great many advantages, and at least one distinct disadvantage: The presentation tier
needs to make explicit update calls to the services whenever domain objects contain modified data or
relationships.

This may not sound like a big deal, but as objects get more complex and the process of making changes to
the objects extends to, for example, multiple pages in the application, it can become quite difficult to know
what exactly needs to be sent to the services for update. Many developers code their submit processing
controllers always to send the object to the service without evaluating whether the user actually modified
any of the fields, simply because the alternative can be daunting. Our controllers in bigrez.com will do
this as well to keep things simple.

Relationships in Presentation Components
Business domain objects are rarely simple, disconnected objects containing only attribute data. They
invariably have relationships with children, sibling, and parent objects. Presentation-tier components
will often need to traverse these relationships while displaying information or performing validation
or other logic. Because our domain objects are disconnected from the entity manager, relationships are
not automatically populated as they are requested, but must be instantiated ahead of time by the initial
service request or by subsequent calls to the service.

Note that one of the significant benefits of the direct interaction EJB 2.0 CMP approach used in the
previous edition of this book was the ability of presentation-tier components such as JSP pages and
Controller classes to work directly with the object lattice and relationships implemented in the entity
beans themselves. There was no need to write session bean methods that fetch and return lattices of
value objects simulating the entity bean relationships or implement some form of lazy instantiation of
relationship collections in parent value objects. When the entity beans were used directly, all retrieving
of relationships and related beans was managed automatically by the CMP code in the container, as was
all updating of modified attributes and relationships in any entity beans touched in the transaction.

Our solution in this version of the example application will be to examine the presentation-tier compo-
nents that use the domain objects, identify the children objects needed when displaying or manipulating
the domain objects, and create services that automatically fetch the required children objects when
retrieving parent domain objects. For example, whenever a Property object is fetched, the service will
automatically fetch and attach the appropriate list of RoomType and Offer children objects before return-
ing the Property. It would be straightforward to make the code that populates these children objects
within the service conditional based on a passed-in Boolean parameter — feel free to adopt this technique
if you see value in doing so within your own applications.

The presentation tier is also responsible for updating relationships between disconnected domain objects
in a manner that allows an update-related service request to make all of the necessary changes in the
database to reflect the new or modified relationships. The EJB 2.0 CMP approach allowed presentation-
tier components simply to add or remove relationships between the entity beans in a natural manner

71

Patrick c03.tex V3 - 09/18/2009 12:16pm Page 72

Chapter 3: Designing an Example Java EE Application

and the container sorted out and implemented the required changes in the database. In a service-based
approach with disconnected domain objects we need to know a little more about how relationships are
being modeled and then determine which service methods to use to add or remove objects from those
relationships.

The bigrez.com administration web site code listings in Chapter 4 will show examples of adding and
removing objects from relationships using the available service methods.

Chapter Review
The following list summarizes the design decisions we’ve made for the bigrez.com application:

❑ The bigrez.com application includes a separate user site and administration site, with different
processes and visual designs.

❑ The application meets the presentation-tier requirements for basic display, navigation, and form
validation and submission outlined in Chapter 2.

❑ We’ll use the Tiles framework to assemble our pages with a master layout page that defines the
overall structure of pages in the site.

❑ We’ll use a servlet-centric architecture with the Spring MVC framework to implement a model-
view-controller approach in the presentation tier.

❑ Presentation-tier components will access business-tier components using EJB 3.0 stateless session
bean services and disconnected domain objects.

Are you ready to look at the code and see how it all comes together? Turn to the next chapter, and get
to it!

72

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 73

Building an Example Web
Application

In this chapter, we walk through the construction of a realistic example web application,
bigrez.com. Because this book is intended for intermediate- to advanced-level developers and
architects, we assume that you understand the basic steps required to construct a Java EE web
application. Our emphasis is on any construction techniques unique to WebLogic Server as well as
the components and techniques required for the bigrez.com application resulting from the choice
of presentation approach, web application architecture, and the use of EJB 3.0 stateless session bean
services and disconnected domain objects.

The construction of the web application portion of bigrez.com involves the following steps:

1. Constructing the application skeleton, including master layout pages, descriptor files,
build files, and all required directory structures and configuration files

2. Identifying and constructing the specific JSP display pages, form beans, and controller
components required to implement the user and administration site behaviors

Additional steps are required to construct the necessary business-tier components and related per-
sistence logic. These steps are covered in Chapter 7.

Overview of Application Components
The bigrez.com example is large enough that we will start our discussion of its contents by present-
ing a list of the major groups of components in the application and a high-level picture of the project
directory structure. These will help you understand the role of the components listed in this chapter

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 74

Chapter 4: Building an Example Web Application

in the overall application design. Note that complete source listings of all components would
require a prohibitive amount of space, so we are including only listings of key components that
emphasize steps and techniques covered in the text. You are encouraged to download the complete
example program and installation instructions from the companion web site (http://www.
wrox.com/).

The application components have been split into eight separate groups:

❑ User site display components including display JSP pages, JSP include files, style
sheets, and key configuration and descriptor files, located in the web-user/WebContent
subdirectory

❑ Administration site display components including the same types of components for the
administration web application, located in the web-admin/WebContent subdirectory

❑ User site source components including Spring MVC controllers, forms, and other Java
components for the user web application, located in the web-user/src subdirectory

❑ Administration site source components including the same types of components for the
administration web application, located in the web-admin/src subdirectory

❑ Common web source components including base classes and utility classes for use by both
user and administration web applications, located in the web-common/src subdirectory

❑ EJB service components used by both sites to encapsulate persistence services and complex
business logic, located in the services subdirectory

❑ Domain objects representing the primary business domain entities stored in the database
and modeled in the persistence layer, located in the domain subdirectory

❑ Web services components, located in the webservices subdirectory

These groups are reflected in the overall structure of the project directory depicted in Figure 4-1.
This structure incorporates the development environment best practices discussed in Chapter 14.

Many of the directories shown in Figure 4-1 contain components required during the build and
packaging process, topics we cover in Chapters 5 and 8. This chapter emphasizes the presentation-
tier components in the web-user, web-admin, and web-common directories.

All source code, web components, images, and key configuration files are located in the project
directory structure. The build process, driven by build.xml files located in the project root direc-
tory and most project subdirectories, assembles the components appropriately and creates a single
enterprise application archive (EAR) file for deployment to WebLogic Server. Chapter 5 discusses
deployment and management of WebLogic Server web applications. Chapter 8 covers the steps
required to package and deploy the complete bigrez.com application.

74

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 75

Chapter 4: Building an Example Web Application

Project root directory

domain

src Source code for business domain objects

services

src

web-common

src

Source code for EJB 3.0 session beans and
related objects

Source code for Java classes shared by both
web applications

web-admin

src

WebContent

Java classes in administration web site

Root of administration site web components

WEB-INF

jsp

css. js, images

Descriptor files, configuration files

Administration web site JSP pages

Additional UI components for administration site

Java classes in user web site

Root of user site web components

Descriptor files, configuration files

User web site JSP pages

Additional UI components for user site

web-user
src

WebContent

webservices

unit-tests

etc

ear

Web services example source code

Unit test source code

Scripts and common build files

Artifacts and build file to create the deployable EAR file

WEB-INF

jsp

css, js, images

Figure 4-1: Project directory structure for the bigrez.com application.

Constructing the Application Skeleton
The first step when creating a new web application is the construction of the application skeleton. In the
bigrez.com web application, this skeleton consists of the minimum components required to configure
and boot the user and administration web sites and display their respective home pages. This is not
simply a Home.jsp page for each site, remember. We are using a Spring MVC architecture and a Tiles-
based view assembly approach, so the skeleton must include the basic configuration files and components
required to implement our chosen approach.

The skeleton web applications for both sites consist of similar components, with examples listed here for
the user web application:

❑ The DefaultLayout.jsp template page for the site, defining the overall page layout and
included components

75

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 76

Chapter 4: Building an Example Web Application

❑ Supporting view components such as Header.jsp, TopNav.jsp, Footer.jsp, and placeholder
versions of view components such as RezInfo.jsp and Offers.jsp

❑ The web.xml and weblogic.xml descriptor files, including JSP configuration elements and the
servlet mappings from *.do to the Spring MVC DispatcherServlet

❑ A placeholder HomeController component in the src subdirectory that simply returns the suc-
cess view result

❑ A placeholder Spring MVC userapp-servlet.xml file with sufficient configuration information
to map the /home.do URL to the HomeController component and configure Tiles as the view
resolver for presentation assembly

❑ A placeholder Home.jsp page, to use as a test page to validate the skeleton configuration

❑ A placeholder tiles-config.xml file to configure Tiles to use the DefaultLayout.jsp page and
inject the Home.jsp body page for the initial home Tiles definition

These skeleton components, once deployed to the user web application in the domain, are sufficient to
present the Home.jsp page in the display area of the layout when the home.do URL is accessed from
a browser. On a typical development project, the skeleton components are then placed in source code
control to form the starting point for the web application construction tasks to follow.

Best Practice
Begin construction by building an application skeleton containing the minimum num-
ber of components necessary to configure and start the web application.

Constructing the User Site Components
Once the application skeleton is in place, additional view components are added in a piecewise fashion
to flesh out the application. The construction of the user site in bigrez.com was broken down into three
primary sections:

❑ Reservation information components responsible for the display of the reservation information area
on the left side of the page

❑ Core reservation process components providing the main site functionality of finding properties,
selecting dates, room types, and rates and making reservations

❑ Targeted offers components generating the targeted marketing offers in the left gutter depending
on the user’s recent search results and selections

In the following sections, we examine each of these sections of the user site in some detail, highlighting
key components and techniques in each section.

Reservation Information Components
Creating a reservation requires a multiple-step process. Intermediate results must be stored in the
HttpSession on behalf of the user, a technique much like a shopping cart in an e-commerce site. The

76

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 77

Chapter 4: Building an Example Web Application

bigrez.com application uses a serializable value object called ReservationInfo to store this informa-
tion in the HttpSession using the session attribute key rezinfo. As the user selects a property, selects
dates, selects a room type, and signs in to the site, the related information is saved or updated in the
ReservationInfo object in the session. The ReservationInfo class is a simple value object with private
attributes and appropriate get and set methods, so a complete listing is not required. For reference, the
ReservationInfo class has the following attributes:

private String lastSearchCity;
private String lastSearchState;
private String propertyId;
private Property property;
private String roomTypeId;
private RoomType roomType;
private String guestProfileId;
private GuestProfile guestProfile;
private Date arriveDate;
private Date departDate;
private List<ReservationServices.RateDetails> rezRates;

The current reservation information is displayed on the left side of the screen on every page in the user
site in a small reservation information area generated by the RezInfo.jsp display JSP page. Figure 3-2
in the previous chapter showed this reservation information area in the context of the overall display.
As the user selects a property, selects dates, or completes additional steps in the process, the reservation
information area changes to reflect these selections.

Note that we have used the domain objects Property, RoomType, and GuestProfile as child objects of
our ReservationInfo main object to hold data such as the property name, room description, and guest
names required for display, rather than creating individual String fields for this purpose. These domain
objects are serializable Java objects and can therefore be placed in the HttpSession legally and safely.
Using child domain objects instead of individual String fields in an HttpSession storage object is a
design decision that often makes sense.

The RezInfo.jsp page generates the reservation information area using straightforward JSTL out and
formatDate tags to retrieve information from the ReservationInfo object and its children:

<c:out value="${rezinfo.property.description}"/>
...
<f:formatDate value="${rezinfo.arriveDate}" pattern="MMM dd, yyyy"/>
...
<c:out value="${rezinfo.roomType.description}"/>

Collections contained in the ReservationInfo object may be examined using JSTL forEach tags.

<c:set var="rezrates" value="${rezinfo.rezRates}"/>
...

<tr>
<td>

Rate:
<c:forEach var="rezrate" items="${rezrates}">

<c:out value="${rezrate.numberOfNights}"/>
nts @ $<c:out value="${rezrate.price.amount}"/>/nt

77

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 78

Chapter 4: Building an Example Web Application

</c:forEach>
</td>

</tr>

The ReservationInfo object may also be used in JSTL if tags to display information conditionally. For
example, we want to display the string Choose Property for the property description if the user has not
yet selected a property for this reservation. Rather than performing this logic in the ReservationInfo
value object or creating a separate helper class, we’ve made use of these if tags to control the display:

<a class="sidebar-link" href="<c:url value=’/chooseproperty.do’/>">
<c:if test="${empty rezinfo.propertyId}">
Choose Property

</c:if>
<c:if test="${not empty rezinfo.propertyId}">
<c:out value="${rezinfo.property.description}"/>

</c:if>

Best Practice
Do not place conditional display logic, such as replacing empty values with default
messages, in value objects. Use custom tags or other view components to create condi-
tional displays.

The displayed values in the reservation information area are also used as navigation links, allowing
the users to select their desired property, dates, or room type, jump back to a previous decision,
or log in before creating a reservation. As the code snippet shows, the target URL for the property
description — whether or not the user has already selected a property — is chooseproperty.do. All
hyperlinks in this JSP page and every other JSP page in the site use this <desiredaction>.do approach
rather than hard-coding page or controller names in the display JSP pages. These *.do locations are
mapped in the web.xml file to the default DispatcherServlet in Spring MVC, which then instantiates
and uses a page-specific controller class to handle the request.

If you examine the code for the RezInfo.jsp page, you may notice that the user can click on the Choose
Room Type link and invoke the selectroomtype.do action without regard for the status of the property or
dates selection. In the main reservation flow, depicted in Figure 3-3 in the previous chapter, the choice of
property and dates precedes the choice of room type. In fact it is impossible to select a room type prior to
knowing these other two items. We had two choices on the RezInfo.jsp page in terms of handling this
dependency:

❑ Implement the checks for property and dates on the page itself using additional JSTL if
tags to check for the presence of a Property object and arrival and departure dates in the
ReservationInfo object. If these dependencies are not met, the Choose Room Type link could
be disabled, or it could invoke the chooseproperty.do or selectdates.do actions rather than
selectroomtype.do. In this option the page itself is responsible for dependency checks.

❑ Allow the page to invoke the selectroomtype.do action regardless of dependencies and then
implement checks in the invoked controller to force the user to make property or dates selections
first. In this option the controller is responsible for checking dependencies.

78

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 79

Chapter 4: Building an Example Web Application

We chose the second approach to keep the page simple and ensure that complex business and depen-
dency rules are kept in Java code where they are easier to create and maintain. We examine the code in
the SelectRoomTypeController that implements this logic in the next section as we walk through the
reservation process and examine each component in turn.

In summary, the reservation information area of the bigrez.com user site is designed to display the cur-
rent status of the reservation process and allow the user to jump directly to certain steps in the process,
subject to business rules enforced in the SelectRoomTypeController component. The display area is cre-
ated by the RezInfo.jsp display JSP page using data stored in the HttpSession in the ReservationInfo
value object.

The reservation information area design and the chosen implementation techniques provide a good
model for a shopping cart or other multi-step process in your Java EE web applications.

Core Reservation Process Components
The core reservation process, illustrated in Figure 3-3, walks the user step-by-step through the selection of
required elements of a reservation. In this section, we examine a few of the presentation-tier components
in detail to illustrate the solutions employed for common requirements in Java EE web applications.

Defining Navigation Paths
The reservation process involves a fair number of separate display JSP pages, controller classes, and
related form objects and value objects. Table 4-1 provides a list of the primary components in the reserva-
tion process, and Table 4-2 completes the picture with non-core pages and related components. Note
that most pages have a single controller class that prepares form information for display and han-
dles user form submission for that page, a relationship described in Chapter 2 when we discussed the
SimpleFormController class. Some relationships are not quite as clean and are explained in the text to
follow.

Best Practice
Use a standard naming convention for display pages, controller classes, and form
objects to make relationships between components clear without inspecting the con-
figuration files.

As discussed in Chapter 2, the servlet-centric web application architecture dictates certain rules and prin-
ciples related to presentation-tier components and their relationships. One key principle is the separation
of roles between display components, controller components, and navigational control facilities. The
bigrez.com application meets the requirements by adopting the following rules:

❑ Display JSP pages must use <desiredaction>.do controller invocations for all hyperlinks and
form-posting targets. The controller is always responsible for determining the next page in the
process based on the user’s action, the current state, and navigation control information.

❑ Controller components do not refer directly to display JSP page names when specifying the next
page for display. Tiles definition names are used in the controller configurations and injected
into controllers.

79

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 80

Chapter 4: Building an Example Web Application

Table 4-1: Core Reservation Process Primary Components

Display Component Related Controller Components Form Object

PropertySearch.jsp
PropertyList.jsp

PropertySearchController.java PropertySearchForm.java

ViewProperty.jsp ViewPropertyController.java ViewPropertyForm.java

SelectDates.jsp SelectDatesController.java SelectDatesForm.java

SelectRoomType.jsp SelectRoomTypeController.java SelectRoomTypeForm.java

GuestInformation.jsp GuestInformationController.java GuestInformationForm.java

ReviewReservation.jsp ReviewReservationController.java ReviewReservationForm.java

ReservationThankYou.jsp

Table 4-2: Additional Web Application Components

Display Component Related Controller Components Form Object

Home.jsp HomeController.java

Login.jsp LoginController.java LoginForm.java

ViewProfile.jsp ViewProfileController.java ViewProfileForm.java

Offers.jsp OffersPreparer.java

Two critical aspects of this design are the Spring MVC configuration file, userapp-servlet.xml, and
the Tiles configuration file, tiles-config.xml. The userapp-servlet.xml file defines the mapping of
action links such as chooseproperty.do to their related controller components as well as many other
relationships between forms, controllers, and other Spring MVC elements. The tiles-config.xml file
defines the mapping between tiles definitions and the actual JSP page names inserted in the body of the
layout, among other things. Please download the source code for bigrez.com from the companion web
site (http://www.wrox.com/) and review these files before proceeding.

The userapp-servlet.xml file also defines the basic course, or happy path, through the reservation pro-
cess by defining successView mappings in each core reservation controller. For example, the next page
after SelectDates is SelectRoomType, but rather than hard-coding this relationship in any JSP or con-
troller component, the mapping is placed in the definition of the SelectDatesController component in

80

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 81

Chapter 4: Building an Example Web Application

this file and is injected into the successView attribute of the SimpleFormController base class for this
controller:

<bean id="selectDatesController"
class="com.bigrez.web.SelectDatesController">

<property name="formView" value="selectdates"/>
<property name="successView" value="redirect:selectroomtype.do"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="selectDatesForm"/>
<property name="commandClass" value="com.bigrez.web.SelectDatesForm"/>
<property name="selectDatesForm">

<bean class="com.bigrez.web.SelectDatesForm"/>
</property>
<property name="validator">

<bean class="com.bigrez.web.SelectDatesForm"/>
</property>

</bean>

By default, a SimpleFormController subclass will place the successView in the ModelAndView object it
returns when it exits the onSubmit() method successfully.

In theory, you can change the order of the reservation process by simply modifying the entries in
userapp-servlet.xml to indicate the new successView mappings for each page in the process. Mod-
ifying the page flow may require some changes in related controller classes to implement the modified
flow properly, but these changes should be minimal.

Controller components that do not follow this simple successView chain or that need to indicate a dif-
ferent target page also use logical page mappings defined in the configuration file. This turns out to be
a bit tricky in Spring MVC if the controller needs to redirect the user based on rules implemented in the
controller code itself, a topic we discuss in the next section.

Choosing Spring MVC Components
Before explaining the choices made in the bigrez.com example program, a caveat: This book is not
intended to be a primer on the Spring MVC framework, nor can it spend a large amount of time consid-
ering the pros and cons of using different design patterns and Spring-provided components. The topic is
simply too large and is well-covered by existing books and resources on the web in any case. We instead
present the choices made — and the design principles and requirements that led to those choices — in
the hope that our thought process, if not our specific choices, can be of use to you.

Spring MVC is a very deep and robust framework containing a wide variety of controller types, han-
dler mapping components, view resolvers, locale resolvers, theme resolvers, validation utilities, and
other components. There is no right way to create a Spring MVC application, although there are likely
many wrong ways. Meeting the presentation-tier design requirements while avoiding an overly complex,
inflexible, and hard to understand and maintain application will be our goal. Piece of cake!

First, we need to decide on the type of controller components to use. We’ll focus on two different require-
ments: basic controller logic, resulting in either success or failure and returning the target view and model
objects, and form submission processing with the full set of logic described in Chapter 2.

81

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 82

Chapter 4: Building an Example Web Application

Choosing Basic Controller Components
Spring provides a number of abstract controller classes designed to handle controller logic, the most basic
being AbstractController. Any subclass of this class need only define the behavior of one method,
handleRequestInternal(), and return a ModelAndView object representing the desired target view and
any model objects required by that view.

public class SampleController extends AbstractController
{

public ModelAndView handleRequestInternal(HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

ModelAndView result = new ModelAndView("showtime");
result.addObject("now", new Date());
return result;

}
}

This simple controller returns a ModelAndView object specifying showtime as the desired view and places
the current time in the result under the key now. We could adopt this design for our simple controllers
as well, except for one issue: The target view name is defined in the controller code, rather than in the
userapp-servlet.xml configuration file. Because one of our design principles is to avoid hard-coding
such navigation definitions in the components themselves, we need a mechanism to move this to the
configuration file.

The Spring-provided class ParameterizableViewController is an improvement over
AbstractController. It contains a single attribute, viewName, used by a built-in handleRequestInternal()
method to construct a ModelAndView object and return it. The viewName value can be injected using the
configuration file, thereby eliminating the hard-coding of navigation information in controller code. This
class does not, however, give the controller the ability to handle a failure case and return a different
failure-view value, a feature we need for our application. Only a single view name is configurable and
returnable by the class.

To meet our needs, we’ve created a simple concrete subclass of the Spring MVC AbstractController
class, called SimpleSuccessFailureController, that adds two view-name attributes, successView
and failureView, and provides a default implementation of handleRequestInternal() that returns
a ModelAndView object based on the success view:

package com.bigrez.web;

public class SimpleSuccessFailureController extends AbstractController
{

private String successView;
private String failureView;

protected ModelAndView handleRequestInternal(HttpServletRequest request,
HttpServletResponse response)

throws Exception
{

return new ModelAndView(getSuccessView());
}

82

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 83

Chapter 4: Building an Example Web Application

// get/set methods
...

}

Controllers that have no business logic, and always return the success view, can use this class directly, as
shown here:

<bean id="dumbController" class="com.bigrez.web.SimpleSuccessFailureController">
<property name="successView" value="dumbpage"/>

</bean>

Controllers that have business logic, or need to decide whether to return the success or failure view, can
subclass from the SimpleSuccessFailureController class and return ModelAndView objects based on
these attributes:

package com.bigrez.web;

public class LogoutController extends SimpleSuccessFailureController
{

protected ModelAndView handleRequestInternal(HttpServletRequest pRequest,
HttpServletResponse pResponse)

throws Exception
{

ReservationInfo rezinfo = (ReservationInfo)
pRequest.getSession().getAttribute("rezinfo");

if (rezinfo != null && rezinfo.getGuestProfile() != null) {
rezinfo.setGuestProfile(null);
rezinfo.setGuestProfileId("");
return new ModelAndView(getSuccessView());

}
else {

return new ModelAndView(getFailureView());
}

}
}

In this example the controller knows whether or not the operation was successful, but does not have the
target view pages hard-coded within it. The configuration file defines the two views by injecting them
into the successView and failureView attributes:

<bean id="logoutController" class="com.bigrez.web.LogoutController">
<property name="successView" value="home"/>
<property name="failureView" value="home"/>

</bean>

We’ve elected to send both success and failure cases to the same target view page, home, but we can easily
change our minds at a later date.

A number of controllers in the user and administration web applications in bigrez.com use the
SimpleSuccessFailureController to perform basic business logic and return a success or failure
view. Examine the ClearReservationController, LogoutController, and HomeController for
examples.

83

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 84

Chapter 4: Building an Example Web Application

Best Practice
Avoid hard-coding target view names in controller components. Use the
ParameterizableViewController provided by Spring if you only require a
success view, and use a class like SimpleSuccessFailureController if you need both
success and failure views.

Choosing Form-Processing Controller Components
The second type of controller we must select focuses on the displaying and processing of user-submitted
HTML forms. Spring MVC again provides a variety of controller classes designed to help manage
the form submission process, including AbstractCommandController, AbstractFormController,
SimpleFormController, and AbstractWizardFormController. We might start with a basic abstract con-
troller and build up to a custom-built form-processing controller class, or use the SimpleFormController
without customization to keep things simple. We could try the wizard-based controller for our
reservation process, or we might implement the step-by-step process as a series of simple controllers.
Choosing the right approach, and the right controller class, will make a big difference in our success.

First, we’ll eliminate the idea of building something ourselves. As discussed in Chapter 2, the complexity
of form display, submission, validation, error redisplay, and other related behaviors will overwhelm
us if we attempt to handle everything ourselves. For this reason alone it makes sense to start with a
framework-supplied controller class such as SimpleFormController and see how far that takes us.

Best Practice
Don’t build your own form-handling controller classes based on AbstractForm
Controller — it’s way too much work! Find a way to leverage an existing class such
as SimpleFormController and override its behavior if necessary.

Second, do we really need to introduce the AbstractWizardFormController into the mix to imple-
ment our multi-step reservation process? Does it provide enough value over the alternative, a JSP page,
SimpleFormController-based controller, and form object for each step? It helps to phrase the question in
this manner to remind ourselves that each major framework component we select introduces a learning
curve and additional complexity.

We’ve elected to stick with the SimpleFormController alone for the bigrez.com example program. It is
possible that a wizard-based approach, in the hands of a master, might yield a more elegant and compact
set of components — but our goals are clarity, ease of maintenance, and flexibility, rather than elegance.
We’ll therefore adopt an approach that leverages a single form-handling controller type and separates
the components related to each page in a clear and straightforward manner, as indicated by Table 4-1
earlier in this chapter. After all, clarity has a quality — and elegance — all its own.

A detailed discussion of SimpleFormController is beyond the scope of this book. Fortunately it works
well out of the box and hides most of the complexity associated with form binding, submission, and
other related tasks, and needs little discussion. We’ll use it for handling form display and submission
processing in a fairly straightforward manner, adopting the following guidelines and usage rules:

84

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 85

Chapter 4: Building an Example Web Application

❑ Business object retrieval and form preparation will take place in the overridden method
onBindOnNewForm() within our SimpleFormController subclass. This method will be called
when an HTTP GET request is made to the URL mapped to our controller instance.

❑ Form validation will be accomplished by implementing the Validator interface in the form class
itself. We’ve elected to place validation logic in the form, rather than creating additional valida-
tion classes, in an attempt to keep the overall class count down and keep logic that depends on
form attributes close to those attributes.

❑ Form submission processing will take place in the overridden method onSubmit() within our
subclass. This method will be called when an HTTP POST request is made to the URL mapped to
our controller instance.

❑ The formView and successView target values will be injected using the configuration file, but
can be overridden in select cases should errors in processing occur within the controller code.

By adopting SimpleFormController, we’ve simplified the Java code required to implement the form
submission logic described in Chapter 2 by limiting it to a small set of well-defined methods within two
classes we create. You can’t ask for much more than that!

Choosing Handler and Resolver Components
We’ve chosen a basic controller, SimpleSuccessFailureController, for straightforward controller logic,
and the SimpleFormController approach for form-based logic. These controllers constitute the core
presentation-tier components in our system, but they are not sufficient to complete our design. We also
need to choose an approach for mapping URL values to specific controllers, known as a handler mapping,
as well as our desired mechanism for resolving view names into specific display pages or other view
components.

Spring provides two primary handler mapping components: BeanNameUrlHandlerMapping and
SimpleUrlHandlerMapping. Both are designed to examine an incoming URL and return the correct
HandlerExecutionChain, normally consisting of zero or more HandlerInterceptor classes and a
specific controller to be invoked for that URL.

BeanNameUrlHandlerMapping relies on an exact match between the name given to the controller in the
configuration file and the URL itself. That level of coupling between URL values and controller names is
undesirable, in our opinion.

SimpleUrlHandlerMapping uses specific mappings defined in the configuration file to associate a
URL with a controller. For example, the following partial listing from the user web application’s
userapp-servlet.xml configuration file shows the basic use of this handler mapping:

<bean id="handlerMapping"
class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="interceptors">
<list>

<ref bean="loggingViewInterceptor"/>
</list>

</property>
<property name="mappings">

<value>
/home.do=homeController
/login.do=loginController

85

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 86

Chapter 4: Building an Example Web Application

/logout.do=logoutController
/viewprofile.do=viewProfileController
/clearreservation.do=clearReservationController
/chooseproperty.do=propertySearchController
/viewproperty.do=viewPropertyController
/selectdates.do=selectDatesController
/selectroomtype.do=selectRoomTypeController
/guestinformation.do=guestInformationController
/reservationreview.do=reservationReviewController
/thankyou.do=thankYouController

</value>
</property>

</bean>

Note that each URL is of the form <desiredaction>.do, as discussed previously, and that each URL
maps to a single controller bean. Though not perfect, this approach meets our goal of flexibility and
clarity.

The handler mapping configuration includes a single interceptor, loggingViewInterceptor, which will
be included on every HandlerExecutionChain returned by the handler mapping. We’ve defined this
interceptor in the configuration file as shown here:

<bean id="loggingViewInterceptor"
class="com.bigrez.web.LoggingViewInterceptor">

</bean>

This class implements the HandlerInterceptorAdapter interface and defines preHandle() and
postHandle() methods to be invoked before and after the controller handleRequest() method is called,
respectively.

Simply put, interceptors give us a way to perform actions, before and after the controller is invoked, for
whatever purposes we see fit. In our case we’ve included a simple logging interceptor to output request
and response information to the log for each invocation.

Our last decision, the choice of a view resolver, is easy: We’re using the Tiles framework for assembly of
our display JSP pages, so we will be using the Spring-supplied UrlBasedViewResolver configured to
resolve view names as Tiles definitions:

<bean id="viewResolver"
class="org.springframework.web.servlet.view.UrlBasedViewResolver">

<property name="viewClass"
value="org.springframework.web.servlet.view.tiles2.TilesView"/>

</bean>

If a controller returns a ModelAndView object containing the view name propertylist, for example, the
view resolver will invoke the Tiles framework and cause it to render the Tiles definition propertylist,
combining its master layout page and all other common and overridden tiles within the definition. The
following partial listing of the tiles-config.xml file shows the propertylist definition for reference:

<definition name="defaultLayout" template="/WEB-INF/jsp/common/DefaultLayout.jsp">
<put-attribute name="header" value="/WEB-INF/jsp/common/Header.jsp" />
<put-attribute name="topnav" value="/WEB-INF/jsp/common/TopNav.jsp" />

86

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 87

Chapter 4: Building an Example Web Application

<put-attribute name="rezinfo" value="/WEB-INF/jsp/common/RezInfo.jsp" />
<put-attribute name="offers" value="offers" />
<put-attribute name="footer" value="/WEB-INF/jsp/common/Footer.jsp"/>

</definition>
...
<definition name="propertylist" extends="defaultLayout">

<put-attribute name="body" value="/WEB-INF/jsp/PropertyList.jsp"/>
</definition>

You may have noticed one unusual element in this listing: the offers tile in the defaultLayout definition
does not refer to a specific JSP page, as do all the others, but instead refers to yet another Tiles definition,
offers. This second level of indirection is required to add a preparer to the offers definition, as shown
in this snippet from that same file:

<definition name="offers" template="/WEB-INF/jsp/common/Offers.jsp"
preparer="com.bigrez.web.OffersPreparer"/>

By configuring the offers tile in this manner, the execute() method on the OffersPreparer class is
invoked just before the tile is rendered, providing us with a convenient mechanism to prepare or load
something in the HttpServletRequest context required by the Offers.jsp page. We explain this in more
detail later in the chapter when we talk about the targeted offers portion of the page.

One final note on view resolving: The view name returned by the controller may refer to a Tiles definition,
as described earlier, or may be an HTTP redirect to a different controller, as highlighted here:

<bean id="selectDatesController"
class="com.bigrez.web.SelectDatesController">

<property name="formView" value="selectdates"/>
<property name="successView" value="redirect:selectroomtype.do"/>
...

</bean>

The formView value, selectdates, will resolve to a Tiles definition called selectdates and will
be treated as a RequestDispatcher.forward() transfer to the components involved, meaning that
HttpServletRequest and HttpServletResponse data will be carried along to the view components.
In particular, the controller’s form object, normally stored in the request scope, will be available to the
target view components and underlying JSP pages.

The successView value, redirect:selectroomtype.do, instructs the UrlBasedViewResolver that
it should bypass all normal resolving logic and simply return a RedirectView object to the calling
DispatcherServlet, which will then return an HTTP redirect to the user’s browser with the URL
specified after the redirect: prefix. In addition, any objects in the ModelAndView returned by the
controller will be placed in the URL as query string parameters, a behavior that can be handy as well as
dangerous.

By specifying this redirect: prefix in the successView value in the userapp-servlet.xml file, rather
than having the controller create and return a RedirectView object itself, we’ve successfully kept naviga-
tion details in the configuration file where they belong. Note that the controller is unaware that returning
the successView will result in a redirect, and may therefore attach objects to the ModelAndView it creates
and returns without regard for their appropriateness in a redirect scenario.

87

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 88

Chapter 4: Building an Example Web Application

Best Practice
Use the redirect: prefix in view names to perform HTTP redirects upon successful
completion of controller processing and avoid hard-coding this navigation information
in the controllers themselves. Keep in mind that objects in the returned ModelAndView
are placed in the query string during redirects.

Now that we have discussed the Spring MVC components we’re going to use and have walked through
some of the common design approaches we’ve adopted, let’s examine selected pages and controller
components in the site to learn more about its construction.

Property Search/Selection Pages
As indicated in Table 4-1, the first three pages in the reservation process consist of PropertySearch.jsp,
a simple search page allowing users to pick the desired city or state to use in finding a property, the
PropertyList.jsp page for displaying the results of a property search, and the ViewProperty.jsp page
for displaying a single property and asking the users to select it for their reservation.

For reference purposes, the URL for the search page is chooseproperty.do, the mapped controller is
PropertySearchController, and the form object associated with the controller is PropertySearchForm.
The pertinent portion of the userapp-servlet.xml file is shown here:

<bean id="propertySearchController"
class="com.bigrez.web.PropertySearchController">

<property name="formView" value="chooseproperty"/>
<property name="successView" value="propertylist"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="propertySearchForm"/>
<property name="commandClass" value="com.bigrez.web.PropertySearchForm"/>
<property name="propertySearchForm">

<bean class="com.bigrez.web.PropertySearchForm"/>
</property>
<property name="propertyServices" ref="propertyServicesReference"/>

</bean>

PropertySearchController is a SimpleFormController-based component, meaning that the initial
HTTP GET request will invoke the onBindOnNewForm() method where we prepare the form for display,
and the subsequent HTTP POST submission of form information will invoke onSubmit() where we per-
form the search and move to the next page in the process.

The display page itself, PropertySearch.jsp, is rather unremarkable, containing simple <form:select>
tags for creating a droplist of state codes and city names, as shown in this code snippet:

<form:select path="stateCode">
<form:option value="">Choose...</form:option>
<form:options items="${stateCodeList}" itemValue="value" itemLabel="label"/>

</form:select>

More interesting is the onSubmit() method in the controller that processes the submitted selections and
performs a search for matching properties using a service defined in the business tier of the application.

88

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 89

Chapter 4: Building an Example Web Application

protected ModelAndView onSubmit(HttpServletRequest request,
HttpServletResponse response, Object command,
BindException errors)

throws Exception
{

PropertySearchForm form = (PropertySearchForm) command;
List<Property> propertyList =

propertyServices.findByCityAndState(form.getCity(), form.getStateCode());
form.setPropertyList(propertyList);
// update the ReservationInfo in the session to reflect this location info
ReservationInfo rezinfo =

(ReservationInfo) request.getSession().getAttribute("rezinfo");
rezinfo.setLastSearchCity(form.getCity());
rezinfo.setLastSearchState(form.getStateCode());
return super.onSubmit(request, response, command, errors);

}

The first half of the method is pretty straightforward. The controller makes a call to findByCityAndState()
in the property service, which returns a list of Property domain objects that match the passed-in city
and state values. We attach this list to the form using setPropertyList(), making it available to the
successView component downstream of us.

The second half of the method updates the HttpSession-based ReservationInfo object with the city
and state values selected by the user. These stored values are used by the OffersPreparer to
generate a list of targeted offers based on the user’s last city and state, a topic we cover later in this
chapter.

As shown in the userapp-servlet.xml snippet, this particular controller’s successView is a forward to
a Tiles definition named propertylist. There is no redirect: prefix in this view definition, so the list
of Property objects placed in the request-scope form object will be available in the downstream page for
display.

The propertylist Tiles definition renders the downstream PropertyList.jsp page within the body of
the master layout, giving the user a list of properties that met the city and state chosen in the form, as
shown in Figure 4-2.

The PropertyList.jsp page is fairly straightforward, so rather than including a listing of the entire page,
we’ll examine a few key elements.

First, the main loop iterating through the list of properties uses a standard JSTL forEach tag as shown
here:

<c:forEach var="property" items="${propertySearchForm.propertyList}">
<tr>
...

</tr>
</c:forEach>

Note that the JSTL tag accesses the list by specifying the form name, as defined in the configuration
elements for the controller, and the name of the list. The tag will return each underlying Property object
in turn, referring to it by the name property in the body of the forEach tag.

89

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 90

Chapter 4: Building an Example Web Application

Figure 4-2: Property list page.

The property name, description, image, and other elements are rendered to the HTML output using
straightforward JSTL out tags within the body of the forEach tag, as shown in this example snippet:

<tr>
<td align="left">

<c:out value=’${property.address.address1}’/>

</td>
</tr>

There are two different action links on this page: the property description itself, and the Select but-
ton on the right side of the page. The property description link invokes the viewproperty.do action
in an HTTP GET mode, with the intent of displaying more information about a single property using
the ViewProperty.jsp page and giving the users the chance to select that property for their reser-
vation using that page. The following code snippet shows the creation of this HTTP GET link to the
viewproperty.do action using the JSTL url and out tags:

<td align="left">
<c:url var="viewproperty" value="/viewproperty.do">
<c:param name="id" value="${property.externalIdentity}"/>

</c:url>
<a class="table-link" href="<c:out value=’${viewproperty}’/>">

90

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 91

Chapter 4: Building an Example Web Application

<c:out value=’${property.description}’/>

</td>

The Select link on the right side of PropertyList.jsp is special — we want to bypass the
ViewProperty.jsp display page and pretend that the user has actually selected the property on
that page for his reservation. This will be an HTTP POST request to the viewproperty.do action, so we
need to create a POST request on our page and supply the needed object identifier, as shown in this
snippet of code from the PropertyList.jsp page:

<td>
<form method="post" action="<c:url value=’/viewproperty.do’/>">
<input type="hidden" name="id"

value="<c:out value=’${property.externalIdentity}’/>"/>
<input type="image" src="<c:url value=’/images/selectbutton.gif’/>" border="0"/>

</form>
</td>

For reference, the viewproperty.do action maps to the ViewPropertyController, a form called
ViewPropertyForm, a Tiles definition called viewproperty, and ultimately to the ViewProperty.jsp
display page. If invoked in HTTP GET mode, users are simply presented with information on a single
property and a button for indicating that they wish to select that property for their reservation. The
selection process causes an HTTP POST to the viewproperty.do action, the onSubmit() method on the
ViewPropertyController is invoked, the selected property is attached to the ReservationInfo object in
the HttpSession, and the successView for the controller is followed to the next page in the process.

Whether the user went through the viewproperty.do action sequence the normal way, or bypassed the
GET mode and display page entirely by selecting the property directly from the list page, the end result is
the same: A Property domain object is attached to the ReservationInfo object, and the user is redirected
to the next page in the process: SelectDates.jsp.

Date Selection Page
The SelectDates.jsp page allows users to choose the arrival and departure date for their stay at the
property they selected in the preceding step.

The URL for the date-selection page is selectdates.do, the mapped controller is SelectDatesController,
the form object associated with the controller is SelectDatesForm, the Tiles definition is selectdates,
and the display page is SelectDates.jsp. The pertinent portion of the userapp-servlet.xml file is
shown here:

<bean id="selectDatesController"
class="com.bigrez.web.SelectDatesController">

<property name="formView" value="selectdates"/>
<property name="successView" value="redirect:selectroomtype.do"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="selectDatesForm"/>
<property name="commandClass" value="com.bigrez.web.SelectDatesForm"/>
<property name="selectDatesForm">

<bean class="com.bigrez.web.SelectDatesForm"/>
</property>
<property name="validator">

91

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 92

Chapter 4: Building an Example Web Application

<bean class="com.bigrez.web.SelectDatesForm"/>
</property>

</bean>

Like many of the controllers in the reservation process, SelectDatesController is a
SimpleFormController-based component. The onBindOnNewForm() method is used to prepare
the form data for display, and onSubmit() is used to process form submission and move to the next
page in the process.

The SelectDates.jsp page presents the user with a simple form requesting an arrival and departure
date (see Figure 4-3). Calendar icons next to each field use JavaScript to pop up a calendar window
allowing the user to pick dates. We’re not going to cover this feature in the book, but feel free to look at
the downloadable code if you’re interested in how these buttons work.

Figure 4-3: Select dates page.

The user chooses the desired dates and submits the form back to the SelectDatesController for pro-
cessing. As shown in the configuration file snippet, this particular controller has defined a validator that
should be called after submitted data has been bound to the form but before the onSubmit() method is
invoked. As discussed earlier in this chapter, we’ve elected to have the form class itself implement the

92

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 93

Chapter 4: Building an Example Web Application

Validator interface, thus requiring the implementation of two methods shown in the following snippet
from the SelectDatesForm.java file:

public void validate(Object form, Errors errors)
{

SelectDatesForm datesform = (SelectDatesForm) form;
if (FormUtils.assertNonEmpty(errors, datesform.getArriveDate(),

"error.selectdates.arriveempty")) {
FormUtils.assertValidDate(errors, datesform.getArriveDate(),

"error.selectdates.arriveinvalid");
}
if (FormUtils.assertNonEmpty(errors, datesform.getDepartDate(),

"error.selectdates.departempty")) {
FormUtils.assertValidDate(errors, datesform.getDepartDate(),

"error.selectdates.departinvalid");
}
if (errors.getErrorCount() == 0) {

try {
Date arrive = DateHelper.parse1(datesform.getArriveDate());
Date depart = DateHelper.parse1(datesform.getDepartDate());
if (arrive.equals(depart) || arrive.after(depart)) {

errors.reject("error.selectdates.arriveafterdepart");
}

}
catch (ParseException e) {

errors.reject("error.validationproblem");
}

}
}

public boolean supports(Class pClass)
{

return pClass.equals(SelectDatesForm.class);
}

The validate() method examines the data in the incoming form and flags problems using the reject()
method in the Errors object passed in to the validate() method. We’ve implemented some simple
validation rules in a helper class called FormUtils just for convenience, as you can see from the listing.

Should the validate() method reject the form data, the onSubmit() method in the controller class will
not be invoked. Instead the display page will be redisplayed with the form data representing the last set
of input from the user along with any binding errors present in the request. The SelectDates.jsp page
displays any bind-related errors using the following Spring custom tags:

<spring:hasBindErrors name="selectDatesForm">
<tr>
<td>

Errors

You must correct the following error(s)

before proceeding:

93

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 94

Chapter 4: Building an Example Web Application

<form:errors path="*" htmlEscape="false" cssClass="error-text"/>

</td>

</tr>
</spring:hasBindErrors>

As shown in the validate() method, errors are generated using key values such as error.selectdates
.arriveafterdepart. The error messages themselves are stored in an errors.properties file
located in the WEB-INF/classes directory and are loaded by configuring a resource bundle in the
userapp-servlet.xml file as shown here:

<bean id="messageSource"
class="org.springframework.context.support.ResourceBundleMessageSource">
<property name="basenames">

<list>
<value>errors</value>

</list>
</property>

</bean>

Should the submitted form data pass the tests in the validate() method, the onSubmit() method in the
controller is invoked to process the form submission. As shown here, the method is very straightforward,
simply storing the chosen dates in the ReservationInfo object in the HttpSession and returning the
success view:

protected ModelAndView onSubmit(HttpServletRequest request,
HttpServletResponse response,
Object command, BindException errors)

throws Exception
{

SelectDatesForm form = (SelectDatesForm) command;
// update the ReservationInfo in the session to reflect this date info
ReservationInfo rezinfo =

(ReservationInfo) request.getSession().getAttribute("rezinfo");
rezinfo.setArriveDate(DateHelper.parse1(form.getArriveDate()));
rezinfo.setDepartDate(DateHelper.parse1(form.getDepartDate()));
return super.onSubmit(request, response, command, errors);

}

The success view for this controller is a redirect to the next page in the process, selectroomtype.do,
where rates, room types, and availability information for the selected property and arrival/departure
dates are calculated and displayed for user selection.

Availability Display and Room Type Selection Page
The next step in the reservation process is the selection of a specific room type for the chosen property,
subject to availability, and the viewing of rate information for the dates of the stay.

As shown in Figure 4-4, the SelectRoomType.jsp page presents the users with a list of room types, rates,
and availability information to assist them in choosing the desired room for their stay. Rooms that are not

94

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 95

Chapter 4: Building an Example Web Application

available for the entire duration of the stay are not available for selection and indicate the specific nights
they are unavailable. We talk more about rates and availability when we walk through some pages in
the administration site, so for now let’s concentrate on how this content is retrieved by the controller and
rendered by the JSP page.

Figure 4-4: Select room type page.

The URL for the availability display and room type selection page is selectroomtype.do, the
mapped controller is SelectRoomTypeController, the form object associated with the con-
troller is SelectRoomTypeForm, the Tiles definition is selectroomtype, and the display page is
SelectRoomType.jsp. The pertinent portion of the userapp-servlet.xml file is shown here:

<bean id="selectRoomTypeController"
class="com.bigrez.web.SelectRoomTypeController">

<property name="formView" value="selectroomtype"/>
<property name="successView" value="redirect:guestinformation.do"/>
<property name="overrideChoosePropertyView" value="redirect:chooseproperty.do"/>
<property name="overrideSelectDatesView" value="redirect:selectdates.do"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="selectRoomTypeForm"/>
<property name="commandClass" value="com.bigrez.web.SelectRoomTypeForm"/>
<property name="selectRoomTypeForm">

<bean class="com.bigrez.web.SelectRoomTypeForm"/>
</property>
<property name="reservationServices" ref="reservationServicesReference"/>

95

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 96

Chapter 4: Building an Example Web Application

<property name="propertyServices" ref="propertyServicesReference"/>
</bean>

The SelectRoomTypeController is a SimpleFormController subclass, like the previous controllers. The
onBindOnNewForm() method is used to prepare the form data for display, and onSubmit() is used to
process form submission and move to the next page in the process.

By the way, if this set of names, files, and configuration information seems repetitive and obvious to
you by now, that’s great news! That would mean we’ve accomplished our goal of keeping things clear,
consistent, easy-to-understand, and simple! We’ll continue to list them, as appropriate, to help connect
the text discussion with the code in the downloadable example program.

Unlike previous controllers with very simple onBindOnNewForm()methods, the SelectRoomTypeController
needs to perform some important logic in the form preparation code in onBindOnNewForm() before the
page can be displayed:

❑ First, we need to verify that we are ready to perform the availability and rates search. The users
should have already selected a property, arrival date, and departure date earlier in the process.
If not, we must redirect them to chooseproperty.do or selectdates.do to complete those
steps. Our earlier decision deferred this logic to the controller, rather than trying to code it in the
RezInfo.jsp page, and that means we now must address it.

❑ Next, we need to take what we know about the user’s desired property and arrival/departure
dates and search the inventory and rates database for all of the information required to populate
the display page. This includes all room type information for the property — whether or not all
room types are available for the dates in question — along with rate and availability information
for those dates. If a room type is unavailable for some night in the stay, we need to know which
night. Prices may change during the course of a multi-night stay, and those price changes must
also be reflected in the rates data placed in the form.

❑ Finally, the availability and room type information must be made available to the display JSP
page in a manner that facilitates display to the user without undue difficulty.

The good news, from our perspective as a presentation-tier developer, is that the business-tier
developer is on the hook for performing all of the complex logic to satisfy the second requirement
in the preceding list. Poor guy! Examine the ReservationServicesImpl class and focus on the
calculateRatesAndAvailability() method if you want to see how the service performs the required
room type, rate, and availability checking logic.

The bad news is that we need to figure out how to satisfy the first item — checking to make sure the
users are ready for this step and redirecting them elsewhere if not — and that simple requirement turns
out to be trickier than you might think given some limitations in the SimpleFormController class and
the mechanism we’ve adopted for handling HTTP GET requests.

The problem is simple: HTTP GET processing in SimpleFormController assumes the formView
is always the target page and provides no easy way to override this behavior. In particular,
methods like onBindOnNewForm() and formBackingObject() occur early in the overall flow in
SimpleFormController’s implementation of handleRequest() and have no hooks for changing the
returned ModelAndView object to reflect a different view. Instead, SimpleFormController waits until the
very end of the final step in the overall flow, in a method called showForm(), to call getFormView() and
place that view name in newly created ModelAndView object and return it.

96

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 97

Chapter 4: Building an Example Web Application

We can jury-rig something to give us the behavior we want in a variety of ways, of course, but we’re look-
ing for something that feels clean and is easy to understand and configure. One option might be an addi-
tional HandlerInterceptorAdapter class configured with a preHandle() method that checks for the nec-
essary prerequisites. Unfortunately, this step is so early in the call stack that it is impossible to make use
of view names, so any HTTP redirection must be done manually through HttpServletResponse meth-
ods. A different interceptor approach might be to check for the prerequisites in the onBindOnNewForm()
method and note their absence in the HttpServletRequest in some agreed-upon attribute, and then
check for that attribute in the interceptor’s postHandle() method, modifying the ModelAndView object
passed in to postHandle() as appropriate. Both of these techniques seem overly complex and kludgy.

One rule of thumb in the override-to-fix-it game is to start by focusing on the method with which you are
dissatisfied. In this case we dislike the default behavior of the showForm() method that unconditionally
calls the getFormView() method to create the final ModelAndView object. That’s where we will turn our
attention.

Two options spring to mind: We can either override the getFormView() method in our subclass to return
values conditionally, or we can override the showForm() method to be aware of our prerequisites and
return something other than getFormView() if they are not met. We’ve chosen the second approach,
overriding showForm(), because it has all of the necessary objects available for evaluating the prerequi-
sites and returning the correct view, whereas getFormView() would have to rely on instance variables in
the controller, or some other equally ugly solution, to acquire references to the HttpSession and other
required objects.

The SelectRoomTypeController overridden version of showForm() is shown in this partial listing:

protected ModelAndView showForm(HttpServletRequest request,
HttpServletResponse response,
BindException errors, Map controlModel)

throws Exception
{

ReservationInfo rezinfo =
(ReservationInfo) request.getSession().getAttribute("rezinfo");

if (rezinfo.getProperty() == null) {
return new ModelAndView(getOverrideChoosePropertyView());

}
else if (rezinfo.getArriveDate() == null || rezinfo.getDepartDate() == null) {

return new ModelAndView(getOverrideSelectDatesView());
}
return super.showForm(request, response, errors, controlModel);

}

If the Property reference in the ReservationInfo object is not defined, the method returns the view name
stored in the overrideChoosePropertyView attribute. In the same way, the overrideSelectDatesView
value is returned if the arrival and departure dates are not present. These override view values are
injected by the configuration information for the controller to avoid hard-coding them in the showForm()
method as shown here:

<bean id="selectRoomTypeController"
class="com.bigrez.web.SelectRoomTypeController">

...
<property name="overrideChoosePropertyView" value="redirect:chooseproperty.do"/>
<property name="overrideSelectDatesView" value="redirect:selectdates.do"/>
...

</bean>

97

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 98

Chapter 4: Building an Example Web Application

The onBindOnNewForm() method in our controller needs to check for these same prerequisites to avoid
null pointer exceptions, but does not have to throw an error or otherwise handle their absence. The
showForm() method will catch this at the end of the overall flow and deal with it properly.

Creating a custom showForm() method is not a perfect solution to our problem, but it does give us a clean
way to override the default formView value with injected values.

Best Practice
Consider overriding the showForm() method in your SimpleFormController-based
controllers to check for important prerequisites and return a view name other than the
default formView value if they are not met.

As shown in the following listing, the controller code to invoke the business service and retrieve the
availability and room type information is deceptively simple:

protected void onBindOnNewForm(HttpServletRequest request,
Object command, BindException pErrors)

throws Exception
{

SelectRoomTypeForm form = (SelectRoomTypeForm) command;
ReservationInfo rezinfo =

(ReservationInfo) request.getSession().getAttribute("rezinfo");
if (rezinfo.getProperty() != null

&& rezinfo.getArriveDate() != null && rezinfo.getDepartDate() != null) {
// everything is fine, do the rate/availability search using the given info
List<AvailabilityAndRates> availrates =

reservationServices.calculateRatesAndAvailabilty(rezinfo.getProperty(),
rezinfo.getArriveDate(), rezinfo.getDepartDate());

form.setProperty(rezinfo.getProperty());
form.setAvailRates(availrates);

}
}

Each AvailabilityAndRates object returned by the services contains a RoomType domain object, a List of
RateDetails objects, and a List of Date objects representing blocking — or unavailable — days during
the stay for this particular room type. A RateDetails object represents one chunk of dates within the
overall stay that came from a single Rate row in the database, and therefore contains a starting date, a
price, and a number of nights.

The returned list of AvailabilityAndRates objects is placed in the form object and control is passed to
the SelectRoomType.jsp page via the selectroomtype Tiles definition. By encapsulating the complex
business logic associated with room type and availability searching within a service, the presentation-tier
code remains straightforward and focused on appropriate logic.

Best Practice
Favor encapsulating complex business logic in session beans to improve efficiency and
maintainability.

98

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 99

Chapter 4: Building an Example Web Application

The SelectRoomType.jsp page is presented in Listing 4-1 in its entirety because it contains some inter-
esting features and highlights the power of JSTL tags when dealing with nested data structures such as
AvailabilityAndRates.

Listing 4-1: SelectRoomType.jsp.

<%@ include file="/WEB-INF/jsp/common/Include.jspf" %>

<table width="100%" cellspacing="5" cellpadding="0">
<tr>
<td class="page-header" align="right">Room Types</td>

</tr>
<tr>
<td class="page-text">

The <c:out value="${selectRoomTypeForm.property.description}"/> has
the following room types:</td>

</tr>
<tr>
<td>
<table width="100%" cellspacing="0" cellpadding="3" border="0">
<c:forEach var="availrate" items="${selectRoomTypeForm.availRates}">
<c:set var="roomtype" value="${availrate.roomType}"/>
<tr>

<td width="30%" align="left" class="table-header">
<c:out value="${roomtype.description}"/>

</td>
<td width="25%" class="table-data">
<c:if test="${roomtype.smokingFlag}">Smoking</c:if>
<c:if test="${not roomtype.smokingFlag}">Non-Smoking</c:if>

</td>
<td width="25%" class="table-data">
<c:out value="${roomtype.maximumAdults}"/> Adults Max

</td>
<c:if test="${empty availrate.blockingDates}">
<td width="20%" align="center">

<form method="post"
action="<c:url value=’/selectroomtype.do’/>">

<input type="hidden" name="id"
value="<c:out value=’${roomtype.externalIdentity}’/>"/>
<input type="image"

src="<c:url value=’/images/selectbutton.gif’/>" border="0"/>
</form>

</td>
</c:if>
<c:if test="${not empty availrate.blockingDates}">
<td class="table-header" width="20%" align="center">

Unavailable
</td>

</c:if>
</tr>
<tr>

<td colspan="3" class="table-data">
<c:out value="${roomtype.features}" escapeXml="false"/>

Continued

99

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 100

Chapter 4: Building an Example Web Application

Listing 4-1: SelectRoomType.jsp. (continued)

</td>
</tr>
<c:forEach var="ratedetail" items="${availrate.rates}">

<tr>
<td colspan="3" class="table-data">
 Rate: $
<c:out value="${ratedetail.price.amount}"/>/night for
<c:out value="${ratedetail.numberOfNights}"/> nts

</td>
</tr>

</c:forEach>
<c:forEach var="blocker" items="${availrate.blockingDates}">

<tr>
<td colspan="3" class="table-data">

 Not Available on
<f:formatDate value="${blocker}" pattern="MM/dd/yyyy"/>

</td>
</tr>

</c:forEach>
<tr><td> </td></tr>

</c:forEach>
</table>
</td>
</tr>

</table>

Some key things to note in the listing of SelectRoomType.jsp include:

❑ The use of nested forEach loops to iterate over the set of AvailabilityAndRates objects in the
form and then within the list of RateDetails child objects nested below that object.

❑ The conditional logic checking for an empty list of blocking dates to determine if the room type
is available for booking.

❑ The implementation of the Select button on the right side of the page for room types available
for booking. Because this is a SimpleFormController-based process, we need to invoke the con-
troller using HTTP POST when the user is making a selection.

The SelectRoomTypeController.onSubmit() method is invoked when the user chooses one of the dis-
played room types using the Select button. This method is responsible for recording the user’s selection
in the ReservationInfo object in the HttpSession, as shown here:

protected ModelAndView onSubmit(HttpServletRequest request,
HttpServletResponse response,
Object command, BindException errors)

throws Exception
{

SelectRoomTypeForm form = (SelectRoomTypeForm) command;
ReservationInfo rezinfo =

(ReservationInfo) request.getSession().getAttribute("rezinfo");

100

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 101

Chapter 4: Building an Example Web Application

RoomType roomType =
propertyServices.findRoomTypeByExternalIdentity(form.getId());

List<ReservationServices.RateDetails> rateDetails =
reservationServices.calculateRates(roomType, rezinfo.getArriveDate(),

rezinfo.getDepartDate());
rezinfo.setRoomTypeId(form.getId());
rezinfo.setRoomType(roomType);
rezinfo.setRezRates(rateDetails);
return super.onSubmit(request, response, command, errors);

}

Note that we are re-fetching the chosen RoomType object based on the selected id value submitted by
the form page, and we are calling a slightly different reservation service to re-fetch the rate details
for a single room type and set of arrival/departure dates. We cannot make use of the previous list of
AvailabilityAndRates objects fetched in the onBindOnNewForm() method prior to displaying the page
because they were only available in the HttpServletRequest during the previous controller and view
invocation, and were not placed in the HttpSession, so they are not present in this instance of the form.

The next page in the reservation process, GuestInformation.jsp, is a fairly straightforward HTML
form used to collect guest information and credit card information for the reservation. It is a typical set
of components consisting of controller, form, Tiles view, and display page along the lines of previous
examples. You can examine these components in the downloaded example code if desired, but we do not
discuss the page or related components in this text.

Reservation Creation Process
The final step in the reservation process begins with the confirmation page shown in Figure 4-5. The
ReviewReservation.jsp display page displays information from a newly created Reservation business
domain object created by the controller but not yet saved to the database. The user examines the contents
and clicks the confirmation button to make the reservation official.

The URL for the review reservation page is reviewreservation.do, the mapped controller is
ReviewReservationController, the form object is ReviewReservationForm, the Tiles definition is
reviewreservation, and the display page is ReviewReservation.jsp. The pertinent portion of the
userapp-servlet.xml file is shown here:

<bean id="reservationReviewController"
class="com.bigrez.web.ReservationReviewController">

<property name="formView" value="reviewreservation"/>
<property name="successView" value="redirect:thankyou.do"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="reviewReservationForm"/>
<property name="commandClass" value="com.bigrez.web.ReviewReservationForm"/>
<property name="reviewReservationForm">

<bean class="com.bigrez.web.ReviewReservationForm"/>
</property>
<property name="sessionForm" value="true"/>
<property name="reservationServices" ref="reservationServicesReference"/>
<property name="profileServices" ref="profileServicesReference"/>

</bean>

101

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 102

Chapter 4: Building an Example Web Application

Figure 4-5: Review reservation page.

Note that this controller is configured to use a session form, meaning that the form object will be placed
in the HttpSession at the end of the HTTP GET processing and will be retrieved from the session before
the binding of submitted data into the form during HTTP POST processing. In practical terms, the objects
we attach to the form in the onBindOnNewForm() method will be there when we receive the form again in
onSubmit(), simplifying the logic for creating the final, saved reservation in the database.

The onBindOnNewForm() method creates a Reservation object using data from the ReservationInfo
object as shown in this partial listing:

protected void onBindOnNewForm(HttpServletRequest request,
Object command, BindException errors)

throws Exception
{

ReviewReservationForm form = (ReviewReservationForm) command;
ReservationInfo rezinfo =

(ReservationInfo) request.getSession().getAttribute("rezinfo");
Reservation reservation = new Reservation();
reservation.setArrivalDate(rezinfo.getArriveDate());
reservation.setDepartureDate(rezinfo.getDepartDate());
reservation.setCard(rezinfo.getGuestProfile().getCard());
reservation.setGuestProfile(rezinfo.getGuestProfile());
reservation.setRoomType(rezinfo.getRoomType());
form.setReservation(reservation); // ready for review

102

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 103

Chapter 4: Building an Example Web Application

form.setProperty(rezinfo.getProperty());
form.setReservationRates(rezinfo.getRezRates());

}

The onSubmit() method sends the Reservation object to the createReservation() service in the busi-
ness layer, as shown in this listing:

protected ModelAndView onSubmit(HttpServletRequest request,
HttpServletResponse response,
Object command, BindException errors)

throws Exception
{

ReviewReservationForm form = (ReviewReservationForm) command;
Reservation finalreservation =

reservationServices.createReservation(form.getReservation(),
form.getReservationRates());

ReservationInfo rezinfo =
(ReservationInfo) request.getSession().getAttribute("rezinfo");

rezinfo.clearAllButProfile();
// re-fetch the latest profile to make sure our version number matches..
GuestProfile profile = rezinfo.getGuestProfile();
GuestProfile newprofile =

profileServices.findByLogonAndPassword(profile.getLogon(),
profile.getPassword());

rezinfo.setGuestProfileId(newprofile.getExternalIdentity());
rezinfo.setGuestProfile(newprofile);
// Need to stash the completed reservation somewhere for the "thank you" page
request.getSession().setAttribute("finalreservation", finalreservation);
return super.onSubmit(request, response, command, errors);

}

The createReservation() service performs a variety of functions: It saves the new Reservation object
in the database, including its child ReservationRate objects, assigns a confirmation number, decrements
any inventory values for room type and day combinations with limited availability, and sends a confir-
mation email to the guest. Once the reservation is complete the onSubmit() method clears information
from the ReservationInfo object in the session, re-fetches the GuestProfile object to ensure our copy
matches the latest version in the database, and places the completed reservation in the HttpSession in
an agreed-upon location for use by the next page in the process, the ReservationThankYou.jsp page.

The user is presented with the thank-you page, and the process is complete!

Targeted Offers Components
To round out our discussion of the user site in bigrez.com, in this section we briefly examine the targeted
offers area on the left side of the page. As shown in Figure 3-2 in the previous chapter, this area presents
a small number of offers containing a graphic, caption, and related property name. Clicking an offer
simply displays the normal property information page for the given hotel, a simplification we chose
for this example application. In a real site, clicking an offer might display a special page with detailed
information about the offer and provide a shortcut for selecting a specific rate or room type in the hotel,
for example.

103

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 104

Chapter 4: Building an Example Web Application

Like the reservation information area on the left side of the page, the offers area is part of the master
layout and will be displayed every time a display page is shown. Unlike the reservation information area,
the data to be displayed in the offers area must be calculated every time based on the latest selections of
city, state, and property by the user of the site. For example, if the user has indicated a preference to stay
in Minneapolis by selecting that city in the PropertySearch.jsp page, any offers for properties located
in Minneapolis should have precedence over offers in other cities.

We’ve elected to perform the complex business logic required to determine the offers to be displayed
in a service method on a session bean, consistent with our philosophy of encapsulating such logic in
services rather than performing it in presentation-tier components. The only question remaining is who
will invoke this service each time the page is displayed and place the offers information in the request for
rendering into the HTML output?

The Tiles framework provides a very slick mechanism for preparing data just prior to invoking the
JSP underlying a given Tiles component. As mentioned earlier in this chapter, we’ve defined the
defaultLayout in the tiles-config.xml file to include an OffersPreparer class as part of the definition
of the offers tile. The pertinent sections of the configuration file are shown here:

<definition name="offers" template="/WEB-INF/jsp/common/Offers.jsp"
preparer="com.bigrez.web.OffersPreparer"/>

<definition name="defaultLayout" template="/WEB-INF/jsp/common/DefaultLayout.jsp">
<put-attribute name="header" value="/WEB-INF/jsp/common/Header.jsp" />
<put-attribute name="topnav" value="/WEB-INF/jsp/common/TopNav.jsp" />
<put-attribute name="rezinfo" value="/WEB-INF/jsp/common/RezInfo.jsp" />
<put-attribute name="offers" value="offers" />
<put-attribute name="footer" value="/WEB-INF/jsp/common/Footer.jsp"/>

</definition>

The OffersPreparer class defines an execute() method as follows:

public void execute(TilesRequestContext tilesContext,
AttributeContext attributeContext)

throws PreparerException
{

Map<String,Object> lSessionMap = tilesContext.getSessionScope();
Map<String,Object> lRequestMap = tilesContext.getRequestScope();
ReservationInfo rezinfo = (ReservationInfo) lSessionMap.get("rezinfo");
try {

List<Offer> offers =
propertyServices.getOffersForDisplay(rezinfo.getProperty(),

rezinfo.getLastSearchCity(),
rezinfo.getLastSearchState(),
getMaximumOffers());

lRequestMap.put("offers", offers);
}
catch (EntityNotFoundException e) {

lRequestMap.put("offers", new ArrayList<Offer>());
}
super.execute(tilesContext, attributeContext);

}

104

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 105

Chapter 4: Building an Example Web Application

The Offers.jsp page finds the List of fetched Offer objects in the request scope under the key offers,
loops through them, and displays the targeted offers to the user using standard JSTL forEach and
out tags.

That’s it! We are now ready to proceed to the construction of the administration site components includ-
ing pages for entering, updating, and deleting all of the information used by the bigrez.com user site.

Construction of Administration Site
Components

The construction of the administration site in bigrez.com is broken down into two primary sections:

❑ Authentication/authorization components controlling access to site components

❑ Property maintenance components providing pages for creating, modifying, and deleting all of the
property information required to drive the user site

Note that the administration site is designed to be a completely separate web application deployed
to WebLogic Server alongside the user site. The administration site has its own web.xml file,
adminapp-servlet.xml Spring MVC configuration file, tiles-config.xml file, and a completely
independent set of display and controller components. Certain Java code components in the web-common
area are shared between the two applications, as are all of the EJB services and domain objects.

We next examine the two sections of the administration site, highlighting key components and techniques
in each section as appropriate.

Authentication/Authorization Components
The administration site in bigrez.com is not available to the general user community. To gain access to
the administration site you must have a login and password defined as a bigrez.com system administra-
tor in the WebLogic Server security realm.

We’ve employed the standard Java EE web application security mechanisms provided by WebLogic
Server as a starting point for this application. More advanced WebLogic Server–specific security mech-
anisms are discussed in Chapter 11. Standard web application security relies on three primary compo-
nents:

❑ The definition of users and groups in the application server environment using administration
tools provided by WebLogic Server

❑ Declaring web application security in the web.xml file for the application and specifying the roles
having access to specific web components

❑ Defining the mapping between the roles defined in the web.xml file and the principals, either
users or groups, defined in the environment

Using the WebLogic Server administration console, create a BigRezAdministrators group in the realm
and then create a bigrez.com administrator user and make it a member of that group. Chapter 5 walks
through this process in detail.

105

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 106

Chapter 4: Building an Example Web Application

Next, declare and configure web application security in the web.xml descriptor file for the administra-
tion site using the standard descriptor elements. Define a security-constraint element to secure all
of the controller invocation URL values in the administration site using a *.do URL pattern with the
<auth-constraint> tag specifying that only the bigrezadmin role may access these resources:

<security-constraint>
<web-resource-collection>
<web-resource-name>Dispatcher Servlet</web-resource-name>
<url-pattern>*.do</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>bigrezadmin</role-name>

</auth-constraint>
</security-constraint>

Next, configure the web application to use form-based authentication. This requires a <login-config>
element defining the authentication method and the pages to use for requesting login information from
the user and for reporting login problems:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.do</form-login-page>
<form-error-page>/login.do?error=true</form-error-page>

</form-login-config>
</login-config>

The web container is responsible for displaying the specified login page whenever a user requests a
resource in the site for which they are not authorized. In our case, because all *.do mappings are consid-
ered secure, and all JSP pages are hidden under the WEB-INF/jsp subdirectory, there is nothing available
to a user without logging in.

Note that the login.do URL specified for this form-based login page is not a simple JSP display page.
When the Web container requests the login.do URL it will cause the Spring MVC DispatcherServlet
to be invoked, which will then call the controller mapped to the /login.do URL and invoke a view
resolver to render the successView returned by that controller. The success view, login, represents a
Tiles definition, so Tiles will be invoked to assemble and render the entire page, one piece of which
is the Login.jsp page with the fields for username and password in the center of the display. Whew!
Fortunately the web container allows all of that forwarding and invoking to occur before we are actually
logged in because it is aware that the login page itself may require such functionality.

We examine Login.jsp in a moment, but first let’s finish the required descriptor entries in web.xml:

<security-role>
<role-name>bigrezadmin</role-name>

</security-role>

These elements simply declare the existence of the security roles used in the <auth-constraint> ele-
ments earlier in the descriptor. Note that this security role is not the same as the BigRezAdministrators

106

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 107

Chapter 4: Building an Example Web Application

group defined in the WebLogic Server realm. Although WebLogic Server will automatically map roles
to groups in the realm if the names are identical, this is not a best practice. A separate set of elements
in weblogic.xml should be used to map roles to principals, either groups or users, in the realm. For
bigrez.com, the mapping element in weblogic.xml looks like this:

<security-role-assignment>
<role-name>bigrezadmin</role-name>
<principal-name>BigRezAdministrators</principal-name>

</security-role-assignment>

Best Practice
Always map the roles defined in web.xml to principals (groups or users) defined in
the realm using explicit <security-role-constraint> entries in weblogic.xml rather
than relying on automatic matching of role names to principal names.

As shown in Listing 4-2, the Login.jsp page follows the basic rules of form-based authentication. It
defines an HTML form with the action j_security_check containing input fields j_username and
j_password. This page will be displayed automatically by the web container whenever a user attempts
to access any controlled resource in the application.

Listing 4-2: Login.jsp.

<%@ include file="/WEB-INF/jsp/common/Include.jspf" %>

<table width="100%" cellspacing="5" cellpadding="0">
<tr>
<td class="page-header" align="right">Login</td>

</tr>
<tr>
<td class="page-text">Please log in to Administration Site:</td>

</tr>
<c:if test="${not empty param.error}">
<tr><td> </td></tr>
<tr><td class="error-header2">Invalid Administrator ID

or Password. Please try again.</td></tr>
</c:if>
<tr><td> </td></tr>
<tr>
<td>

<form method="POST" action="j_security_check">
<table width="50%" border="0" cellspacing="0" cellpadding="0">

<tr>
<td width="50%" class="page-label">Administrator ID:</td>
<td width="50">
<input type="text" name="j_username" size="15" maxlength="15" value=""/>
</td>

</tr>
<tr>
<td class="page-label">Password:</td>

Continued

107

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 108

Chapter 4: Building an Example Web Application

Listing 4-2: Login.jsp. (continued)

<td>
<input type="password" name="j_password" size="15"

maxlength="15" value=""/>
</td>

</tr>
<tr><td colspan="2"> </td></tr>
<tr>
<td align="center" colspan="2">

<input type="submit" value="Submit"/>
</td>

</tr>
</table>

</form>
</td>

</tr>
</table>

When the user submits the form, the container intercepts the request and attempts to authenticate using
the default security realm and the supplied username and password. If the supplied data is not correct,
the container forwards the user to the page defined in the web.xml file in the <form-error-page> element,
normally an error page of some sort. We’ve added a twist here by defining the error page to be the login
page again with an error parameter set as shown here:

<form-error-page>/login.do?error=true</form-error-page>

In the Login.jsp page, we can now sense the presence of this error request parameter, using standard
JSTL tags or any normal scriptlet-based mechanism, and conditionally display an error message at the
top of the page:

<c:if test="${not empty param.error}">
<tr><td> </td></tr>
<tr><td class="error-header2">Invalid Administrator ID or Password.

Please try again.</td></tr>
</c:if>

The login form will therefore be redisplayed to the user in the case of login errors with this additional
error message at the top.

Now let’s move on to discuss a few of the property maintenance components in the administration site
to complete our examination of the bigrez.com web application.

Property Maintenance Components
Table 4-3 lists the primary presentation-tier components responsible for maintenance of property infor-
mation in the administration site. Once a property is chosen using the PropertyList page, the user can
update five different types of information: main property information, room types in the property, rates
for a given room type, availability of a given room type, and the targeted offers for the property.

108

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 109

Chapter 4: Building an Example Web Application

Table 4-3: Property Maintenance Primary Components

Display Component Related Controller Component Form Object

PropertyList.jsp PropertyListController.java PropertyListForm.java

PropertyMain.jsp PropertyMainController.java PropertyMainForm.java

PropertyRooms.jsp PropertyRoomsController.java PropertyRoomsForm.java

PropertyRoom.jsp PropertyRoomController.java PropertyRoomForm.java

PropertyRates.jsp PropertyRatesController.java PropertyRatesForm.java

PropertyRate.jsp PropertyRateController.java PropertyRateForm.java

PropertyAvails.jsp PropertyAvailsController.java PropertyAvailsForm.java

PropertyAvail.jsp PropertyAvailController.java PropertyAvailForm.java

PropertyOffers.jsp PropertyOffersController.java PropertyOffersForm.java

PropertyOffer.jsp PropertyOfferController.java PropertyOfferForm.java

These maintenance components are intended to demonstrate proper use of the Spring MVC framework
across a variety of different form types and update requirements. As shown in the table, all of the display
JSP pages use a similarly named Controller class, and all pages use form objects to store data for display
and update. Consistent with the user web application, all relationships between these components are
defined in the administration site adminapp-servlet.xml Spring MVC configuration file. Tiles definitions
are placed in the tiles-config.xml file, as before.

The following sections examine selected pages in the administration site to highlight additional tech-
niques and best practices.

Property Main Form
The main property maintenance page, PropertyMain.jsp, is a standard HTML form page using a form
object and Controller class to process updates. As shown in Figure 4-6, the page presents all of the basic
property information for update by the user.

The PropertyMain.jsp display page uses the Spring MVC form tags and JSTL tags to create the HTML
form. No JavaScript field validation was employed in these pages, to keep them simple.

Form validation is performed by the validate() method in the form object in a manner similar to pre-
vious examples. The controller class, PropertyMainController, accepts the submitted form once it has
been validated and processes the changes in the onSubmit() method, as shown in Listing 4-3.

109

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 110

Chapter 4: Building an Example Web Application

Figure 4-6: Property main page.

Listing 4-3: PropertyMainController.java.

package com.bigrez.admin.web;

import java.util.logging.Level;
import java.util.logging.Logger;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.apache.commons.lang.StringUtils;
import org.springframework.beans.BeanUtils;
import org.springframework.validation.BindException;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;

import weblogic.logging.LoggingHelper;

import com.bigrez.domain.Property;
import com.bigrez.service.PropertyServices;

public class PropertyMainController extends SimpleFormController
{

private PropertyServices propertyServices;

110

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 111

Chapter 4: Building an Example Web Application

private PropertyMainForm propertyMainForm;
final Logger logger = LoggingHelper.getServerLogger();

@Override
protected void onBindOnNewForm(HttpServletRequest request,

Object command,
BindException errors)

throws Exception
{

logger.log(Level.INFO,
"PropertyMainController::onBindOnNewForm()");

PropertyMainForm form = (PropertyMainForm)command;
String id = form.getId();
Property prop = null;
if (StringUtils.isNotEmpty(id)) {

// specific property was chosen and passed to
// us, honor that choice
prop = propertyServices.

findPropertyByExternalIdentity(id);
request.getSession().setAttribute("currentProperty",

prop);
}
else {

// no property choice specified, use
// Property object in session
prop = (Property)request.getSession().

getAttribute("currentProperty");
}
// The form has copies of the property and address
// fields to avoid binding into the actual session
// version of the property object
BeanUtils.copyProperties(prop, form,

new String[]{"roomTypes","offers","address"});
BeanUtils.copyProperties(prop.getAddress(), form);
logger.log(Level.INFO,

"PropertyMainController::onBindOnNewForm() complete");
}

@Override
protected ModelAndView onSubmit(HttpServletRequest request,

HttpServletResponse response,
Object command,
BindException errors)

throws Exception
{

logger.log(Level.INFO,
"PropertyMainController::onSubmit(" + command + ")");

PropertyMainForm form = (PropertyMainForm) command;
// Copy the field values back into the session
// version of the property
Property prop = (Property)

request.getSession().getAttribute("currentProperty");
BeanUtils.copyProperties(form, prop, new String[]{"id"});

Continued

111

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 112

Chapter 4: Building an Example Web Application

Listing 4-3: PropertyMainController.java. (continued)

BeanUtils.copyProperties(form, prop.getAddress());

// update the property in the database
propertyServices.createOrUpdate(prop);

// re-fetch the entire Property lattice to
// update the session copy
Property updatedprop =

propertyServices.findPropertyByExternalIdentity(
prop.getExternalIdentity());

request.getSession().setAttribute("currentProperty",
updatedprop);

logger.log(Level.INFO,
"PropertyMainController::onSubmit(" + command +

") complete");
ModelAndView result =

super.onSubmit(request, response, command, errors);
result.addObject("success","true");
return result;

}

public PropertyServices getPropertyServices()
{

return propertyServices;
}

public void setPropertyServices(PropertyServices
pPropertyServices)

{
propertyServices = pPropertyServices;

}

public PropertyMainForm getPropertyMainForm()
{

return propertyMainForm;
}

public void setPropertyMainForm(PropertyMainForm
pPropertyMainForm)

{
propertyMainForm = pPropertyMainForm;

}
}

The pertinent portion of the adminapp-servlet.xml file is shown here:

<bean id="propertyMainController"
class="com.bigrez.admin.web.PropertyMainController">

<property name="formView" value="propertymain"/>
<property name="successView" value="redirect:propertymain.do"/>

112

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 113

Chapter 4: Building an Example Web Application

<property name="overridePropertyListView" value="redirect:propertylist.do"/>
<property name="bindOnNewForm" value="true"/>
<property name="commandName" value="propertyMainForm"/>
<property name="commandClass" value="com.bigrez.admin.web.PropertyMainForm"/>
<property name="propertyMainForm">

<bean class="com.bigrez.admin.web.PropertyMainForm"/>
</property>
<property name="sessionForm" value="true"/>
<property name="validator">

<bean class="com.bigrez.admin.web.PropertyMainForm"/>
</property>
<property name="propertyServices" ref="propertyServicesReference"/>

</bean>

Although the PropertyMainController is basically a straightforward implementation of the
SimpleFormController design pattern, with onBindOnNewForm() and onSubmit() methods performing
the key logic, there is one design decision worth examining in more detail. We’ve chosen to duplicate
property-related attributes in the PropertyMainForm object for use in the HTML form, copying data
between the Property domain object and the form as necessary, rather than placing a reference to the
current Property domain object in the form object and mapping form fields directly to nested attributes
in the domain object. The reason is fairly simple: We need to avoid corrupting the official session-based
copy of the Property object under certain error conditions.

Consider the following sequence of events:

1. The current Property domain object in the session is attached to the form object.

2. The user makes changes to the data on the HTML form, including a blanking out of the prop-
erty description.

3. Form data is posted back to the controller, bound into the form object and nested Property
object by the SimpleFormController infrastructure, but fails validation.

4. The user is presented with an error page, but chooses not to correct the error and instead
moves to a different page in the administration site.

We’re left with corrupt information in the Property domain object attached to the form, which hap-
pens to be the same object we have stored in the HttpSession as our official current property in the
administration site.

We could modify the Property domain class, and its nested Address class, to implement the Cloneable
interface and properly clone itself and its children using the clone() method. The onBindOnNewForm()
method could then clone the official Property domain object in the session and attach a clone to the form
object. A perfectly viable solution, perhaps, but a modification of this complexity in a domain object just
to satisfy a UI requirement seems awkward and counter-intuitive.

We chose to replicate the needed fields in the form object and avoid attaching the Property object to
the form, thereby avoiding all possibility of binding bad data into the official Property object. The
PropertyMainForm therefore contains a series of primitive attributes, as shown here:

private String id;
private String description;

113

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 114

Chapter 4: Building an Example Web Application

private String address1;
private String address2;
private String city;
private String stateCode;
private String postalCode;
private String phone;
private String imageFile;
private String features;

The PropertyMainController carefully copies data from the Property domain object to the form
attributes, and from the form attributes back to the Property object, using a Spring-provided utility class
called BeanUtils as shown in Listing 4-3.

Rate Maintenance Pages
The PropertyRates.jsp page displays a complete set of room types and rates available for the current
property, as shown in Figure 4-7. Users click on any one of the existing rate entries for a given room
type or on the link to create a new rate. The associated controller class, PropertyRatesController,
placed the needed room type and rate information in the PropertyRatesForm during onBindOnNewForm()
processing, and the page simply iterates and displays the list of room types and rates using JSTL forEach
and out tags.

Figure 4-7: Property rates page.

114

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 115

Chapter 4: Building an Example Web Application

The only tricky aspect worth examining here is the mechanism used to pass rate information for each
room type to the page. The RoomType domain object does not have a bidirectional relationship to its
child Rate domain objects. In other words, although Rate has a reference to its parent RoomType, the
RoomType class does not have a list of associated child Rate objects. The choices that led to this design are
discussed in Chapter 7. We cannot, therefore, simply attach a list of RoomType objects with their children
Rate objects to the PropertyRatesForm and be done. We decided to store the Rate objects in a separate
construct — we chose to use a Map keyed by room type identity — and find the rates for a given room
type in that construct during the display page processing.

The PropertyRatesForm therefore contains a Map for storing this information, and a helper method for
adding a list of Rate objects to the map, as shown in this partial listing:

public class PropertyRatesForm
{

private List<RoomType> roomTypes;
private Map<String,List<Rate>> ratesByRoomType;

...

public Map<String, List<Rate>> getRatesByRoomType()
{

return ratesByRoomType;
}

public void addRateListToMap(RoomType roomType, List<Rate> rates)
{

if (ratesByRoomType == null) {
ratesByRoomType = new HashMap<String,List<Rate>>();

}
ratesByRoomType.put(roomType.getExternalIdentity(), rates);

}
}

The onBindOnNewForm() method loops over the RoomType objects for the current Property and fetches
the current list of Rate objects for that room type, placing each List in the form’s Map using the helper
method, as shown here:

List<RoomType> roomTypes = prop.getRoomTypes();
for (RoomType room : roomTypes) {

List<Rate> rates = propertyServices.findRatesByRoomType(room);
form.addRateListToMap(room, rates);

}

Finally, the PropertyRates.jsp page loops over the list of RoomType objects and finds the associated list
of rates in the Map using a special syntax in the items attribute of the inner forEach loop tag.

Listing 4-4 presents the complete contents of the PropertyRates.jsp page for your examination.

115

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 116

Chapter 4: Building an Example Web Application

Listing 4-4: PropertyRates.jsp.

<%@ include file="/WEB-INF/jsp/common/Include.jspf" %>

<c:set var="property" value="${sessionScope.currentProperty}"/>

<table width="100%" cellspacing="5" cellpadding="0">
<tr>
<td class="page-header" align="right"><c:out

value="${property.description}"/> - Rates</td>
</tr>
<tr>
<td>

<table width="100%" cellspacing="0" cellpadding="3" border="0">
<c:forEach var="roomtype" items="${propertyRatesForm.roomTypes}">

<tr>
<c:url var="propertyroomurl" value="/propertyroom.do">

<c:param name="id"
value="${roomtype.externalIdentity}"/>

</c:url>
<td align="left">

<a class="table-link"
href="<c:out value=’${propertyroomurl}’/>">

<c:out value="${roomtype.description}"/>

</td>
</tr>
<tr>
<td class="table-data">

<c:out value="${roomtype.features}"/>
</td>

</tr>
<c:set var="id" value="${roomtype.externalIdentity}"/>
<c:forEach var="rate"

items="${propertyRatesForm.ratesByRoomType[id]}">
<tr>

<c:url var="propertyrateurl" value="/propertyrate.do">
<c:param name="roomId" value="${roomtype.externalIdentity}"/>
<c:param name="id" value="${rate.externalIdentity}"/>

</c:url>
<td><a class="table-link" href="<c:out value=’${propertyrateurl}’/>">

 $<c:out value=’${rate.price.amount}’/>/night from
<f:formatDate value="${rate.startDate}" pattern="MM/dd/yyyy"/> to
<f:formatDate value="${rate.endDate}" pattern="MM/dd/yyyy"/>

</td>
</tr>

</c:forEach>
<c:url var="newpropertyrateurl" value="/propertyrate.do">
<c:param name="roomId" value="${roomtype.externalIdentity}"/>
<c:param name="id" value=""/>

</c:url>
<tr>
<td> <a class="table-link" href="<c:out

116

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 117

Chapter 4: Building an Example Web Application

value=’${newpropertyrateurl}’/>">Create New Rate</td>
</tr>
<tr><td> </td></tr>

</c:forEach>
</table>

</td>
</tr>

</table>

Links on the PropertyRates.jsp page invoke the propertyrate.do action, mapped in the
adminapp-servlet.xml file to the PropertyRateController and associated form and page. The
resulting page, depicted in Figure 4-8, is used to create or modify a single Rate object for a given room
type. The controller is a standard SimpleFormController subclass, with code in the onBindOnNewForm()
and onSubmit() methods to handle HTTP GET and POST invocations, respectively. Examine the
downloadable source code if you are interested in the implementation details.

Figure 4-8: Property rate page.

Availability Maintenance Pages
We’re down to one final set of maintenance pages to examine: the PropertyAvails.jsp list page and
the PropertyAvail.jsp availability update page. These pages are designed to present the user with a
high-level view of room availability at the current property and provide a mechanism for modifying
that availability. Availability may be modified by closing out rooms on certain dates or by limiting the
number of rooms available on certain dates.

Availability in the bigrez.com system is stored in the Inventory table as a sparse series of rows linked
to room types. For example, if the Deluxe room type is not available for the date 11/15/2009, there will
be a row in the Inventory table linked to that room type having a date stamp of 11/15/2009 with a

117

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 118

Chapter 4: Building an Example Web Application

ROOMSAVAIL value of zero. A non-zero value for inventory indicates that the room is currently available,
but only a limited number of rooms remain. The term sparse in the previous sentence indicates that the
absence of a row in the database for a particular room type and date means no limit or problem with that
date instead of implying that there is no inventory available on that date.

Let’s look at the list page for availability, PropertyAvails.jsp. As shown in Figure 4-9, the availability
list page presents the user with a high-level view of availability over a nine-month period, providing
counts of closed days (days with zero inventory) and days with some control (either closed or limited
remaining inventory).

Figure 4-9: Availability list page.

This display represents a great deal of information and a fair number of calculations, so we’ve chosen to
implement the business logic required to collect all of these counts as a session bean façade that returns
a set of value objects. Consistent with other pages in the site requiring complex value objects for display,
the controller class responsible for preparing the form object, in this case PropertyAvailsController,
invokes the proper calculation method on the session bean and places the list of AvailabilitySummary
objects in the PropertyAvailsForm object for display by the page, as shown here:

protected void onBindOnNewForm(HttpServletRequest request,
Object command, BindException errors)

throws Exception
{

PropertyAvailsForm form = (PropertyAvailsForm) command;
Property prop = (Property) request.getSession().getAttribute("currentProperty");
if (prop != null) {

118

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 119

Chapter 4: Building an Example Web Application

String startDateAsString = form.getStartDate();
Date startDate = new Date();
if (StringUtils.isNotEmpty(startDateAsString)) {

try {
startDate = DateHelper.parse3(startDateAsString);

}
catch (Exception ignore) {}

}
int numberOfMonths = 9;
List<AvailabilitySummary> availsummaries =

reservationServices.calculateAvailabilitySummary(prop, startDate,
numberOfMonths);

form.setAvailabilitySummaries(availsummaries);
form.setStartDate(DateHelper.format3(startDate));
form.setNumMonths(numberOfMonths);

}
return;

}

Straightforward JSTL forEach and out tags are used to render this availability information to the page
as shown in Figure 4-9.

This page also contains hyperlinks designed to drill in on a given month to view the details for the month
and edit the availability as well as links to scroll forward and backward in time. Examine the source
code for PropertyAvails.jsp in the downloadable example code to see how these links are created in
the page.

For this discussion, we’ll simply state that the user clicks a hyperlink on the summary page, which pro-
vides the target controller class, PropertyAvailController, with the parameters necessary to prepare
the proper information in the form to forward to the maintenance page, PropertyAvail.jsp, depicted in
Figure 4-10. This page uses the form object PropertyAvailForm, which contains date attributes used for
navigation and a List of String values representing the inventory values for each day in the month:

private String roomId;
private RoomType roomType;
private List<String> availability;
private String startDate;
private String editDate;

The PropertyAvailController.onBindOnNewForm() method prepares the PropertyAvailForm object by
calling a service method provided by the business layer to fetch a list of Integer values. These values
represent the availability information for the specific room type and date range, and are placed in the
form as shown here:

protected void onBindOnNewForm(HttpServletRequest request,
Object command, BindException errors)

throws Exception
{

PropertyAvailForm form = (PropertyAvailForm) command;
Property prop = (Property) request.getSession().getAttribute("currentProperty");
if (prop != null) {

RoomType roomType =
propertyServices.findRoomTypeByExternalIdentity(form.getRoomId());

119

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 120

Chapter 4: Building an Example Web Application

form.setRoomType(roomType);
String editDateAsString = form.getEditDate();
Date editDate = DateHelper.parse3(editDateAsString);
Date endDate = DateHelper.addMonths(editDate, 1);
List<Integer> availabilityValues =

reservationServices.calculateAvailability(roomType, editDate, endDate);
List<String> availability = new ArrayList<String>();
for (Integer value : availabilityValues) {

if (value == ReservationServices.UNCONTROLLED) {
// service returns -1 values for missing days, we show as blank
availability.add("");

}
else {

availability.add(value.toString());
}

}
form.setAvailability(availability);

}
return;

}

Figure 4-10: Availability maintenance page.

The returned list will contain an entry for every day in the date range, with special UNCONTROLLED values
present for days that do not have any Inventory row in the database. We use a list of String objects in
the form and convert these UNCONTROLLED value rows into empty strings in the form’s list of values.

120

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 121

Chapter 4: Building an Example Web Application

The PropertyAvail.jsp page presents the list of availability counts and allows the user to add, delete, or
modify the existing values. Mapping HTML input fields to each of the values in the form’s availability
list requires a JSTL forEach iterator with the varStatus attribute included to keep track of the index for
the current row. As shown here, the status.count value can then be used both for displaying the day
number in front of the input field and for indexing within the form’s availability list:

<c:forEach var="av" items="${propertyAvailForm.availability}" varStatus="status">
<tr>
<td width="50%" class="page-label">

Day <c:out value="${status.count}"/>:</td>
<td>

<form:input path="availability[${status.count-1}]" size="5"></form:input>
</td>

</tr>
...

</c:forEach>

Examine the full source listing in the downloadable example program to see how this status.count
value is also used to create multiple columns on the display page.

The user makes changes to the values on the page and submits the form back to the
PropertyAvailController using an HTTP POST request. The SimpleFormController infrastruc-
ture calls validate() in the PropertyAvailForm where we check to make sure the entered values are
either empty, indicating an uncontrolled day, or numeric. Once validation succeeds the onSubmit()
method in our controller is invoked to process the form submission using the code shown here:

protected ModelAndView onSubmit(HttpServletRequest request,
HttpServletResponse response, Object command,
BindException errors)

throws Exception
{

PropertyAvailForm form = (PropertyAvailForm) command;
RoomType roomtype = form.getRoomType();
Date startDate = DateHelper.parse3(form.getEditDate());
List<String> enteredStrings = form.getAvailability();
List<Integer> availableRoomsByDay = new ArrayList<Integer>();
for (String enteredString : enteredStrings) {

if (StringUtils.isEmpty(enteredString)) {
availableRoomsByDay.add(new Integer(ReservationServices.UNCONTROLLED));

}
else {

availableRoomsByDay.add(new Integer(enteredString));
}

}
reservationServices.updateInventory(roomtype, startDate, availableRoomsByDay);
ModelAndView result = super.onSubmit(request, response, command, errors);
// help list page stay where it was before coming here
result.addObject("startDate", form.getStartDate());
return result;

}

We simply convert our list of String objects back into a list of Integer objects, including UNCONTROLLED
values for days with no control, and send the resulting list to the service for processing. What could be

121

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 122

Chapter 4: Building an Example Web Application

easier? It is up to the business service to decide how to implement this updateinventory() mechanism.
It may delete all existing Inventory rows for the date range in question and re-insert the appropriate
rows for any controlled days we pass to it, or it may compare the existing Inventory rows to our list
and patch the database by making only the necessary changes. As presentation-tier developers we are not
overly concerned about the implementation as long as it works.

Note that before returning the ModelAndView result our onSubmit() method adds the start date from the
incoming form to the result using the key startDate:

ModelAndView result = super.onSubmit(request, response, command, errors);
// help list page stay where it was before coming here
result.addObject("startDate", form.getStartDate());
return result;

We are doing this because the successView value for this controller uses a redirect: prefix to send the
user back to the PropertyAvails.jsp page, depicted in Figure 4-9, and we want to pass the start date
value back to that page. That way the PropertyAvails.jsp page will display the same date range as it
did before the user clicked on a particular month to come to the maintenance page. Recall that objects
placed on the ModelAndView object will be included in the query string returned on the HTTP redirect,
so the target controller and page will have the start date value available. We talked about this redirect:
plus ModelAndView result object trick earlier in this chapter and promoted it as a best practice. Fortunately
we also found a use for it in bigrez.com so you can see how it works!

Administration Controller Form View Overrides
One final topic and we’re done with our discussion of the administration web site components.

Like the SelectRoomTypeController in the user web application, all of our property maintenance con-
trollers need to be careful that a user doesn’t navigate to a controller dependent on a Property object in
the HttpSession without first selecting a Property from the property list page. We’re careful to disable
the links in the navigation bar in the header using conditional code that checks for a selected property in
the HttpSession, but the user might save a bookmark to one of our detail pages and thereby invoke a
controller without a Property object in the session.

Our administration controllers are SimpleFormController subclasses, as in the user site, so we have the
same problem: the onBindOnNewForm() method gives us no mechanism to override the formView value
defined in the configuration file in order to send the user somewhere else if no Property is available
in the session. Identical to the solution we adopted for the SelectRoomTypeController in the user site,
we’ll override the default behavior of the showForm() method in all of our administration controllers to
check for the presence of a Property object in the session and return a special ModelAndView object if it is
not present. An example from the PropertyAvailsController is shown here:

protected ModelAndView showForm(HttpServletRequest request,
HttpServletResponse response,
BindException errors, Map controlModel)

throws Exception
{

Property prop = (Property) request.getSession().getAttribute("currentProperty");
if (prop == null) {

return new ModelAndView(getOverridePropertyListView());
}

122

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 123

Chapter 4: Building an Example Web Application

return super.showForm(request, response, errors, controlModel);
}

The overridePropertyListView view name is injected by the configuration file, to avoid hard-
coding it in the controller, and is set for all controllers to redirect to the propertylist.do action. That’s
all there is to it!

Chapter Review
This chapter examined the construction process for the bigrez.com example application and presented
a detailed discussion of selected presentation-tier components. Key concepts such as navigation control,
presenting the progress through the reservation process, form validation techniques, handling errors,
and securing the administration site were included in the discussion.

In the next chapter, we talk about packaging and deploying web applications in WebLogic Server and
begin walking through the packaging and deployment of the bigrez.com web application components.

123

Patrick c04.tex V3 - 09/18/2009 12:16pm Page 124

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 125

Packaging and Deploying
WebLogic Web Applications

This chapter discusses the steps required to package and deploy a WebLogic Server web applica-
tion. Consistent with the intermediate to advanced nature of this book, we assume that you have
some knowledge of the Java EE specification and the required elements in a well-structured web
application. Our emphasis will be on the techniques applicable to a WebLogic Server deployment
rather than a generic Java EE environment. We also assume a basic level of experience with
the Ant build tool provided by the Apache Software Foundation. See the Ant home page at
http://jakarta.apache.org/ant for online documentation.

Figure 5-1 presents the basic process for packaging and deploying a web application using
WebLogic Server. The basic steps in the process are as follows:

1. Create web.xml and weblogic.xml descriptor files.

2. Organize the web application components in the proper directory structure.

3. Precompile JSP pages and place the generated class files in the web application structure.

4. Deploy the application to WebLogic Server as an exploded or archived web application.

The rest of this chapter discusses each of the steps in this process and the tools available in WebLogic
Server to perform each activity.

Packaging Web Applications
You package web applications for deployment in WebLogic Server by creating the correct web
application directory structure and placing in that structure the view components, images, class
libraries, and descriptor files required for the application. In this section, we briefly review the struc-
ture of a standard Java EE web application, examine key elements in the web.xml and weblogic.xml
descriptor files, and present a build process for creating web applications using the Ant utility.

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 126

Chapter 5: Packaging and Deploying WebLogic Web Applications

Organize Application
Components

(Option 1) (Option 2)

webapp\
 files
 WEB-INF\
 ...

Precompile JSP Pages

Deploy Exploded Web App
to WebLogic Server

Create Archive of
Web App Structure

webapp.war

Deploy Archived Web App
to WebLogic Server

Create Descriptors

web.xml
weblogic.xml

Figure 5-1: Basic packaging and deployment process.

Web Application Directory Structure
The standard web application directory structure, depicted in Figure 5-2, defines the proper location
for all of the components required for the application. Viewable components, such as JSP pages,
static HTML pages, images, and other content intended for viewing by client browsers, are normally
placed directly below the root directory in the structure. Internal files, such as Java classes, libraries,
and descriptors, are placed in the WEB-INF directory. If access to JSP pages always utilizes controllers
or other view-rendering components, the JSP pages themselves may be placed in a subdirectory of
the WEB-INF directory, as shown in Figure 5-3, to enhance security. Browsers cannot access JSP pages
or any other files placed within the WEB-INF directory structure, so don’t place images, style sheets,
or any other files referred to on your pages beneath WEB-INF if the browser will need to access them
directly.

webapp

.html files

.jsp files

web.xml
WEB-INF
Images, style sheets, javascript files, etc.

Standard web app descriptor file

weblogic.xml WebLogic Server–specific descriptor file

.tld files, .xml files Other descriptors and configuration files

classes
Web application classes in package hierarchy .class files

lib
Archived utility and client libraries.jar files

Figure 5-2: Standard web application directory structure.

Hyperlinks, include directives, and c:url custom tags in the view pages must reflect any directory
structure present in the web application, so it is important to make these organizational decisions
early in the development process. Recognize that a good hierarchical organization allows the use

126

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 127

Chapter 5: Packaging and Deploying WebLogic Web Applications

of directories in the url-pattern descriptor elements to better configure security, servlet mapping,
filter mapping, and other features.

webapp

.html files

web.xml
WEB-INF
Images, style sheets, javascript files, etc.

Standard web app descriptor file
weblogic.xml WebLogic Server–specific descriptor file
.tld files, .xml files Other descriptors and configuration files
classes
lib
jsp

.jsp files JavaServer Pages hidden from direct browser viewing

Figure 5-3: Alternate web application directory structure.

When organizing your web applications, be aware of the important difference between separate
directories in a single web application and separate web applications:

❑ Separate directories in the same web application represent a purely organizational structure.
Components in all directories of a web application share the same HttpSession data, class-
loader, WEB-INF/lib libraries, application-scoped variables, authentication information,
servlet and JSP configuration, and all parameters defined at the web application level in the
web.xml or weblogic.xml descriptors.

❑ Separate web applications may look similar to separate directories from the point of view of
the user, differing only by the context path in the URL (for example, /user/main.jsp ver-
sus /admin/main.jsp). In the application server, however, separate web applications are
treated much differently than separate directories in the same web application. Each web
application will use a different classloader, need its own copies of WEB-INF/lib libraries,
have its own set of descriptor files and application-scoped variables, and store separate
HttpSession data for the user. The only information shared by both web applications,
essentially, is authentication information. Even this can be scoped to each web application
separately, if desired, creating completely independent applications.

Generally speaking, you should use separate directories in a single web application when the direc-
tories represent different areas of the same site, the directories share the same WEB-INF/lib libraries
and descriptors, and you need a single HttpSession preserved across the directories. Use separate
web applications when there is a strong need to isolate the sections of the overall application from
each other.

One caveat worth mentioning here: WebLogic Server includes a session sharing feature that allows
you to configure two or more web applications located in the same enterprise application to share
HttpSession data for a user. Enable session sharing by including the <wls:sharing-enabled>
element in the weblogic-application.xml file, enabling this feature for the enterprise application,
and then enabling it in each participating web application in its individual weblogic.xml file using
the <wls:sharing-enabled> element. This session-sharing feature gives you the isolation benefits
of using multiple web applications while sharing HttpSession data between the applications, a
potent combination worth considering for large applications.

127

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 128

Chapter 5: Packaging and Deploying WebLogic Web Applications

Best Practice
Use separate directories in a single web application to share all context and session
information automatically. Choose separate web applications to provide the max-
imum isolation between the sections of the overall application. Consider using
the WebLogic Server session-sharing feature to share HttpSession data between
web applications in the same enterprise application if this choice simplifies your
architecture.

The bigrez.com application uses two separate web applications, user and admin, rather than a
single web application with separate directory structures. We made this choice because the two
sites are intended for completely different sets of users and have different security and auditing
rules, and because there is no requirement to share HttpSession data across the two sites.

Internal Components
The WEB-INF directory contains all of the internal components, including configuration and sup-
porting files for the application. Files located in WEB-INF are not accessible directly by the client
browser.

As described in Chapter 1, any Java class files or resource files located in the WEB-INF/classes
directory are loaded automatically by the web application classloader and made available to all
components in the web application. In a similar manner, all Java archive (.jar) files placed in
WEB-INF/lib are loaded automatically and made available to the web application. Note that class
files located in /classes are loaded before archives in /lib, an important distinction if individual
classes are defined in both locations.

Class files located in WEB-INF/classes are loaded before archives in WEB-INF/lib. If the same class
is located in both places, the version in WEB-INF/classes will be used in the application.

The remaining files in WEB-INF are descriptor files used by the container to deploy and configure
the web application properly at runtime. These files are discussed in the following section.

Web Application Descriptor Files
WebLogic Server uses two primary descriptor files to deploy the web application properly: web.xml
and weblogic.xml. See the WebLogic Server documentation at Link 5-1 and Link 5-2 for a com-
plete listing of the elements and structure of web.xml and weblogic.xml, respectively. These link
references can be found in the book’s online Appendix at http://www.wrox.com/.

In this section we examine the descriptor files in bigrez.com to help you understand key elements
and best practices related to these files.

Standard web.xml Descriptor File
The web.xml descriptor file is defined by the Java EE specification and is used by WebLogic Server
to control basic configuration and deployment of the application. Table 5-1 outlines the high-level
sections of the web.xml file and lists the key elements used in each section.

128

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 129

Chapter 5: Packaging and Deploying WebLogic Web Applications

Table 5-1: Sections of the web.xml Descriptor File

web.xml Section Purpose and Key Top-Level XML Elements

Deployment
attributes

Defines graphics and descriptions used by deployment and management tools.
<icon>, <display-name>, <description>, <distributable>

Context
parameters

Defines parameters and values placed in a web application context, making
them available in application components.
<context-param>

Filter information
and mapping

Provides deployment information, name, class, initialization parameters, and
URL mappings for filters in the application.
<filter>, <filter-mapping>

Application
listeners

Defines listener classes used to intercept application events.
<listener>

Servlet
information and
mapping

Provides deployment information, name, class, initialization parameters,
security roles, and URL mappings for servlets in the application.
<servlet>, <servlet-mapping>

Session
configuration

Defines the timeout value for HttpSession information.
<session-config>

MIME mapping Defines MIME types for file extensions.
<mime-mapping>

Welcome pages Provides a list of default pages for unspecified page requests.
<welcome-file-list>

Error pages Defines the error page to be displayed in case of specific HTTP error code or
Java exception.
<error-page>

JSP tag libraries Identifies and maps tag library definition (.tld) file to a specific URI name.
<taglib>

Resource
references

Defines an external resource available in the web application.
<resource-env-ref>, <resource-ref>

Security
information

Defines the security authorizations required to access sets of web pages, the
technique used to authenticate a user, and security roles valid in the
application.
<security-constraint>, <login-config>, <security-role>

Environment
entries

Defines a data value available in the environment.
<env-entry>

EJB references Defines EJB components available to web application components using
environment lookups.
<ejb-ref>, <ejb-local-ref>

129

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 130

Chapter 5: Packaging and Deploying WebLogic Web Applications

The bigrez.com application consists of two separate web applications, user and admin. Each appli-
cation has a web.xml descriptor file containing the elements required for proper operation of the
web components in the application. Please download these files from http://www.wrox.com/ and
examine them before proceeding.

We’ll now walk through the web.xml file for the administration site and highlight some sections
worth noting in that file. We won’t examine the web.xml file for the user site because it contains a
subset of the elements in the administration version.

The first section in web.xml defines a filter used to log all activity on the administration site:

<!-- define auditing filter to log all admin activity -->
<filter>

<filter-name>AuditFilter</filter-name>
<filter-class>com.bigrez.web.AuditFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>AuditFilter</filter-name>
<url-pattern>*.do</url-pattern>

</filter-mapping>

The AuditFilter is invoked for all requests matching the URL pattern *.do. The doFilter()
method in the AuditFilter class simply logs the request and its parameters to the standard logging
facility and invokes the next filter, if any, in the chain:

public void doFilter(ServletRequest request,
ServletResponse response, FilterChain chain)

throws IOException, ServletException
{

HttpServletRequest req = (HttpServletRequest) request;
StringBuffer auditentry = new StringBuffer();
auditentry.append(req.getRemoteAddr() + " " + req.getRemoteUser() +

" " + req.getRequestURI());

Enumeration<String> e = req.getParameterNames();
if (e.hasMoreElements()) {

while (e.hasMoreElements()) {
String name = e.nextElement();
auditentry.append(" " + name + "=" + req.getParameter(name));

}
}

logger.log(Level.INFO, auditentry.toString());

// continue processing any other filters
chain.doFilter(request, response);

}

130

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 131

Chapter 5: Packaging and Deploying WebLogic Web Applications

The next section of the administration web.xml file configures the Spring MVC DispatcherServlet
used by the application and provides the required startup and mapping information:

<servlet>
<servlet-name>adminapp</servlet-name>
<servlet-class>

org.springframework.web.servlet.DispatcherServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>adminapp</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

Based on this snippet from the web.xml file, the DispatcherServlet will be loaded when the
application starts up, will intercept and process all URLs matching the *.do pattern, and will
locate and read the Spring MVC configuration file that defines all controllers, handlers, view
resolvers, and other presentation-layer components in the web application. In our case, because the
DispatcherServlet is being registered using a <servlet-name> of adminapp, the configuration file
will be named adminapp-servlet.xml. We discussed the contents of this Spring MVC configuration
file in detail in Chapter 4 and will not cover it here.

The bigrez.com user web application adds an additional component in its version of the web.xml
file, InitializationListener, a servlet context event listener class used to preload selected infor-
mation in to the web application context for use in drop-down lists in the display pages.

We’ve used a listener class as an initialization component rather than defining a server-level
StartupClass object for a number of reasons:

❑ A server-level startup class must be defined in the system classpath for the class to be avail-
able during server startup. Application classes should generally not be loaded in the system
classpath because this practice inhibits redeployment of the application and is the root
cause of many NoClassDefFoundError exceptions.

❑ A class located in the system classpath can use only classes that are available in that class-
loader. This restriction often necessitates moving additional classes to the system class-
path, which in turn uses other classes that must also be promoted to the system classpath, a
vicious cycle that is difficult to break.

❑ Classes present in the system classpath cannot be deployed automatically by WebLogic
Server to managed servers in the domain. The classes must be manually copied to each
server in the domain and made available in the system classpath during server startup.

Servlet context event listener classes are a much better alternative for initialization components
because they avoid the system classpath issues completely, have visibility to all classes defined or
available in the web application, and are reinitialized whenever their hosting web application is
redeployed. The web application containing the initialization listener class may also be configured

131

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 132

Chapter 5: Packaging and Deploying WebLogic Web Applications

to always deploy after any EJB components in the same overall application, thereby allowing the
initialization servlet to access the EJB components reliably.

Best Practice
Use servlet context event listener classes as initialization components rather than
defining server-level StartupClass classes. Listener-based initialization classes
reload when the web application is redeployed and avoid the problems associated
with classes located in the system classpath.

In the next section of web.xml we define the default welcome page, propertylist.do, and the error
page to display when an HTTP 404 or 500 error code falls out of a controller or JSP invocation:

<welcome-file-list>
<welcome-file>/propertylist.do</welcome-file>

</welcome-file-list>

<error-page>
<error-code>404</error-code>
<location>/WEB-INF/jsp/NotFoundPage.jsp</location>

</error-page>

<error-page>
<error-code>500</error-code>
<location>/WEB-INF/jsp/ErrorPage.jsp</location>

</error-page>

Note that although the welcome page definition can use the *.do syntax, the error pages must
invoke the corresponding display JSP pages directly to avoid losing the error information in the
HTTP request.

The administration site employs standard Java EE security to control access to pages in the applica-
tion, and the next few sections of web.xml contain the elements necessary to enable and configure
this security. These elements, <security-constraint>, <login-config>, and <security-role>,
are explained in detail in Chapter 4 and are not discussed here. The login page, Login.jsp, is also
listed and described in Chapter 4.

The final section of the administration site web.xml file contains <ejb-local-ref> elements required
to map EJB reference names to actual session beans in the application, as shown here.

<ejb-local-ref>
<ejb-ref-name>ejb/PropertyServices</ejb-ref-name>
<local>com.bigrez.service.PropertyServices</local>
<ejb-link>PropertyServicesImpl</ejb-link>

</ejb-local-ref>

132

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 133

Chapter 5: Packaging and Deploying WebLogic Web Applications

<ejb-local-ref>
<ejb-ref-name>ejb/ReservationServices</ejb-ref-name>
<local>com.bigrez.service.ReservationServices</local>
<ejb-link>ReservationServicesImpl</ejb-link>

</ejb-local-ref>

<ejb-local-ref>
<ejb-ref-name>ejb/ProfileServices</ejb-ref-name>
<local>com.bigrez.service.ProfileServices</local>
<ejb-link>ProfileServicesImpl</ejb-link>

</ejb-local-ref>

With these mappings in place, the EJB session beans required by the Spring MVC controllers can be
injected using simple pairs of elements in the adminapp-servlet.xml file as shown in this example.

<bean id="propertyServicesReference"
class="org.springframework.jndi.JndiObjectFactoryBean">

<property name="jndiName" value="java:/comp/env/ejb/PropertyServices"/>
</bean>

<bean id="propertyListController"
class="com.bigrez.admin.web.PropertyListController">

...
<property name="propertyServices" ref="propertyServicesReference"/>

</bean>

The JndiObjectFactoryBean utility class performs a lookup in the JNDI tree for the specified name
and will find an instance of the correct PropertyServicesImpl session bean using that name due to
the <ejb-local-ref> mapping element in the web.xml file. The propertyServicesReference bean
will then be available for injection into controllers.

This multi-step configuration process can be a little confusing at first, but once you have the refer-
ences in place, it is very easy to make services available to controllers using simple injection. This
technique also avoids resorting to JNDI lookups or locator patterns within the controller code.

That’s all there is to the administration site web.xml file.

weblogic.xml Descriptor File
The weblogic.xml descriptor file is a WebLogic Server–specific file used to control WebLogic
Server–specific features and provide extensions to the basic configuration and deployment fea-
tures in web.xml. Table 5-2 outlines the high-level sections of the weblogic.xml file and lists the key
elements used in each section. See the online documentation at Link 5-2 for a complete listing.

The weblogic.xml descriptors for both sites in bigrez.com require only a handful of elements to
configure their respective web applications properly. Listing 5-1 presents the administration site
version of this file.

133

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 134

Chapter 5: Packaging and Deploying WebLogic Web Applications

Table 5-2: Sections of the weblogic.xml Descriptor File

weblogic.xml Section Purpose and Key Top-level XML Elements

Deployment attributes Defines information used by deployment and management tools.
<description>, <weblogic-version>

Security role/principal
mapping

Assigns specific principals in the security realm to a role defined in the
web.xml descriptor, supplementing any realm assignments.
<security-role-assignment>, <run-as-role-assignment>

Resource references Provides the physical location (JNDI name) of resources and EJB
components declared in the web.xml file using <resource-ref>,
<ejb-ref>, and <ejb-local-ref> elements.
<reference-descriptor>

Message destination
references

Provides the physical location (JNDI name) and initial context factory
for message destinations declared in the web.xml file.
<message-destination-descriptor>

Session configuration Defines detailed HttpSession configuration parameters such as
persistence technique, cookie name, and so on.
<session-descriptor>

JSP configuration Defines parameters for JSP compilation.
<jsp-descriptor>

Container configuration Defines miscellaneous parameters controlling container behavior for
forwards and HTTP redirects. Also defines how frequently servlets and
resources are checked and reloaded, if necessary.
<container-descriptor>

Character set
parameters

Defines character set mappings for incoming request data.
<charset-params>

Directory mapping
information

Defines alternate locations for files matching specific URL patterns.
<virtual-directory-mapping>

URL matching class Defines the custom class used to perform URL pattern matching.
<url-match-map>

Security permission Specifies a single security permission associated with the Java SE
sandbox.
<security-permission>

Context root
information

Defines the context root for the web application. Used when the web
application is not deployed in an enterprise application (.ear) file with
an application.xml file defining this value.
<context-root>

134

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 135

Chapter 5: Packaging and Deploying WebLogic Web Applications

weblogic.xml Section Purpose and Key Top-level XML Elements

Work manager
configuration

Specifies a custom work manager for the entire web application.
<wl-dispatch-policy>

Servlet configuration Defines principals to be used during servlet initialization, execution,
and destruction. May also specify execute queue used for a servlet.
<servlet-descriptor>

Work manager
definition

Defines a web application–scoped work manager along with its request
class and any constraints.
<work-manager>

Logging configuration Defines logging settings for this web application independent of server
settings.
<logging>

Library reference
configuration

Defines library modules required by the web application.
<library-ref>

FastSwap configuration Defines settings for the FastSwap class-reloading feature and enables it
for this web application.
<fast-swap>

Listing 5-1: Administration site weblogic.xml descriptor file.

<?xml version="1.0" encoding="UTF-8"?>
<wls:weblogic-web-app

xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://www.oracle.com/technology/weblogic/weblogic-web-

app/1.0/weblogic-web-app.xsd">

<wls:weblogic-version>10.3</wls:weblogic-version>

<wls:session-descriptor>
<wls:persistent-store-type>

REPLICATED_IF_CLUSTERED</wls:persistent-store-type>
</wls:session-descriptor>

<wls:jsp-descriptor>
<wls:keepgenerated>true</wls:keepgenerated>
<wls:page-check-seconds>1</wls:page-check-seconds>
<wls:precompile>false</wls:precompile>
<wls:precompile-continue>false</wls:precompile-continue>
<wls:debug>true</wls:debug>

Continued

135

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 136

Chapter 5: Packaging and Deploying WebLogic Web Applications

Listing 5-1: Administration site weblogic.xml descriptor file. (continued)

</wls:jsp-descriptor>

<wls:security-role-assignment>
<wls:role-name>bigrezadmin</wls:role-name>
<wls:principal-name>BigRezAdministrators</wls:principal-name>

</wls:security-role-assignment>

</wls:weblogic-web-app>

We’ve defined only four sections in this file, and within these sections only a small number of ele-
ments.

The <weblogic-version> section simply identifies the target version of WebLogic Server for infor-
mational purposes only.

The <session-descriptor> section contains a single element defining the store type to be
REPLICATED_IF_CLUSTERED. If this application is deployed in a single-server environment, the
store type will default to MEMORY. If the application is deployed in a clustered environment, the
user HttpSession data will be replicated across the servers in the cluster using the standard
in-memory-based replication.

The <jsp-descriptor> section contains some parameters defining both non-default values and
values we must revisit and modify when making a production release. The <page-check-seconds>
parameter, for example, should be set to — or allowed to default to — the value –1 in production to
disable all page checking and recompilation.

The <security-role-assignment> section maps the roles defined in the web.xml file to principals,
either groups or users, in the WebLogic Server security realm defined in the domain. This topic is
discussed in more detail in Chapters 4 and 11.

The following list identifies a number of the sections we did not require in the weblogic.xml file and
explains our rationale for excluding them to give you an idea about when they might be required in
your development efforts:

Context Root Information We will be deploying the user and admin web applications in an
enterprise application (.ear) file. The context root will be defined in the application.xml file.

Resource References EJB components can be injected into our web application com-
ponents based solely on the ejb-local-ref entries in the web.xml file. No matching
ejb-reference-description elements are required here.

Directory Mapping Information Images are placed in the user and admin web applications
rather than mapped to a separate directory using this section.

Dispatch Policy and Work Manager Information Our web application will use the default work
manager in the environment rather than targeting a special version.

Logging Configuration We have no need to supplement logging performed across the entire
WebLogic Server runtime instance with special logging for our web application.

136

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 137

Chapter 5: Packaging and Deploying WebLogic Web Applications

FastSwap Information We are not making use of the new FastSwap capability in our example
application. This topic is discussed in Chapter 14 when we describe development environment
best practices.

Most web applications require very little configuration information in the weblogic.xml file because
the default values for weblogic.xml are often sufficient.

Precompiling JSP Components
At some point in the packaging process you have a decision to make: Should JSP pages in the appli-
cation be processed and compiled by the server when the page is first accessed by a user, or should
all pages be precompiled before deploying the application? Precompiling improves site perfor-
mance and ensures that all JSP pages in the site compile before deployment takes place. Without
precompiling the JSP pages, syntax errors in scriptlet code and custom-tag elements will not be
caught until a user accesses the page.

Best Practice
All production and test deployments should include precompiled JSP pages.
Development deployments intended for use on the developer’s workstation may
use precompiled pages or on-the-fly compilation.

Precompiling of JSP pages is one of the many tasks accomplished by the WebLogic Server appli-
cation compiler, weblogic.appc. This utility is capable of compiling application components and
building enterprise application (.ear) files, EJB archive (.jar) files, web application (.war) files, and
exploded versions of these files, in addition to performing JSP precompilation.

Because weblogic.appc is such a key part of the overall build process, including the incorporation of
EJB components, we discuss the use of weblogic.appc in the bigrez.com build process in Chapter
8, after we’ve covered the rest of the application components.

You can use weblogic.appc to validate the descriptors and precompile the JSP files in a web appli-
cation by invoking the utility and passing it the root directory for the application:

java -classpath ... weblogic.appc src/web-user

Integrating weblogic.appc in your build.xml file is accomplished using an Ant task, wlappc. The
build.xml file for the Chapter 2 example application includes a jspc-webapps target for precom-
piling the JSP files in the three web applications contained in that example using the wlappc task:

<taskdef name="wlappc" classname="weblogic.ant.taskdefs.j2ee.Appc"
classpathref="dev.classpath"/>

<target name="jspc-webapps">
<!-- Pre-compile webapp1 JSP pages to src/web1/WEB-INF/classes -->

137

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 138

Chapter 5: Packaging and Deploying WebLogic Web Applications

<wlappc source="${srcweb1}"
classpathref="dev.classpath" verbose="true">

</wlappc>
<!-- Pre-compile webapp2 JSP pages to src/web2/WEB-INF/classes -->
<wlappc source="${srcweb2}"

classpathref="dev.classpath" verbose="true">
</wlappc>
<!-- Pre-compile webapp3 JSP pages to src/web3/WEB-INF/classes -->
<wlappc source="${srcweb3}"

classpathref="dev.classpath" verbose="true">
</wlappc>

</target>

This target will scan the web application directories for all files ending in .jsp and perform the
same servlet generation and compilation steps performed by the application server at runtime. The
resulting Java source files and classes are placed in the /WEB-INF/classes directory and can be
deployed to this same location in the exploded or archived web application. The weblogic.appc
compiler requires the same descriptor files, library archive files, and Java class files as the runtime
container requires. The WEB-INF directory must therefore contain the appropriate descriptors, and
the classpath for weblogic.appc or wlappc must include all required directories and archive files.

Note that the generated code in the precompiled class is very picky about the timestamp of the
associated JSP file. If the JSP file in the deployed web application is older or newer than the file
used to create the precompiled class, the precompiled class will be ignored at runtime, and the
normal on-the-fly JSP compilation will occur. To avoid this problem, be careful to preserve the
file timestamp when copying JSP files from the area used to create the precompiled classes to an
exploded application structure or staging area.

If you want to avoid all possibility of recompiling JSP pages within the running server, consider
replacing the default servlet that handles JSP pages, JSPServlet, with the JSPClassServlet
handler servlet. JSPClassServlet will find and execute precompiled JSP classes located in the
WEB-INF/classes directory of your web application, but will not check the underlying JSP pages
for changes or timestamp differences, nor will it ever compile or recompile a page. In fact, you can
eliminate the JSP pages completely in the deployed application — all you need are the precompiled
class files!

To replace the normal JSPServlet handler with the JSPClassServlet, register the new servlet
in your web.xml file and map it to all JSP pages using entries similar to the following code
snippet:

<servlet>
<servlet-name>JSPClassServlet</servlet-name>
<servlet-class>weblogic.servlet.JSPClassServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>JSPClassServlet</servlet-name>
<url-pattern>*.jsp</url-pattern>

</servlet-mapping>

138

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 139

Chapter 5: Packaging and Deploying WebLogic Web Applications

This registration and mapping of JSPClassServlet will override the default mapping of JSP pages
to JSPServlet and eliminate the compiling of JSP pages in your running server.

Best Practice
Replace the normal JSPServlet with the JSPClassServlet when deploying to
test and production environments. JSPClassServlet eliminates the potential
for page recompilation and removes the need for a Java compiler in the running
environment.

There is one additional best practice to discuss related to precompiling JSP pages. It is a rather
mundane recommendation, but it can be costly if you do not follow it. Any partial pages or snippets
of scriplet code included in the actual JSP pages using <%@ include file="..." %> should have a
file extension other than .jsp. The .jspf file extension is recommended in the JSP specification, but
any extension will work.

Why is using a different extension important? The weblogic.appc compiler typically scans the
web application directory and compiles all files that match the desired file name (*.jsp) and will
probably not be able to compile any partial pages it encounters. They were never intended to be
standalone pages yielding their own servlet classes — they are simply snippets of HTML or JSP
code included in a master JSP page. Many developers wait to begin precompiling their JSP pages
until late in the development cycle and learn this lesson the hard way.

Note that this practice applies only to the static <%@ include file="snippet.jspf" %> directive and
not to the dynamic <jsp:include file="header.jsp"/> action. The dynamic action assumes the
target page is a standalone JSP page capable of being converted to a Java servlet, so the target page
should be included in the precompilation process and should retain the .jsp file extension.

Best Practice
Use the .jspf file extension for all partial pages and JSP snippets included in JSP
pages using the static <%@ include file="..." %> directive to avoid precompila-
tion problems.

Creating an Exploded Web Application
As discussed earlier in this chapter, WebLogic Server web applications contain components, descrip-
tor files, classes, libraries, and other files organized in a directory structure defined by the Java EE
specification with the addition of the WebLogic Server–specific weblogic.xml file. To create an
exploded web application you must simply assemble your source files and compiled class files into
a valid directory structure similar to Figure 5-2 or 5-3.

In bigrez.com, we are deploying the user and admin web applications in archived (.war) format in
an archived enterprise application (.ear) file as part of the development build process. We’ll defer

139

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 140

Chapter 5: Packaging and Deploying WebLogic Web Applications

the discussion of the bigrez.com .ear format and build process to Chapter 8 and instead examine
the construction and deployment of the Chapter 2 example web application as an exploded web
application at this time.

Recall that the Chapter 2 example application consisted of three separate web applications demon-
strating the implementation of a simple application for editing and viewing information about
people. The three versions of the application demonstrated the use of a JSP-centric architecture, a
Struts-based servlet-centric architecture, and a Spring MVC–based servlet-centric architecture. All
three versions had simple domain objects and simulated services to avoid complicating the example
with EJB components or database access code.

The working directory for the Chapter 2 example application consisted of the source components
and directories shown in Figure 5-4. Source code files for the domain and simulated service classes
were located in a set of individual source directories under the src/java root directory, and the
three web applications themselves were located under the src directory.

src
java
web1

ch02 root

Source code for example apps, separate packages

web.xml, weblogic.xml
WEB-INF

classes
lib

.jsp files, images, etc.

Example #1 web application – JSP-centric version

web2

web.xml, weblogic.xml, struts-config.xml
WEB-INF

classes
lib

.jsp files, images, etc.

Example #2 web application – Struts version

web3

web.xml, weblogic.xml, exampleapp-servlet.xml
WEB-INF

classes
lib

.jsp files, images, etc.

Example #3 web application – Spring MVC version

Figure 5-4: Chapter 2 example source components.

To construct and deploy these as exploded web applications, we need to compile the three sets
of domain and service classes, place them in the WEB-INF/classes directory structures below
the corresponding web root directories, and deploy the web applications to the WebLogic Server
instance running on our machine. We’ll now examine the build.xml tasks required for each of
these steps. For reference, a complete listing of the Chapter 2 example build.xml file is provided in
Listing 5-2.

140

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 141

Chapter 5: Packaging and Deploying WebLogic Web Applications

Listing 5-2: Chapter 2 example program build.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="deploy" name="Chapter 2 Example">

<property file="${basedir}/build.properties"/>

<!-- set global properties for this build -->
<property name="src" value="${basedir}/src"/>
<property name="lib" value="${basedir}/lib"/>
<property name="srcjava1" value="${src}/java/webapp1"/>
<property name="srcjava2" value="${src}/java/webapp2"/>
<property name="srcjava3" value="${src}/java/webapp3"/>
<property name="srcweb1" value="${src}/web1"/>
<property name="srcweb2" value="${src}/web2"/>
<property name="srcweb3" value="${src}/web3"/>
<property name="domain.dir" value="${DOMAIN_HOME}/${DOMAIN}"/>
<property name="autodeploy" value="${domain.dir}/autodeploy"/>
<property name="deploy.dir" value="${autodeploy}"/>
<property name="webapp1.dir" value="${deploy.dir}/webapp1"/>
<property name="webapp2.dir" value="${deploy.dir}/webapp2"/>
<property name="webapp3.dir" value="${deploy.dir}/webapp3"/>

<!-- Set up the development classpath -->
<path id="dev.classpath">
<pathelement location="${JAVA_HOME}/lib/tools.jar"/>
<pathelement location="${WEBLOGIC_HOME}/server/lib/weblogic.jar"/>
<pathelement location="${WEBLOGIC_HOME}/server/lib/api.jar"/>
<pathelement location="${lib}/spring.jar"/>
<pathelement location="${lib}/spring-webmvc.jar"/>
<pathelement location="${lib}/struts.jar"/>
<pathelement location="${lib}/log4j.jar"/>

</path>

<target name="clean">
<delete includeEmptyDirs="true">

<fileset dir="${srcweb1}/WEB-INF/classes"/>
<fileset dir="${srcweb2}/WEB-INF/classes"/>
<fileset dir="${srcweb3}/WEB-INF/classes"/>

</delete>
</target>

<target name="makeapp">
<!-- Make classes directories -->
<mkdir dir="${srcweb1}/WEB-INF/classes"/>
<mkdir dir="${srcweb2}/WEB-INF/classes"/>
<mkdir dir="${srcweb3}/WEB-INF/classes"/>

</target>

<target name="compile">
<javac deprecation="true" classpathref="dev.classpath"

destdir="${srcweb1}/WEB-INF/classes"
srcdir="${srcjava1}">
<include name="**/*.java"/>

Continued

141

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 142

Chapter 5: Packaging and Deploying WebLogic Web Applications

Listing 5-2: Chapter 2 example program build.xml file. (continued)

</javac>
<javac deprecation="true" classpathref="dev.classpath"

destdir="${srcweb2}/WEB-INF/classes"
srcdir="${srcjava2}">
<include name="**/*.java"/>

</javac>
<javac deprecation="true" classpathref="dev.classpath"

destdir="${srcweb3}/WEB-INF/classes"
srcdir="${srcjava3}">
<include name="**/*.java"/>

</javac>
</target>

<taskdef name="wlappc"
classname="weblogic.ant.taskdefs.j2ee.Appc"
classpathref="dev.classpath"/>

<target name="jspc-webapps">
<!-- Pre-compile webapp1 JSP pages -->
<wlappc source="${srcweb1}"

classpathref="dev.classpath" verbose="true">
</wlappc>
<!-- Pre-compile webapp2 JSP pages -->
<wlappc source="${srcweb2}"

classpathref="dev.classpath" verbose="true">
</wlappc>
<!-- Pre-compile webapp3 JSP pages -->
<wlappc source="${srcweb3}"

classpathref="dev.classpath" verbose="true">
</wlappc>

</target>

<target name="deploy" depends="makeapp, compile, jspc-webapps">
<!-- Copy all of the web application files to the webapp# -->
<copy todir="${webapp1.dir}">

<fileset dir="${srcweb1}" includes="**/*.*"/>
</copy>
<copy todir="${webapp2.dir}">

<fileset dir="${srcweb2}" includes="**/*.*" excludes="**/*.properties"/>
</copy>
<copy todir="${webapp3.dir}">

<fileset dir="${srcweb3}" includes="**/*.*" excludes="**/*.properties"/>
</copy>
<!-- Copy the web application classes to the webapp#/WEB-INF/classes -->
<copy todir="${webapp1.dir}/WEB-INF/classes">

<fileset dir="${srcweb1}/WEB-INF/classes" includes="*.class" />
</copy>
<copy todir="${webapp2.dir}/WEB-INF/classes">

<fileset dir="${srcweb2}/WEB-INF/classes" includes="*.class" />
<fileset dir="${srcweb2}/WEB-INF" includes="*.properties" />

</copy>

142

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 143

Chapter 5: Packaging and Deploying WebLogic Web Applications

<copy todir="${webapp3.dir}/WEB-INF/classes">
<fileset dir="${srcweb3}/WEB-INF/classes" includes="*.class" />
<fileset dir="${srcweb3}/WEB-INF" includes="*.properties" />

</copy>
</target>

<target name="redeploy">
<touch file="${deploy.dir}/webapp1/WEB-INF/REDEPLOY"/>
<touch file="${deploy.dir}/webapp2/WEB-INF/REDEPLOY"/>
<touch file="${deploy.dir}/webapp3/WEB-INF/REDEPLOY"/>

</target>

</project>

As indicated in the listing, the default task for the build script is deploy, a task that invokes makeapp,
compile, and jspc-webapps before performing the actual deployment to WebLogic Server.

The makeapp task simply ensures that the necessary WEB-INF/classes directories exist in each of
the web applications.

Compilation of the domain and service classes is accomplished by a compile task that invokes the
javac built-in task and directs the output to the corresponding web application classes directory
as shown in this snippet from the build.xml listing.

<target name="compile">
<javac deprecation="true" classpathref="dev.classpath"
destdir="${srcweb1}/WEB-INF/classes" srcdir="${srcjava1}">
<include name="**/*.java"/>

</javac>
...

</target>

The three srcweb and srcjava properties are defined earlier in the build.xml file, as is
dev.classpath. Note that libraries required for compilation are stored in the root-level lib
directory, whereas libraries required for deployment with the web applications are placed in each
WEB-INF/lib directory.

After compiling the source files, the deploy task invokes the jspc-webapps task to precompile the
JSP pages and place the resulting class files in the WEB-INF/classes directory within each web
application.

Once everything is compiled and ready, the exploded web applications are complete. The final step
is the deployment of all three applications to the WebLogic Server domain running on the local
workstation. For simplicity this final deployment task was accomplished using the autodeploy
directory in the domain root directory, one of three deployment techniques discussed later in this
chapter. The deploy task basically copies the contents of the three web applications, with all JSP
files, libraries, and class files contained therein, to the autodeploy directory. The resulting webapp1,
webapp2, and webapp3 subdirectories in the autodeploy directory are automatically read, validated,
and deployed by WebLogic Server to the administration server on the local machine. That’s all there
is to it!

143

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 144

Chapter 5: Packaging and Deploying WebLogic Web Applications

Once deployed, the exploded versions of the web applications located in autodeploy can
be updated with source code changes using the same deploy task with a few caveats and
notes:

❑ Changes to class files will be copied to a running application by the deploy task but may
not be sensed by the server and reflected in the application unless the web application
is redeployed. A separate redeploy task is provided in the build.xml file to touch the
WEB-INF/REDEPLOY file in each application and signal WebLogic Server to reload all
classes and redeploy the application. We talk about this more later in this chapter along
with techniques to reload modified classes automatically without redeploying the entire
application.

❑ Changes to JSP pages will be copied by the deploy task to the running version of the
application in the autodeploy directory and will be reflected in the application on the next
request for the associated page. This is a very efficient way to perform quick, iterative
development of JSP pages, and is one advantage of using exploded applications for local
deployments.

One final note: Be careful not to confuse the deployment of an exploded application via copying
to the autodeploy directory, as was done here, with the deployment of the same application using
the wldeploy Ant task or weblogic.Deployer utility. In the first case a copy of the application is
promoted into the running environment; in the second, the environment is running the application
directly from the source location. Later in this chapter, we talk more about these two techniques and
discuss the pros and cons of each.

Now that we’ve shown you how to create an exploded web application, along with one way to
deploy it, we will briefly cover the creation of a web application archive file before diving in to the
deployment options in more depth.

Creating a Web Application Archive File
A web application archive file, or .war file, contains all of the web application components, descrip-
tors, and supporting classes in a single file. The internal structure of the .war file is identical to the
equivalent exploded web application deployment directory.

Creating a .war file is easy enough in theory; you simply execute the appropriate jar command
to include all of the desired web application components and supporting files in the archive. In
practice, you need a mechanism to assemble the proper components and files in a staging area
in preparation for the standard jar utility, or you need a better jar technique that allows you to
piece together components and supporting classes from various locations in a single archive. Either
solution works, but we prefer the latter.

The recommended archive technique uses the war task in Ant to build the archive from a variety
of files. The war task, like the basic jar Ant task, allows the definition of multiple fileset embed-
ded elements, each with flexible and powerful controls for including and excluding files from the
archive. The war task adds a number of special elements that automatically place the specified files
in their proper locations in the web application directory structure.

Creating a .war file for each of the web applications in the Chapter 2 example program would
require simple build.xml tasks similar to the following.

144

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 145

Chapter 5: Packaging and Deploying WebLogic Web Applications

<target name="war3" depends="makeapp, compile, jspc-webapps">
<war webxml="${srcweb3}/WEB-INF/web.xml"

warfile="${src}/webapp3.war">
<zipfileset dir="${srcweb3}" excludes="**/*.properties"/>
<zipfileset dir="${srcweb3}/WEB-INF"

includes="*.properties" prefix="WEB-INF/classes"/>
</war>

</target>

In the bigrez.com build process, the .war file for each web application is created using tasks such
as this in the build.xml file.

<target name="do.package" depends="common.do.package">
<war webxml="webContent/WEB-INF/web.xml"

warfile="${output.dir}/bigrez-web-admin.war"
manifest="webContent/META-INF/MANIFEST.MF">

<zipfileset dir="webContent"/>
<zipfileset dir="${output.dir}" includes="**/*.jar" prefix="WEB-INF/lib"/>

</war>
</target>

That’s all you need to create the web application archive from the web components in the
WebContent area of each application and the supporting libraries in the WEB-INF/lib area. The
simplicity of this step is a direct result of the directory structure and practices we’ve adopted in the
development environment.

Deploying Web Applications
Now that we’ve reviewed the structure of a web application, the contents of its descriptor files, and the
techniques available for creating an exploded web application and archive file, it is time to examine the
options for deploying web applications to WebLogic Server. This part of the chapter concentrates on
the techniques from the developer’s point of view — how to deploy the application in a single server
or workstation environment for the purposes of development and unit testing. Chapter 12 describes
techniques and best practices in a multi-server, managed, clustered environment.

There are three basic ways to deploy a web application, or any other Java EE application, in a WebLogic
Server environment:

❑ Automatic deployment

❑ WebLogic deployer utility or Ant task

❑ WebLogic Console deployment

We examine each option in the following sections, followed by a brief discussion of the steps required to
configure security information for proper admin site operation.

Automatic Deployment
Automatic deployment is the simplest technique available for deploying an application to an administra-
tion server or a combined administration/managed server. If automatic deployment is enabled during

145

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 146

Chapter 5: Packaging and Deploying WebLogic Web Applications

the startup process, the administration server will constantly scan the autodeploy directory for new
applications as well as modifications to existing applications. When a new application is placed in the
autodeploy directory, the administration server immediately attempts to load and deploy the applica-
tion. When an existing, deployed application is modified, the server immediately attempts to undeploy
the old version and deploy the new version of the application.

This is exactly the sort of behavior a developer prefers during development and unit testing. Changes
can be made to the application and redeployed rapidly to a running server without requiring a complete
restart of the server, a big advantage in an iterative development and testing process.

Two steps are required to deploy an application using automatic deployment.

First, automatic deployment must be enabled for the administration server. In the startWebLogic com-
mand or shell script used to start the server, make sure that the PRODUCTION_MODE variable is either
set to false or not set, which is the default. This variable is used by the script to control the value of
the weblogic.ProductionModeEnabled property in the java command line used to start the server. A
value of true means production mode, and false means development mode, which will enable auto-
deployment, among other things.

Next, copy the web application archive file or exploded web application directory structure to the
autodeploy directory in the domain. Although applications can be located almost anywhere in the direc-
tory structure in general, automatic deployment works only for applications placed in the autodeploy
directory. As indicated in Figure 5-5, an archive file should be located directly in the autodeploy root
directory, not in a subdirectory, and an exploded application should include a top-level directory.

The archive root name, webapp1, and top-level directory name, webapp2, will be used by the server as
the initial name and root context for the deployed applications. You can specify a different root context
using the <context-root> element in the weblogic.xml descriptor file in the web application. When
the new file or directory structure appears in the autodeploy directory the administration server will
immediately sense the new application and attempt to deploy it. Assuming the archive or directory is
well structured and contains the required descriptor files, the new application will be deployed and
ready for use. Mission accomplished!

mydomain
autodeploy

domains

JSP/html files...
webapp2

WEB-INF
...

webapp1.war Archived web application file

Exploded web application structure

Figure 5-5: Web applications deployed in the autodeploy directory.

The Chapter 2 example application uses this automatic deployment technique, as described in the pre-
vious section of this chapter. The deploy task in the build.xml file places the exploded application files
in the autodeploy directory in preparation for automatic deployment. No additional steps or tasks are
required to deploy the application or modify the contents of the deployed application, although for rea-
sons we describe in a moment, you may need to signal the server when a modification is made to the
exploded application to force a full redeployment.

146

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 147

Chapter 5: Packaging and Deploying WebLogic Web Applications

Applications deployed using archive files can be redeployed automatically by simply overwriting the
existing version of the archive file in the autodeploy directory. This rule holds for all archive types,
including web application .war files, EJB .jar files, and enterprise application .ear files. The server
senses the timestamp change for the file and automatically undeploys the old application and deploys
the new version of the application.

Applications deployed using exploded formats present a problem for the server: Which file timestamp
should be monitored to sense a change in the application and force a full redeployment? There could be
hundreds or thousands of files in the exploded directory structure, making it impossible to monitor all of
them for changes. WebLogic Server chose to introduce a special file, REDEPLOY, for this very purpose. The
contents of this file do not matter; only the timestamp matters. If you touch the file or otherwise modify
its timestamp, the server redeploys the application. The REDEPLOY file is located in the META-INF directory
in enterprise applications and in the WEB-INF directory in web applications.

The Chapter 2 example is a set of three web applications, so there are REDEPLOY files located in the
WEB-INF directories used for this purpose. A redeploy task in the build.xml file touches all three of
the REDEPLOY files to cause a redeployment of the exploded applications:

<target name="redeploy">
<touch file="${deploy.dir}/webapp1/WEB-INF/REDEPLOY"/>
<touch file="${deploy.dir}/webapp2/WEB-INF/REDEPLOY"/>
<touch file="${deploy.dir}/webapp3/WEB-INF/REDEPLOY"/>

</target>

Recognize that the new versions of the application files in the exploded directory structure must already
be present before requesting the redeployment, or a race condition could occur.

Given the added complexity described here, why would you choose to deploy to a workstation or sin-
gle server environment using an exploded web application? Simply put, the ability to modify JSP pages
and web application classes without redeploying the entire web application, or the enclosing enterprise
application, provides a big benefit in an iterative development process. There can be a significant over-
head associated with redeployment of archived applications due to the all-or-nothing redeployment this
technique mandates. For example, if the web application is part of an archived enterprise application,
all of the EJB components in the application will be undeployed and redeployed, initialization classes
will be invoked again, and you may even have to re-login and start your testing process from scratch if
HttpSession information is lost. This is clearly a lot of effort to make and view a simple JSP change.

With an exploded deployment, you simply edit the JSP pages in the working area and invoke a copy-
ing function, like the deploy task in the Chapter 2 example’s build script, to copy the modified pages
to the exploded web application. As you continue browsing the site, new pages will be recompiled
by the server when they are accessed by the browser because the timestamp on the JSP file no longer
matches the timestamp in the generated class file. WebLogic Server keeps track of files included using
the <%@ include file="..." %> directive as well, so changes to .jspf files will also cause the correct JSP
pages to be recompiled as they are accessed. Remember that this timestamp checking is controlled by the
<page-check-seconds> parameter set in weblogic.xml. The default value is one second when running in
development mode, so the behavior described here will apply unless you disable it using that parameter
or switch to production mode, where the default value is disabled.

In a similar fashion, classes in the WEB-INF/classes directory of your exploded web application can be
overwritten with new versions and WebLogic Server will reload the new classes on the fly. This function-
ality is controlled by the <servlet-reload-check-secs> element in the weblogic.xml file, an element

147

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 148

Chapter 5: Packaging and Deploying WebLogic Web Applications

whose name is somewhat misleading since all web application classes are candidates for reloading — not
just servlets, as the name (and online documentation) suggests. In development mode the default value of
<servlet-reload-check-secs> is 1, meaning that classes in WEB-INF/classes will be checked every sec-
ond for changes and possible reloading. Production environments have a value of –1 by default, meaning
that classes will never be checked or reloaded by this mechanism. HttpSession data for users is retained
when web application classes are reloaded as long as the modified classes do not invalidate previously
stored data in the session.

The bottom line is that exploded application deployment allows changes to JSP pages and web applica-
tion classes without requiring a full redeployment of the entire application. This all adds up to a clear
advantage to using an exploded application structure during development.

Best Practice
Use exploded application structures for deployment on developer workstations to
allow fine-grained updates to JSP pages and web application classes without requiring
a complete redeployment of the enclosing application. Automatic deployment is suffi-
cient for these installations if you have a good technique for touching the REDEPLOY file
to cause full redeployments on demand.

WebLogic Deployer Utility and Ant Task
The default WebLogic Server installation includes a utility, weblogic.Deployer, providing a command-
line technique for deploying and managing applications. The weblogic.Deployer utility mirrors the
deployment functions available through the WebLogic Console, including the deployment of new appli-
cations, redeployment of modified applications, undeploying existing applications, and modifying the
targeted servers for an application. The weblogic.Deployer utility also provides an upload capability
to move applications from a staging directory to the proper directory in the administration server in
preparation for deployment.

The weblogic.Deployer utility is invoked using the following basic syntax:

java weblogic.Deployer [options] [action] [files]

As before, we’ll concentrate here on the actions and options necessary to deploy and redeploy an applica-
tion to a standalone server instance in a simple development environment. Chapter 12 discusses deploy-
ment of applications in production environments including the mechanisms available in WebLogic Server
for redeploying applications without impacting active user sessions.

The following steps are required to deploy a web application manually using the weblogic.Deployer
utility:

1. Start the WebLogic Server instance using the startWebLogic script or other mechanism.

2. Build the web application as either an exploded directory structure or archive (.war) file
using the normal Ant build process. Normally this build script will place the application in
some build or output directory within your source code directory structure.

148

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 149

Chapter 5: Packaging and Deploying WebLogic Web Applications

3. If desired, copy the application files or archive file from this build directory to a staging
directory on your machine. Copying the application before deploying it will insulate the run-
ning version of the application from any builds you make in your source area until you are
ready to deploy them.

4. Deploy the application using the deploy action in the weblogic.Deployer utility.

The first two steps are self-explanatory. The Deployer utility only works if there is a running WebLogic
Server administration server with which to communicate, and the build itself must be complete before
deployment can occur. As the optional third step notes, it is often useful to separate the running version
of the application from the version in the build directory of your source code structure by performing a
distinct copy step to create another copy of the application in a staging directory. This step is not required
for deployment, because the Deployer utility can easily deploy the application directly from the build
directory or other directory within the source area, but it may prove helpful to you. If you decide to copy
the application to a staging directory, we suggest a directory such as myapps in the domain directory
structure to avoid confusion.

The webapp1 application may now be deployed from the web archive file webapp1.war using the com-
mand:

java weblogic.Deployer -adminurl t3://localhost:7001 -name webapp1
-source /domains/mydomain/myapps/webapp1.war -targets myserver -deploy

You can deploy exploded applications such as webapp2 in this manner by referring to the root directory
of the exploded web application in the source option:

java weblogic.Deployer -adminurl t3://localhost:7001 -name webapp2
-source /domains/mydomain/myapps/webapp2 -targets myserver -deploy

Redeploying a modified application is accomplished using the redeploy action and specifying the name
of the application, as shown here:

java weblogic.Deployer -adminurl t3://localhost:7001 -name webapp2 -redeploy

The example command lines shown so far require you to enter the administrator’s username and pass-
word to complete the operation. You can specify these values on the command line with the user and
password options:

java weblogic.Deployer -user weblogic -password weblogic1 ...

Other useful options include debug and verbose, providing details during the deployment operations to
assist in troubleshooting problems.

Using the weblogic.Deployer utility to deploy web applications replaces the automatic deployment
performed by WebLogic Server when running in development mode and changes how the server
reacts to updated versions of the application files. In general, you must use the redeploy action
before a running copy of the application will reflect application updates. WebLogic Server will not
automatically redeploy the application based on a timestamp change in the REDEPLOY file or archive
file itself as it does when deployment is accomplished using the autodeploy directory. Changes to JSP
pages in exploded web applications will still cause automatic recompilation of the page when a user
accesses it.

149

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 150

Chapter 5: Packaging and Deploying WebLogic Web Applications

Because the automatic deployment feature affects only applications placed in the autodeploy directory,
you may combine automatic and manual deployment in the same domain. Leave PRODUCTION_MODE set
to false in the start script, place applications using automatic deployment in the autodeploy direc-
tory, and place applications using manual deployment in an alternate directory such as myapps. Use the
weblogic.Deployer utility to deploy the applications in myapps manually, and allow WebLogic Server
to deploy the applications in autodeploy automatically.

WebLogic Server includes an Ant task, wldeploy, providing the same basic functions as the
weblogic.Deployer utility. Deploying the exploded webapp2 web application from the /myapps
directory requires an Ant target similar to the following:

<target name="deploy2">
<wldeploy verbose="true" user="weblogic" password="weblogic1"

adminurl="t3://localhost:7001" action="deploy"
source="${domain.dir}/myapps/webapp2" />

</target>

Best Practice
Favor the new wldeploy Ant task over the command-line weblogic.Deployer utility
when manually deploying or redeploying applications. It provides the same function-
ality and is much easier to integrate in the overall build and deployment process.

See the Oracle online documentation for more information on both the weblogic.Deployer utility (at
Link 5-3) and the related wldeploy Ant task (at Link 5-4).

WebLogic Console Deployment
You can use the WebLogic Console to deploy and manage web applications in a combined adminis-
tration/managed server instance or across complex clusters of managed servers. In this chapter, we’re
interested in the simple case of a combined or standalone server instance suitable for development and
unit testing on a workstation. Deploying a web application to a standalone server instance involves the
following steps:

1. Start the WebLogic Server instance in either production mode or development mode.

2. Optionally, copy the exploded archive file or web application directory structure to a suit-
able staging directory such as <domainroot>/myapps.

3. Deploy the application using the WebLogic Console.

Once the server is running and the applications to be deployed are in place, open the WebLogic Console
and click the Deployments link in the left-hand navigation pane. Click the Install button and navigate
to the location of your exploded or archived application. Your application archive files or exploded
directory structures should be listed, as shown in Figure 5-6.

Select one of the displayed web applications using the radio buttons. The WebLogic Console displays a
set of forms allowing you to choose the type of deployment, the name to use for the deployment, and
the security and staging models, and gives you the option to perform additional configuration steps
before deployment. The application will automatically be targeted to the combined administration and
managed server, if applicable, requiring little or no manual configuration.

150

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 151

Chapter 5: Packaging and Deploying WebLogic Web Applications

Figure 5-6: Contents of the myapps directory.

Once you click Finish on the final form in the process, your application will be loaded and deployed
to the server, and you’ll end up on the Overview tab for the deployment. The new application has now
been deployed to the server and is ready for use. Note that in production mode you’ll need to start the
application before using it.

Once the application is deployed using the WebLogic Console, redeployment and modification
behavior follow the same rules outlined in the previous section. Modified JSP pages in an exploded
application may be recompiled by the server as the pages are encountered, depending on the value of
<page-check-seconds>, but all other application changes will require a redeployment using either the
WebLogic Console or a utility such as weblogic.Deployer or wldeploy.

Redeploying an application using the WebLogic Console does not require that you delete and reinstall
the application. Simply open the list of deployed applications by clicking the Deployments link in the
left-hand navigation pane, check the box next to the application, and click the Update button below the
list. This has the same effect as the redeploy action in the Deployer utility.

Best Practice
Manual application deployment using the WebLogic Console requires a number of
steps to perform and is not required for developer workstation deployments. Use auto-
matic deployment or one of the deployment utilities outlined in the previous section in
these environments.

151

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 152

Chapter 5: Packaging and Deploying WebLogic Web Applications

Creating Required Users and Groups for BigRez.com
The bigrez.com application includes two separate web applications, user and admin. As we discussed
in Chapter 4, the admin web application uses standard Java EE security features to control access to the
property maintenance pages. The required users and groups must be created in the default security realm
in WebLogic Server to complete the deployment of the bigrez.com web applications.

After starting the domain, open the WebLogic Console and click the Security Realms link in the naviga-
tion pane on the left. The right side will display a list of realms, including a default realm called myrealm.
Click the myrealm link and navigate to the Users and Groups tab, and then open the Groups tab within
this folder. You should see a list on the right side containing the default groups in the security realm, as
shown in Figure 5-7.

Figure 5-7: Groups in the default security realm.

Click the New button and fill out the form, as shown in Figure 5-8, to create the new
BigRezAdministrators group required by the admin web application. Click OK to create the
group.

Next, click the Users tab within the Users and Groups folder on the right side of the screen. The list on
the right will most likely show only the weblogic user and any other users you may have created for

152

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 153

Chapter 5: Packaging and Deploying WebLogic Web Applications

Figure 5-8: Create the BigRezAdministrators group for the admin site.

testing purposes. Click the New button and create a BIGREZADMIN user, assigning it a valid password and
clicking the OK button. Once the user is created, click the newly created user in the list of users, navigate
to the Groups tab in the resulting folder, and make the user a member of the BigRezAdministrators
group.

The required user and group are now available in the security realm. Property administrators may log in
to the admin site using the BIGREZADMIN username and password and maintain property information for
all properties.

Chapter Review
This chapter discussed the steps required to package and deploy a web application to the WebLogic
Server environment.

The first half of the chapter reviewed the structure of a web application and the contents of the web
application descriptor files web.xml and weblogic.xml. Ant-based techniques for assembling web appli-
cations, precompiling JSP components, and creating exploded and archived web applications were then
presented. Some portions of the bigrez.com build process were also presented to illustrate best practices
in these areas.

153

Patrick c05.tex V3 - 09/18/2009 12:16pm Page 154

Chapter 5: Packaging and Deploying WebLogic Web Applications

The second half of the chapter discussed techniques available for deploying and redeploying web appli-
cations using WebLogic Server features and utilities. The emphasis in this chapter was on the best way to
deploy applications to a developer workstation or standalone server in support of the development and
unit testing process rather than deploying and managing a production server environment.

The next two chapters complete the design and construction of the bigrez.com example application by
discussing the EJB components required in the business tier to support the application requirements.
Chapter 8 revisits packaging and deployment of enterprise applications, including EJB components, and
provides a complete walkthrough of the bigrez.com build and deployment process.

154

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 155

Building Enterprise
JavaBeans in WebLogic

Server

This chapter examines best practices related to the implementation of Enterprise JavaBeans (EJB)
technology in the WebLogic Server product. Chapters 7 and 8 walk through the development and
deployment of an example EJB application to highlight related best practices.

This chapter is not intended as a primer, introduction, or reference for EJB technology. Our primary
emphasis is the EJB container in WebLogic Server and its unique features and capabilities. If you’re
unfamiliar with the basics of EJB, we suggest you study Mastering Enterprise JavaBeans 3.0, by Rima
Patel Sriganesh, Gerald Brose, and Micah Silverman (Wiley, 2006), a complete treatment of EJB
technology.

We begin by briefly reviewing some EJB terms and key concepts to support the discussions
that follow. The second half of the chapter discusses EJB features that are specific to WebLogic
Server.

EJB Technology Overview
The Enterprise JavaBeans (EJB) specification defines a server-side component technology designed
to support the construction of distributed enterprise-class applications. We’ll break apart the defini-
tion of EJB and examine key concepts.

EJB is a specification It is not a set of classes, code, or reference implementation compo-
nents. Vendors such as Oracle are expected to build application servers that implement EJB
technology according to the specification.

EJB is a component technology Component technologies emphasize the encapsulation of
business logic in components deployed in and managed by a container. The EJB specification

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 156

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

carefully defines the interactions between components and their containers to ensure portability
and consistency between EJB container vendors.

EJB supports distributed applications EJB components may be distributed across multiple
servers or processes with a limited impact on component developers, a concept known as location
transparency.

EJB is designed for enterprise-class applications The EJB specification is very concerned with
transactions, security, concurrency, and memory management because these areas are important
for large, mission-critical applications.

To remain consistent with the target audience for this book, intermediate- to advanced-level devel-
opers and architects, we will not discuss every detail of developing EJB components. We assume
that you have already built some simple EJB components and are familiar with the key steps and
concepts involved, and that you would rather learn about more advanced topics and best practices
for developing EJB applications.

This book and its associated example code use EJB 3.0 throughout. WebLogic Server has supported
EJB 3.0 since version 10.0 and continues to support the old EJB 2.x APIs as required by the EJB 3.0
specification. If you are only familiar with applications built using earlier versions of the specifica-
tion, we hope this book will persuade you of EJB 3.0’s many advantages and guide you in building
your own EJB 3.0 applications.

The next chapter discusses the development and packaging of the bigrez.com example EJB applica-
tion and covers some of the tools and best practices related to the development process. Chapter 14
is dedicated to development best practices, so there is no lack of information on this topic in this
book.

EJB 3.0
The EJB 3.0 specification made major changes to the EJB specification to address the most significant and
much criticized shortcomings of the programming API of previous versions. These changes have a large
impact on the way Java EE applications are developed.

Although the core concepts and runtime behavior for session beans and message-driven beans remain
largely unchanged, EJB 3.0 introduces significant changes to their programming model.

Annotation-based Programming Java 5 annotations are used to declare that a Java class is an
EJB, and to control how the container applies its services to manage the EJB (in particular, declar-
ative security and transaction management), largely doing away with the need for deployment
descriptors. Deployment descriptors may still be used, but they have been relegated to a deploy-
ment time override mechanism, rather than a mandatory part of EJB development.

Prior to EJB 3.0, it was common to use technologies such as XDoclet or WebLogic Server’s EJBGen
to generate EJB 2.x deployment descriptors and reduce the development effort required to manage
multiple Java files and deployment descriptors for each EJB. EJB 3.0 annotation-based program-
ming is a direct evolution of these approaches and supersedes them.

EJBs are Plain Old Java Objects (POJOs) EJBs no longer need to implement specific
lifecycle callbacks. Instead, they use Java annotations to declare only the events in which
they are interested. EJB business interfaces are not required to extend javax.ejb.EJBObject

156

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 157

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

or javax.ejb.EJBLocalObject, and remote business methods need not throw java.rmi.
RemoteException. Home interfaces are no longer required.

Dependency Injection References to other EJBs and resources such as data sources can be
automatically resolved and set by the container, freeing your EJB code from explicitly having to
look up such resources from JNDI. Not only does this simplify your code, it also allows the EJB
container to perform more deployment time validation. References to external components are
declared with annotations, and the EJB container is responsible for resolving these references at
deployment time. An EJB can be used as a plain Java class outside of the container, allowing it eas-
ily to be unit tested.

In contrast to the evolutionary changes made to session beans and message-driven beans, the support
for persistent, database-backed beans has been radically overhauled. EJB 2.x entity beans are supported
for backward compatibility only. In EJB 3.0, entities are lightweight components managed by the Java
Persistence API (JPA) rather than full Enterprise Java Beans.

The Spring Framework
The need for the radical overhaul of the EJB specification was largely driven by competition from a single
alternative product — The Spring Framework (http://www.springsource.org/). The Spring Framework
provides an alternative to EJB, but embraces other Java EE technologies including the Java Persistence
API. Spring championed dependency injection and the benefits of using POJOs for enterprise Java appli-
cations, and revolutionized the way Java EE applications are developed.

The Spring Framework can be used with Java EE 5, and in conjunction with, or as an alternative to,
EJB 3.0. WebLogic Server’s EJB 3.0 container is itself implemented using Spring, based on the Pitchfork
project, which was co-developed by SpringSource and WebLogic Server engineers. WebLogic Server has
specific support for Spring applications, including a console extension, integration of WebLogic Server
transaction features, and support for the Spring Acegi security model.

We like the Spring Framework. However, EJB 3.0 is sufficient to develop full enterprise applications in a
clean, understandable style and we will not use the Spring Framework in this book.

EJB Component Types
The EJB 3.0 specification defines the following types of EJB components:

❑ Stateless session bean (SLSB)

❑ Stateful session bean (SFSB)

❑ Message-driven bean (MDB)

Each of these component types fulfills a different design requirement for enterprise-class distributed
systems. The following sections review each of these types and look at a few simple examples to complete
our discussion of EJB key concepts.

The EJB 3.0 specification requires the container to support EJB 2.x entity beans for backward compat-
ibility. We are focusing exclusively on the new programming model provided by EJB 3.0, so will not
consider EJB 2.x entity beans. We cover JPA entities later in this chapter.

157

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 158

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Stateless Session Beans
Stateless session bean (SLSB) components are designed to service requests using a classic stateless
request/response style. Setting aside complexities related to bean lifecycle and pooling, an SLSB is not
unlike a shared static class used as a service (like the PersonService class in Chapter 2). The SLSB has
a set of methods, exposed through local or remote business interfaces, which can be called by clients to
request particular services. Data is passed to the SLSB methods using method parameters, and results are
returned, typically, through the return type of the method. This is classic request/response design.

Generally speaking, SLSB components are suitable for encapsulating business processes rather than busi-
ness data. SLSB components often have names like AccountingService or ContractManager, signifying
their role as controller code or services related to certain business domains. Method names normally
make clear the particular service exposed by the interface.

@EJB
AccountingService aService; // Container will inject an SLSB instance.
...
float tax = aService.calculateTax(income, expenses);
System.out.printf("The IRS is only taking $%f this year!", tax);

Clients are given a particular instance of the SLSB for use during the single request/response cycle,
and there is no guarantee that subsequent requests from the same client will be handled by the same
instance of the SLSB. In general, SLSB components should not have client-associated instance variables,
although it is possible to use instance variables to cache connections to shared resources or shared read-
only data if desired. Just recognize that each invocation of the SLSB is independent from past and future
invocations from the same client, and you can’t make assumptions about the contents of the instance
variables.

Here’s an implementation of the AccountingService SLSB.

// AccountingService.java
public interface AccountingService
{

float calculateTax(float income, float expenses);
}

// AccountingServiceImpl.java
import javax.ejb.Stateless;

@Stateless
public class AccountingServiceImpl implements AccountingService
{

public float calculateTax(float income, float expenses)
{

return (income - expenses) * 0.25;
}

}

This is radically simpler than an EJB 2.x session bean. No ejb.xml or weblogic-ejb.xml deployment
descriptors are required — deployment information such as the JNDI name to use can be speci-
fied using annotations. Home interfaces are not required. The bean does not have to implement
javax.ejb.SessionBean, nor does its business interface have to extend javax.ejb.EJBObject. If we

158

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 159

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

chose to ignore the annotation, the bean is a plain old Java object (POJO) that is easy to use and test
outside of the Java EE container.

SLSB components have distinct advantages over simple static classes:

❑ EJB developers do not have to write thread-safe code. The EJB container prevents more than one
thread at a time from using a given bean instance.

❑ EJBs can declare references to resources they require, including other EJBs. The EJB container is
responsible for resolving these references when the EJB is deployed. This is an important feature
when developing a set of interdependent components that otherwise have their own indepen-
dent development lifecycles. Before such dependency injection became popular, EJB applications
would manage dependencies using the Service Locator pattern, which results in verbose config-
uration files, and brittle, environment-specific lookup code directly within the EJBs.

❑ EJBs optionally can provide remote services over Java RMI. This support is declared for an EJB
3.0 session bean business interface using a simple annotation, without it having to implement
java.rmi.Remote, or its remote methods needing to declare that they throw RemoteException.
Client applications benefit from location transparency. So long as clients do not rely on side
effects resulting from running within the same JVM as a locally deployed EJB, they can access
local and remote EJBs in the same way.

❑ Transaction control and security constraints are implemented by the EJB container and declared
using standard annotations or deployment descriptor elements. Transaction and security con-
texts are automatically propagated to SLSB methods without requiring extra method parameters,
a common approach in a static class.

❑ Annotations have sensible defaults that reflect common usage. Although our
AccountingServiceImpl example specifies neither the @TransactionManagement nor the
@TransactionAttribute annotations, the container will ensure that a transaction is active before
calling the calculateTax() implementation, and if it had to start a transaction, that transaction
is committed before control is returned to the client.

SLSB components are often used to implement the session façade design pattern. The business process
encapsulated by an SLSB may include complex calculations and interactions with additional EJB compo-
nents, including both SLSB and JPA entities. The SLSB façade provides a simpler interface to this complex
process. The SLSB also provides a convenient mechanism for ensuring transactional integrity. The con-
tainer is often configured to require or start a transaction whenever an SLSB method is invoked, thereby
ensuring that all operations in the method are part of the same transaction.

We’ll make use of SLSBs and the session façade pattern in the example application in Chapter 7. A set of
SLSBs provides a simplified set of services to the web application layer and the web services interface.
The SLSBs contain business logic that transforms the more complex entity model into results that are
more directly of use to the web application views. All interaction with the database is performed through
this session façade, with the SLSBs managing the transaction boundaries.

Stateful Session Beans
Stateful session bean (SFSB) components combine the request/response mechanism of stateless session
beans with the storage of state information between method invocations. Clients are given a dedicated
instance of the SFSB to use for multiple method invocations, and subsequent requests from the same

159

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 160

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

client are guaranteed to be handled by the same instance of the SFSB bean. Thus, the client has a con-
versation with a particular SFSB instance. These beans should have instance variables that store the
intermediate state of the process being modeled by the SFSB. If there are no instance variables, there’s no
reason to use a stateful session bean.

SFSB components are normally used to implement multi-step business processes that require retention
of state information from step to step. They fall somewhere between SLSB and JPA entities in terms of
function and naming, and they often have names like Reservation or ReservationProcess. Method
names on SFSB components also tend to fall somewhere between SLSB and entities, and they may have
set methods for updating the state information in the bean as well as methods that perform business
processing.

// EJB is bound into local environment using a class level annotation
@EJB(name="ejb/sfsb", beanInterface=Reservation.class)
...
Reservation reservation =

(Reservation) initialContext.lookup("java:comp/env/ejb/sfsb");
...
reservation.setProperty(...);
reservation.setDates(...);
reservation.setGuestInformation(...);
...
String confirmnum = reservation.performBooking();
System.out.println("Your confirmation number is: " + confirmnum);

In this example code, we’ve used an SFSB to maintain information about the customer’s selections during
the reservation process before invoking the final performBooking() method to make the reservation. The
set method invocations are shown as if they occurred in the same block of code, but this is not required.
As long as the client holds on to and uses the same SFSB reference, the invocations will be processed by
the same instance of the SFSB.

The preceding example binds the EJB to the client’s local environment, and then performs a JNDI lookup
in the java:comp/env namespace to obtain a reference to an SFSB instance. The EJB container creates
a new instance of the SFSB for every JNDI lookup. Suppose instead we had injected the EJB reference
directly into a field of the client class.

@EJB
Reservation reservation;

Now the client container will create and inject a Reservation instance into the annotated field for each
new instance of the client class. If the client is itself an SFSB, this may well be what you want. On the other
hand, if the client is a stateless component such as a servlet, you will want to create and manage different
Reservation instances for different user sessions. The bigrez.com example application, introduced in
Chapters 3 and 4, uses a value object placed in the HttpSession to store intermediate results and passes
this value object to a method on a stateless session bean to perform the final booking. Essentially, we store
the intermediate data in the HTTP session rather than just storing a reference to a client-specific SFSB.
Both techniques are viable ways to manage conversational state on behalf of a user. When creating a web
application, we favor the HttpSession approach for the simple reason that SFSB components increase
the complexity of the overall system and may introduce unnecessary transaction and security processing
mandated by the EJB specification. SFSBs are more appropriate for maintaining a client’s server-side state
for remote clients — that is, clients not in the same JVM.

160

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 161

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

WebLogic Server provides replication of SFSB data across a cluster, a topic discussed later, so both tech-
niques have similar failover capabilities. When you try to use an SFSB from a web application client
where both the HttpSession and the SFSB are using in-memory replication, the failover scenarios can
get a little bit complex. We recommend using HttpSession objects to hold client session state for web
applications, and an SFSB only for applications where the client is not a web application.

Best Practice
Avoid using stateful session beans for web application client data more readily stored
in the HttpSession. Although both SFSB and HttpSession data can be configured to
be replicated for failover in WebLogic Server, complexity considerations favor the use
of HttpSession storage when possible. Use an SFSB for situations where the client is
not a web application.

If you decide to use stateful session beans, you should consider the following additional points:

❑ SFSB components normally disallow concurrent access, although WebLogic Server does include
a flag to cause concurrent invocations to block rather than throw an exception. In a web appli-
cation multiple requests from the same user may be processed simultaneously, a condition that
might require simultaneous access to the client-associated SFSB.

❑ If an SFSB throws a RuntimeException the container destroys the instance of the bean and all
associated state information is lost, as required by the EJB specification.

❑ SFSB components are not appropriate for long-term storage of state. Replication of SFSB data can
allow the state to survive the failure or restart of a single server instance, but provides no strong
transactional guarantees. Use JPA entities to store data that must survive the client restarting the
browser session or returning to the application after an extended period of time.

❑ If an SFSB uses bean-managed transaction demarcation, it is possible that a business method that
started a transaction does not commit or rollback the transaction. In this case, the container is
required to retain the association between the SFSB instance and the transaction across multiple
method calls. This may be appropriate for some unusual scenarios, but in general it will lead to
an application that does not scale well and is difficult to manage.

Although there may be specific applications for which the SFSB component is well suited, it is generally
best to use HttpSession objects for short-lived, client-specific data and JPA entities or other database-
backed storage for long-lived data.

Message-Driven Beans
Message-driven bean (MDB) components were added in the EJB 2.0 specification to address a significant
hole in the integration of EJB and Java Message Service (JMS) technology. EJB components are capable
of acting as JMS producers, creating and sending messages to JMS destinations, but prior to EJB 2.0
there was no way for an EJB component to act as an asynchronous JMS consumer. There was nothing
preventing a stateless session bean from invoking receive() and waiting for a message, of course, but
this synchronous operation has the potential to block the thread indefinitely.

MDBs behave like SLSBs but with a system-defined, asynchronous interface. The EJB 2.1 specification
expanded the role of MDBs beyond JMS, to supporting other messaging systems. MDBs can now receive

161

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 162

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

messages from JCA resource adapters; however, they are most commonly used to receive and process
JMS messages.

Because their interfaces are fixed, MDBs are very simple to write. Here’s an example JMS MDB.

@MessageDriven(...)
public class MyMDB implements javax.jms.MessageListener
{

public void onMessage(Message msg)
{

System.out.println("Received a message");
}

}

Despite the simplicity of implementation, the container provides many useful services to an MDB. JMS
sessions are automatically pooled and managed. Transactions can be container-managed, in which case,
a JTA transaction is automatically started when a message is passed to the MDB; if the transaction rolls
back, the message is not removed from the JMS destination.

WebLogic Server provides additional MDB features including transaction batching; automatic enlistment
of foreign JMS servers in transactions; temporary suspension on repetitive exceptions; and automatic
re-establishment of JMS connections.

We talk more about JMS and MDBs in Chapter 10.

Interceptors
EJB 3.0 allows a session or message-driven bean to be associated with one or more interceptor classes.
Interceptor classes provide a simple way of introducing cross-cutting functionality to every EJB method,
and to deploy it against a number of EJBs. For example, an interceptor class could be used to audit all
business method calls to an EJB. An interceptor class can also be configured to receive the PostConstruct,
PreDestroy, PostActivate, or PrePassivate lifecycle callbacks.

Let’s look at a simple interceptor that logs the entry and exit of all business method calls.

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.interceptor.AroundInvoke;
import javax.interceptor.InvocationContext;
import weblogic.logging.LoggingHelper;

public class LoggingInterceptor
{

private Logger logger = LoggingHelper.getServerLogger();

@AroundInvoke
public Object audit(InvocationContext ic) throws Exception
{

String context = ic.getMethod().toGenericString();
try {

logger.log(Level.INFO, "entering " + context);
Object result = ic.proceed();

162

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 163

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

logger.log(Level.INFO, "exiting " + context);
return result;

}
catch (Exception e) {

logger.log(Level.INFO, "exception in " + context, e);
throw e;

}
}

}

The @AroundInvoke annotation identifies the audit() method as an interceptor method. The container
will call this interceptor method when a client invokes any business method. The interceptor method has
control over whether to pass the invocation onto the bean instance. It can do such things as modifying
the parameters using the InvocationContext.setParameters() method, handle exceptions thrown
from bean instance, or modify the return value. Our interceptor simply logs the entry and exit events to
the WebLogic Server log, invoking the business method with the ic.proceed() call in between.

The interceptor class is associated with an EJB as using the @javax.interceptor.Interceptors annota-
tion on methods to which it should be applied, or on the EJB class if the interceptor should be applied to
all methods. Multiple interceptors can be applied to the same method. Alternatively, interceptors can be
specified in the ejb-jar.xml deployment descriptor.

Interceptors are occasionally useful, but are not a full aspect-oriented programming (AOP) mechanism.
Their primary drawbacks are that they can only be applied to EJB methods; that they cannot be config-
ured separately outside of the EJB deployment; and the specification of the methods to which they should
apply is simplistic compared to the power of the Spring Framework or AspectJ pointcut expressions.

Best Practice
If you find yourself regularly using interceptors, consider whether you should be using
a more sophisticated AOP tool such as AspectJ or the Spring Framework.

The Java Persistence API
The Java Persistence API is a standard interface that provides Object Relational Mapping (ORM) services
to Java applications. These services allow an application to interact with a relational database by mak-
ing changes to instances of application-specific Java classes. The JPA engine performs the appropriate
mapping between the Java classes and the relational database tables.

JPA History
Many different ORM technologies influenced the evolution of the JPA standard. Perhaps the least influ-
ential was the entity beans facility of the EJB 2.x specification. EJB 2.x provides container-managed
persistence (CMP) services, which allow a straightforward mapping between relational tables and man-
aged beans. Entity beans were the most criticized feature of EJB 2.x. Complaints included:

❑ The simplicity of the mapping. The specification allowed for mapping a single table to a
single entity bean, and did not support inheritance between entity bean classes. While some

163

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 164

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

implementations provided for more sophisticated mapping strategies, they were not portable
and still did not support inheritance.

❑ The weight of the API. Each entity bean required home and business interfaces, plus deployment
descriptors. The mapping between the bean and the database tables had to be specified fully in
the deployment descriptor. Tools such as EJBGen were created to reduce the development over-
head, but they were a band-aid rather than a satisfactory solution.

❑ The runtime cost. Because entity beans were full EJBs, they had to support declarative security
and transaction management and remote invocation. Many argued that these services were not
appropriate in an ORM tool.

❑ Ease of testing. Entity beans could only be tested within an EJB container.

Despite these limitations, EJB 2.x entity beans have been applied successfully in large Java EE deploy-
ments. Nevertheless, Java EE architects increasingly turned to sophisticated and mature ORM products
from more focused providers. These included Oracle’s TopLink, JBoss’s Hibernate, and Solarmetric’s
Kodo. Solarmetric was purchased by BEA, and Kodo is now included in Oracle WebLogic Server.

The persistence layer is a significant part of most enterprise applications, and there was a pressing need
for a common standard. Some products implemented the Java Data Objects (JDO) standard, Kodo being
the most well-known commercial implementation.

JPA has successfully combined the best features of EJB CMP, JDO, and proprietary products, and today
TopLink, Hibernate, Kodo, and others all implement JPA.

With the acquisition of BEA, Oracle found itself with two market-leading JPA implementations — Kodo
and TopLink. Kodo has been the JPA provider in WebLogic Server since version 10.0, but TopLink is
Oracle’s strategic product, and will replace Kodo in a future version of WebLogic Server. We show in
Chapter 7 how using JPA allows us to easily change bigrez.com from Kodo to TopLink.

Best Practice
Favor JPA over proprietary persistence APIs. This allows flexibility in porting your
application between different ORM providers.

When BEA bought Solarmetric in 2005, it donated the bulk of the Kodo source code to the Apache Soft-
ware Foundation to create the open source OpenJPA project. Kodo is now based upon an OpenJPA
foundation, but provides additional features and performance enhancements.

Similarly, TopLink has spawned the open source Eclipse Persistence Platform (EclipseLink) project, an
Eclipse Foundation project led by Oracle. EclipseLink is the reference implementation for the JPA 2.0
specification. In contrast to Kodo and OpenJPA, functionality and performance of EclipseLink has not
been restricted with respect to the commercial TopLink product. The additional features in TopLink are
limited to those necessary for integration with WebLogic Server and Oracle SOA Suite.

164

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 165

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

OpenJPA and Kodo
OpenJPA has many features over and above those required by the JPA specification. These include:

❑ Custom fetch groups, for grouping associated fields to improve performance.

❑ A detachment API, which allows more control over when entity instances are detached from
being managed by the container.

❑ Large result sets and large collection fields, backed by database cursors.

❑ Unidirectional OneToMany relationships with a foreign key rather than a join table.

❑ Fewer restrictions on entity classes. For example, they can be final.

WebLogic Server 10.3 includes the Enterprise Edition of Kodo. Kodo Enterprise Edition is built on
OpenJPA, but adds many features not found in the open source version, including:

❑ Batching of JDBC statements for performance.

❑ Optimization of eager loading of related entities.

❑ Lock groups.

❑ Data and query caching.

❑ Profiler and management console tools.

❑ SQL queries.

❑ Managed transactions, and XA support.

❑ Custom class mappings.

❑ Remote entity managers.

We consider only the most commonly used features in this book; please refer to the Kodo documentation
for more details.

Most of the additional Kodo features enhance runtime performance. It is important to realize that all
ORM tools are not created equal. The lengthy histories of Kodo and TopLink have provided the experi-
ence that sets them apart as market leaders.

JPA Concepts
JPA entities are simple Java classes with Java 5 annotations to indicate how they should be mapped to
the database.

Client applications manage entity instances using an EntityManager. The facilities that the
EntityManager provides correspond to those provided by the home interface of an EJB 2.x CMP entity
bean; namely the ability to create, find, and destroy entity instances, reflecting the changes in the
underlying relational database.

165

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 166

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Each EntityManager manages an independent set of entities known as a persistence context. When used
in a container such as that provided by WebLogic Server, the EntityManager can be injected directly into
an EJB or servlet using the @PersistenceContext annotation. A separate persistence context is managed
for each JTA transaction, and injection allows the container automatically to provide the application with
an appropriate EntityManager. The changes made to the set of entities are persisted back to the database
when the JTA transaction commits.

EJB 2.x CMP entity beans also associate a set of changes with the current transaction, and use the trans-
action scope to minimize the number of required reads and writes to the database. This optimization
is particularly important when dealing with complex transactions that affect many entities, and may
well read and write the same entity many times. In JPA, the notion of a persistence context makes this
management explicit.

EntityManagers can also be used outside of a container, for example, in a standalone Java appli-
cation. This is an important difference to EJB 2.x entity beans. We have used this facility in the
bigrez.com unit tests to test the entity classes from JUnit test classes. When used outside a container, an
EntityManagerFactory is used to create an EntityManager, and transactions can be managed through
the EntityTransaction interface.

A JPA Sample
A complete discussion of JPA is beyond the scope of this book. In this section, we develop a simple
example that illustrates the features of JPA and provides a basis for many of the complex topics and
WebLogic Server–specific discussion that follows. The bigrez.com example program uses JPA entities
for all business objects and relationships and provides a more realistic example.

Here is an example of a JPA entity representing a Person.

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Person
{

@Id
private long id;
private String salutation;
private String firstName;
private String lastName;

public Person() { }

public Person(long id, String salutation, String firstName, String lastName)
{

this.id = id;
setSalutation(salutation);
setFirstName(firstName);
setLastName(lastName);

}

public long getId() { return id; }

166

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 167

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

public String getSalutation() { return salutation; }
public void setSalutation(String salutation) { this.salutation = salutation; }

public String getFirstName() { return firstName; }
public void setFirstName(String firstName) { this.firstName = firstName; }

public String getLastName() { return lastName; }
public void setLastName(String lastName) { this.lastName = lastName; }

}

Person is a simple Java class with a number of fields that follows the JavaBeans conventions for get
and set methods. You have to look hard to spot the annotations — there are only two. The first is the
@javax.persistence.Entity class annotation; the second is the @javax.persistence.Id annotation
on the id field. Despite this, there is a wealth of mapping metadata derived from JPA defaults and the
conventions followed by the class.

❑ The class is mapped to a table named PERSON.

❑ The fields salutation, firstName, and lastName are mapped to the columns SALUTATION,
FIRSTNAME, and LASTNAME. These columns can contain NULL, do not have a UNIQUE constraint,
and are 255-character VARCHAR fields.

❑ The id field is the primary key for the class, and is mapped to the number column ID.

These conventions go a long way to make programming JPA entities very similar to programming
plain Java classes. By default, all primitive and String fields of a JPA entity are expected to map to
a database column. If you don’t want a particular field to be persisted, you should indicate this by
making it transient, or with the @javax.persistence.Transient annotation. If you want to map
a field to a column with a different name, or to control other aspects of the column mapping such
as the column type, uniqueness, or null constraints, you can use the @javax.persistence.Basic and
@javax.persistence.Column annotations to provide the supporting metadata.

Annotations can also be used on a property method pair, such as getLastName() and setLastName(),
rather than the field that they use. This can be useful when migrating EJB 2.x entity beans to JPA. It also
allows the JPA container to benefit from validation and conversion logic in the methods. On the other
hand, because the specification does not define how often, when, or in what order the container will
call the property methods, adding code to the property methods can have unexpected side effects. Also,
the application code must always use the property methods, and not access the field directly. The JPA
specification does not support mixing field and property annotations — you should use one of these
access methods within an entity class hierarchy. We find field level annotations simpler, and rarely use
property method annotations.

Despite all of this cleverness, a small deployment descriptor is required. This is called persistence.xml
and is usually packaged in the META-INF directory of the jar file containing the persistent classes. Here’s
an example of a persistence.xml file for an application to be deployed in a Java EE environment.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" ... namespace declarations ...>

<persistence-unit name="ExamplePU">
<jta-data-source>datasource.jta.example</jta-data-source>
<non-jta-data-source>datasource.nonjta.example</non-jta-data-source>

</persistence-unit>
</persistence>

167

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 168

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The descriptor defines a persistence unit, which is the set of classes and mapping metadata used by a par-
ticular set of entity managers. The terminology can be a little confusing at first. An entity manager factory
creates entity managers (the runtime Java instance) for a particular persistence unit (the configuration). Each
entity manager manages a persistence context (a set of entity instances).

It is important to understand the lifecycle of JPA entities with respect to the persistence context. A newly
created instance of an entity is not associated with any persistence context. If it is used in a call to the
entity manager persist() method, it obtains a persistent identity and becomes managed by the per-
sistence context. Each persistence context has at most one instance of an entity with a given identity.
Entity instances found by calling a query method are also managed. The fields of managed entities are
populated automatically from the database, and changes to the fields are sent to the database when the
persistence context is flushed, such as when the JTA transaction commits. When the transaction commits,
an entity becomes detached from the persistence context, and changes to the entity are no longer synchro-
nized to the database. The entity manager remove() method is used to schedule a managed entity for
deletion from the database when the transaction commits.

Each persistence unit has a name. Our example is called ExamplePU. This allows application code to work
with multiple persistence units, which may be necessary if the application uses more than one database.
The persistence unit to use can be specified using the unitName element of the @PersistenceContext
annotation. Applications that have a single persistence unit don’t need to set unitName.

Our example persistence unit declares that it uses two JDBC data sources by supplying their JNDI names.
The first data source should support global JTA transactions. This is the primary data source used to per-
sist changes made by the application. The second data source is not transactionally aware, and is used by
the JPA container whenever it needs to access the database independently of the current JTA transaction.

We’ve written a simple stateless session bean that provides a method to create a Person.

import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

@Stateless
public class PersonSLSBImpl implements PersonSLSB
{

@PersistenceContext
private EntityManager entityManager;

public Person createPerson(int id, String salutation,
String firstName, String lastName)

{
Person person = new Person(id, salutation, firstName, lastName);
entityManager.persist(person);
return person;

}
}

The implementation is straightforward, and shows how easy it is to use JPA entities from a session
bean. When called, this will execute the following prepared statement to create a new row in the Person
database table.

INSERT INTO Person (id, firstName, lastName, salutation) VALUES (?, ?, ?, ?)

168

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 169

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The EntityManager is injected into the SLSB using the @PersistenceContext annotation. To
ensure the correct persistence context is obtained, JPA code deployed to a container should use the
@PersistenceContext annotation or look up the EntityManager in JNDI. Both of these methods result
in a container-managed persistence context. There is no need to pass EntityManager instances to other
EJBs; simply inject the EntityManager into each EJB and the container will ensure the persistence context
is propagated with the JTA transaction. The alternative is to use application-managed persistence
contexts that are created from an EntityManagerFactory. Application-managed persistence contexts are
more troublesome to manage: they must be created and closed at the right points, and associated with
the JTA transaction if necessary.

Best Practice
Use container-managed persistence contexts whenever possible. It is rarely necessary
to use application-managed persistence contexts in code deployed to a Java EE server.

Persistent units deployed to a Java EE 5 application server will use JTA transactions, unless overridden
using the transaction-type element. If the EntityManager for a JTA persistence unit is called without a
current JTA transaction, a TransactionRequiredException will be thrown. The SLSB conveniently takes
care of this for us. It will run the createPerson() method in a container-managed transaction (due the
defaults for the @TransactionManagement and @TransactionAttribute annotations).

Special care is required when using JPA directly in web applications. Many threads can call the same
servlet at once, so if you must use an EntityManager directly from servlet code, use a JNDI lookup in
your service method. Using annotations will cause the container to inject a single EntityManager into the
servlet when it is created, and this will not be thread-safe. It is usually better to wrap the JPA code in an
SLSB, and rely on the SLSB for transaction management and thread safety.

When using JPA with a stateful session bean, you will probably want to add
type=PersistenceContextType.EXTENDED to the @PersistenceContext annotation. This special
extended persistence context is only supported for SFSBs, and causes a single persistence context to be
used for every call to a particular instance of the SFSB. If the SFSB uses container-managed transactions,
the persistence context will be used for multiple transactions and will not have to be refreshed from the
database on every request. The application can control synchronization with the database by calling the
entity manager’s refresh() or flush() methods.

Best Practice
Use container-managed data sources and JTA transaction management when using
JPA with a Java EE application server. The EJB API makes this natural. It ensures trans-
actional integration with other global transaction–aware resources managed by the
container, such as JMS destinations.

Favor container-managed transactions using session beans over bean-managed trans-
actions. This avoids repetitive, boilerplate code.

Person has an id field of type long that is the primary key for the entity, and is used as the foreign
key to maintain relationships to other entities. There are two schools of thought on primary key

169

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 170

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

columns for object mappings. One holds that the primary key should be some real-world attribute of
the entity — sometimes known as a business key; this is the more purist, database-centric approach. The
other school holds that primary keys should be opaque and system-allocated. One advantage of the
second approach is that it is does not require a complex transaction should the business key representing
an entity ever change. Suppose, for example, we chose to use a person’s name as the primary key. If a
person changes his or her name, all other tables that refer to the row in the PERSON table will need to be
updated. Another is that it does not place artificial constraints on the data — two individuals can have
the same name. A third advantage is that we can use a common type for the primary key for all entity
classes, and abstract out common functionality for allocating a primary key and finding an entity by a
primary key to a common base class.

Generated Values
Having decided that the system should allocate primary keys, let’s modify Person so that the id field is
generated, and remove the need to pass it to the constructor.

@Id
@GeneratedValue
private long id;
...
public Person(String salutation, String firstName, String lastName)
{

setSalutation(salutation);
setFirstName(firstName);
setLastName(lastName);

}
...

The @javax.persistence.GeneratedValue annotation specifies that the JPA provider should pick
an appropriate generation strategy for the database being used. When used with an Oracle database,
OpenJPA uses a table called OPENJPA_SEQUENCE_TABLE. The strategy can be changed with the strategy
annotation element. We use element this in the bigrez.com implementation to specify that a database
sequence should be used. With the table and database sequence strategies (GenerationType.TABLE and
GenerationType.SEQUENCE), you can use the generator element to refer to a separately-defined gen-
erator. These generators are defined with the SequenceGenerator or TableGenerator annotations. The
annotations can override the name of the table and columns or sequence from the defaults chosen by the
provider; and can set the initial value and number of values to allocate for each request.

The third generated value strategy is GenerationType.IDENTITY, which indicates that a database auto-
increment or identity column should be used. It might seem a good idea to use the database’s native
support for generating unique identity values, but this strategy has a number of downsides. Not all
databases have such support for native identity columns, so the persistence provider may have to use
another database mechanism. For example, when used with the Oracle database, OpenJPA uses a com-
bination of triggers and sequences. If your database does support identity columns, it may also restrict
them to be primary key columns, or require at most one identity column per table. Finally, after persist-
ing a new entity using the identity strategy, the JPA provider must immediately retrieve the generated
value from the database because it may be required by the application code, or to associate the entity
with another entity. This prevents the provider from optimizing performance by batching inserts into the
entity’s table.

170

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 171

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The GenerationType.IDENTITY strategy for generating identities prevents the
persistence provider from batching inserts, and is likely to perform slower than the
GenerationType.TABLE or GenerationType.SEQUENCE strategies.

The JPA specification only requires support for the @GeneratedValue annotation on identity fields. Open-
JPA supports the use of the annotation on non-identity fields, but this is not portable.

Using JPA Entities in a Java SE Environment
Let’s now look at how we can use our entity outside of a container. This is particularly valuable for unit
testing. We developed the persistence layer of bigrez.com iteratively using a test-driven development
approach. A set of JUnit 4 unit tests allowed us to test the persistence layer fully before we deployed it to
WebLogic Server. Here’s a persistence.xml for using Person outside of a container.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" ... namespace declarations ...>

<persistence-unit name="ExampleTestPU">
<class>example.Person</class>
<properties>

<property name="openjpa.ConnectionDriverName"
value="oracle.jdbc.OracleDriver"/>

<property name="openjpa.ConnectionURL"
value="jdbc:oracle:thin:@localhost:1521:orcl"/>

<property name="openjpa.ConnectionUserName" value="sampleuser"/>
<property name="openjpa.ConnectionPassword" value="password"/>
<property name="openjpa.Log" value="DefaultLevel=TRACE"/>
<property name="openjpa.jdbc.SynchronizeMappings" value="buildSchema"/>

</properties>
</persistence-unit>

</persistence>

This is a little longer than the descriptor we used to deploy to the server. We have added the following
items:

❑ Provider-specific properties containing the database connection information. These properties
should not be used when deploying to WebLogic Server because it is better to use WebLogic
Server managed data sources.

❑ The openjpa.Log property is set to TRACE so we can monitor Kodo’s activity and examine
the generated SQL. This property is ignored when deploying to WebLogic Server — use the
WebLogic Server debug facility instead.

❑ The openjpa.jdbc.SynchronizeMappings property is set to buildSchema. This is a very use-
ful feature for rapid development of new entities. When set, Kodo will examine the database
schema, and issue the appropriate SQL statements to create tables that don’t already exist.

❑ A <class/> element that explicitly lists our entity class.

171

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 172

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

We didn’t need to list our entity classes for Java EE deployment; the container is required by the speci-
fication to scan the classes in the jar file at deployment time looking for annotated classes. For portable
Java SE deployment outside of a container, the classes must be explicitly listed. Kodo has a special run-
time enhancer agent (see the next section, ‘‘Persistent Class Enhancement’’), which can discover entities if
they are not listed, but this process involves scanning every class for metadata and significantly increases
classloading times.

Optionally, the classes can be explicitly listed in a separate orm.xml mapping file. This file can also be
used to provide mapping metadata as an alternative to using annotations. We discuss best practice for
using orm.xml later in this chapter.

Java SE code must use an EntityManagerFactory to obtain an EntityManager. Additionally, the
persistent unit’s transaction-type defaults to RESOURCE_LOCAL (that is, local database transactions)
because JTA transactions are not available. Application code should manage transactions through the
EntityTransaction interface. For example:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("ExampleTestPU");
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
// JPA application code goes here.
em.getTransaction().commit();
em.close();

If you wish to deploy JPA code written for Java SE to a Java EE container, it often needs modification
to remove hard-coded dependencies on an EntityManagerFactory or EntityManager transaction man-
agement. The reverse is not true, and is one benefit of EJB 3.0’s use of dependency injection. It is easy to
write a J2SE wrapper around an SLSB that creates an appropriate EntityManager and manually injects
it into the annotated field in the SLSB class. This does require that the wrapper code can access the field.
When writing SLSBs, we often add methods to provide access to unit test code in the same package. For
example:

@PersistenceContext
private EntityManager entityManager;
/** For unit tests. */
void setEntityManager(EntityManager entityManager)
{

this.entityManager = entityManager;
}

Best Practice
Add access methods to your EJBs and other Java EE components, so that unit tests can
simulate the container dependency injection and populate annotated fields.

The access methods can be package scope, and need not corrupt a component’s public
interface.

When running in a Java SE environment, be sure that you are using the correct classpath. It should
contain the com.bea.core.kodo jar files from the modules subdirectory of the Oracle Middleware Home
directory. Otherwise you might end up using plain OpenJPA and not benefiting from Kodo’s enterprise

172

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 173

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

features. We ran into this when developing the bigrez.com unit tests, and experienced problems related
to database constraints until we added Kodo to the classpath. OpenJPA inserts records into the database
in the order that you persist the corresponding objects. Kodo is aware of the database constraints and
reorders SQL statements to avoid these problems.

Because Kodo is a commercial tool, you should also check with your Oracle representative that using
Kodo outside of WebLogic Server is covered by your license agreement.

Persistent Class Enhancement
To optimize performance and implement lazy loading, OpenJPA and Kodo require that the byte code of
persistent classes be modified with an enhancer tool. The enhancer is run automatically on deployment to
a Java EE 5 environment.

For Java SE deployments, the enhancer can either be run manually over the compiled classes as part
of a build, or through a Java 5 agent. If neither of these are done, Kodo will generate subclasses of the
persistent classes, and issue a warning that the application will run less efficiently, and that references
between entities will always be resolved eagerly. We have also witnessed differences in behavior between
JPA code run through the enhancer and JPA code relying on generated subclasses. Consequently we
recommend always running the enhancer.

The runtime agent is useful when developing Java SE code in an IDE, as it doesn’t require a separate com-
pile stage. Simply add the argument -javaagent:/oracle/middleware/modules/org.apache.openjpa_
1.0.0.0_1-1-1-SNAPSHOT.jar (where /oracle/middleware is the Oracle Middleware Home directory)
to the Java command line.

When using the runtime enhancer, it is a good idea to list the entities in the persistence unit. As noted
previously, this is required if you want your persistence context to be portable between JPA providers.
Additionally, if the classes are not listed, the enhancer checks every class that is classloaded, which can
be slow and can even cause deadlocks.

Build-time enhancement is useful as part of the formal build process for your code. There are advantages
to build-time enhancement when deploying to a Java EE environment as well, including catching errors
before deployment time, and speeding up deployment. To enhance your classes at build time, either use
the org.apache.openjpa.enhance.PCEnhancer utility directly from the command line or use the kodoc
Ant task, as shown here.

<taskdef name="kodoc"
classname="kodo.ant.PCEnhancerTask"
classpathref="wls.classpath"/>

<kodoc>
<classpath refid="build.classpath"/>
<config propertiesFile="${classes.dir}/META-INF/persistence.xml"/>
<fileset dir="${src.dir}">
<include name="**/entities/*.java" />

</fileset>
</kodoc>

Starting in WebLogic Server 10.3, the WebLogic Server appc compiler also performs build-time enhance-
ment for Kodo-managed persistence units that it finds in the application.

173

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 174

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
When working with OpenJPA or Kodo, always ensure persistent classes to be deployed
in a Java SE environment are enhanced at build time or by using the runtime agent.

Relationships
The efficient mapping and management of relationships between entities is a key feature of an ORM
system. Let’s create a new entity class that has a relationship to Person. Our new entity represents a team
of individuals.

@Entity
public class Team
{

@Id
@GeneratedValue
private long id;
private String name;
@OneToMany
private Set<Person> teamMembers = new HashSet<Person>();

public Team() { }
public Team(String name) { setName(name); }

public long getId() { return id; }

public void setName(String name) { this.name = name; }
public String getName() { return name; }

public void addTeamMember(Person person) { this.teamMembers.add(person); }

public Set<Person> getTeamMembers()
{

return Collections.unmodifiableSet(teamMembers);
}

}

The Team entity is linked to the Person entity through its teamMembers field. Unlike basic attributes,
relationship fields must be explicitly annotated. We have used the @OneToMany annotation to specify
that each Team is associated with many Person instances. JPA also supports OneToOne and ManyToMany
relationships.

The many end of a relationship can be mapped to a java.util.Collection, java.util.List,
java.util.Set, or java.util.Map. The field should be initialized to an appropriate implementation,
but this may be replaced by a provider-specific implementation when an entity is refreshed from
the database. Applications should not depend on the order of the elements in a collection unless the
relationship is also annotated with javax.persistence.OrderBy and the application takes care not to
alter the order.

174

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 175

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Because we only set an annotation on the Team class, our relationship is unidirectional. You can navigate
from a Team instance to a related Person, but not from a Person to its Team.

The natural database schema mapping for a one-to-many relationship would be a foreign key column in
the PERSON table that refers to the TEAM table. JPA does not support this mapping for unidirectional one-
to-many relationships, because it would require the mapping for the entity that owns the relationship
(Team) to influence the mapping for the entity that is otherwise ignorant of the relationship (Person).
Instead, JPA requires the introduction of a separate join table for unidirectional one-to-many mappings.
OpenJPA supports unidirectional one-to-many mappings using a foreign key, but this is not portable.

Let’s make our relationship bidirectional. To do this, we add a Team field to Person, and annotate it with
ManyToOne, and add a mappedBy element to the @OneToMany annotation.

@Entity
public class Person
{

@ManyToOne
Team team;
...

}

@Entity
public class Team
{

...
@OneToMany(mappedBy="team")
private Set<Person> teamMembers = new HashSet<Person>();
...
public void addTeamMember(Person person)
{

this.teamMembers.add(person);
person.team = this;

}
...

}

Now that the relationship is bidirectional, the JPA mapping uses a foreign key column on the PERSON
table. The default name of the column is TEAM_ID, the ID part being derived from the name of the TEAM
primary key column.

Best Practice
When creating bidirectional relationships, use the mappedBy element on one entity,
rather than annotating both entities with mapping data. This follows the Don’t Repeat
Yourself principle, and avoids the opportunity for the mappings to be inconsistent.

JPA requires that the application maintain both ends of bidirectional relationships. If you modify the
field at one end, you must make the corresponding changes to the field at the other end. We’ve made this
a little easier to manage by updating the Person.team field in addTeamMember().

175

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 176

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
JPA requires you to maintain both sides of a bidirectional relationship manually. Don’t
provide direct access to modify the association fields through the entities’ public inter-
faces. Instead, write helper methods in one or both entities to encapsulate the work to
correctly maintain the relationship.

Cascading Operations
All of the association annotations have a cascade element. This accepts an array of CascadeType values
that control which entity manager operations carried out on the owning entity are automatically cascaded
to the related entities. Four entity manager operations can be cascaded: persist(), remove(), refresh(),
and merge(). By default, no operations are cascaded. The operation may recursively be applied through
the association fields of the related entities, again according to the cascade element setting.

Cascading can be seen as a convenience feature that frees programmers from having to apply the same
entity manager operation to related entities, and to their related entities, potentially several levels deep.
It also affects whether related entities are managed as a group, which can have positive and negative
effects on performance. Finally, it can reflect whether the association types represent composition (where
an entity cannot exist without its parent) or aggregation.

Cascading persist() operations usually makes sense. If the related entities are already per-
sisted, no action is taken. When the container attempts to flush a newly persisted entity that has a
cascade=CascadeType.PERSIST association, but some of the related entities have not been persisted,
it may throw an exception due to database foreign key constraints. If you experience problems when
cascading persist() due to foreign key constraints, don’t be tempted not to cascade persist(). Instead,
you should ensure you have flushed the parent entities before you create the child entities.

CascadeType.REMOVE should be used only where there is a composition relationship between the entity
and its related entities. That is, the entity owns the related entities, and the related entities cannot exist
independently of the owner.

In our simple model, it would probably not be right to cascade remove() through the Team.teamMembers
association, because a Person may validly belong to no Team. It certainly would not be right to cascade
remove() through Person.team to the Team without also cascading through Team.teamMembers, because
removing a Person would delete the Team and leave any other members of the team with a dangling
foreign key reference. If the database schema has foreign key constraints, the transaction will fail when
committed. If there are no foreign key constraints, the database will be left in an inconsistent state.

What about CascadeType.MERGE and CascadeType.REFRESH cascade types? Clearly, you should not
apply them to every association, or merge() and refresh() operations will walk every reachable entity.
Think twice before applying them to @ManyToOne associations — will the target entity propagate the
operation through the inverse link and affect more entities than you intended? Our preference is to use
these cascade types only for closely related entities.

176

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 177

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
Set cascade=CascadeType.PERSIST on your associations by default; there’s little reason
not to.

Only set cascade=CascadeType.REMOVE for associations that represent composition
relationships. Never set CascadeType.REMOVE on @ManyToOne or @ManyToMany associa-
tions without also setting it on the inverse association field of the target entity.

Think carefully before applying cascade=CascadeType.MERGE or cascade=CascadeType.
REFRESH to a @ManyToOne association.

Here are the changes to Person and Team to cascade persist operations.

@Entity
public class Person
{

...
@ManyToOne(cascade=CascadeType.PERSIST)
Team team;
...

}

@Entity
public class Team
{

...
@OneToMany(mappedBy="team", cascade=CascadeType.PERSIST)
private Set<Person> teamMembers = new HashSet<Person>();
...

}

JPQL Queries
Entities that already exist in the database can be loaded into a persistence context using the
EntityManager.find() method, or by using a query.

An entity can be looked up by primary key using the EntityManager.find() method. This method is
equivalent to the EJB 2.x findByPrimaryKey() method. It should always be used if the primary key is
known, because it will not contact the database if the entity is already in the persistence context.

Queries provide more general access to entities. Queries are written in the Java Persistence Query Lan-
guage (JPQL), which is largely derived from the EJB 2.x Enterprise JavaBeans Query Language (EJB QL).
We do not have the space here to discuss the details of the JPQL language, but it is easy to pick up if you
are familiar with SQL or EJB QL.

177

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 178

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Queries can either be named queries or dynamic queries. Named queries are static queries that are
predefined in metadata — either in a class level annotation or in orm.xml. They are accessed
using the EntityManager.createNamedQuery() method. Dynamic queries are created using
EntityManager.createQuery(). They are appropriate when the form of the query expression is not fully
known until run time.

Named queries have several advantages over dynamic queries. There is more opportunity for the con-
tainer to cache the result of query parsing and compilation, so they are more efficient. They can easily be
overridden. Dynamic query expressions are strings constructed by the application, and are often derived
from user input. Unless care is taken, these expressions may be vulnerable to SQL injection attacks.
Named queries don’t suffer from this risk because variable information is supplied as named query
parameters that are mapped directly to prepared statement bind variables. API extensions to allow safe
dynamic queries to be constructed are a feature of the JPA 2.0 specification, and so will be supported in a
Java EE 6 and a future version of WebLogic Server.

A downside to named queries is that their names must be globally unique, and are not checked at compile
time. We recommend qualifying each query with the name of the owning entity, and referring to the
query using a constant field.

Here’s an example of a named query that finds all members of a team with a given name.

@NamedQuery(name = Person.QUERY_BY_TEAM_NAME,
query = "select p from Person p where p.team.name = :teamName")

@Entity
public class Person
{

public static final String QUERY_BY_TEAM_NAME = "Person.queryByTeamName";
...

}

The query parameter teamName will be mapped to a prepared statement bind variable. This allows for
efficient execution and protects against SQL injection. The query is used as follows.

Query query = em.createNamedQuery(Person.QUERY_BY_TEAM_NAME);
query.setParameter("teamName", "Blue");
List<Person> blueTeamMembers = query.getResultList();

Queries need not return entities. Here’s a query that returns an ordered list of team names.

@NamedQuery(name = Team.QUERY_NAMES,
query = "select distinct t.name from Team t order by o.name")

JPA also supports native SQL queries, created using the EntityManager.createNativeQuery() method.
Native SQL queries are not portable across databases, and are only appropriate where JPQL cannot be
used.

Best Practice
Where possible, use named queries in preference to dynamic queries or native queries.

178

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 179

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The JPA container will populate the persistence context with the results of a JPQL query. Only infor-
mation retrieved by the query will be used, so related entities will not be loaded if the query doesn’t
join across the relationships and they are not eagerly fetched. (We discuss eager fetching shortly). If you
detach the entities returned by a query, for example, and you return a list of the entities to a client, their
association fields will be null. The client might reasonably expect the associations to be populated. You
can force a JPQL query to load related entities, even if it doesn’t refer to the entities in a WHERE clause,
by using a fetch join. Usually you will want to use a left outer join. Here’s a query that ensures that the
teamMembers fields of the returned Teams are populated.

@NamedQuery(name = Team.QUERY_BY_TEAM_NAME,
query = "select distinct t from Team t left join fetch t.teamMembers

where t.team.name = :teamName")

Fetch joins behave like normal joins, and the result will include a reference to the Team for each of its team
members. When using fetch joins, you can add the distinct keyword to remove the duplicate results.

Best Practice
When writing a JPQL query, ask yourself whether the result should include associated
entities that are not otherwise referenced in the query and are not eagerly fetched. If so,
use fetch joins to populate the association fields.

JPQL Bulk Updates
JPQL may also be used to perform a bulk update against the database. Bulk updates are executed in the
database, without the need to pull the data into application server memory. The update expression is
written using JPQL in terms of the application object model, and is portable across different data stores.

Query bulkUpdate =
em.createQuery(
"update Person p set p.team = " +
"(select t from Team t where t.name = ’The Boys’) " +
"where p.salutation = ‘Mr’");

bulkUpdate.executeUpdate();

Kodo generates the following SQL for this example.

UPDATE Person t0 SET t0.TEAM_ID = (SELECT t1.id FROM Team t1 WHERE (t1.name =
?)) WHERE (t0.salutation = ?)

Bulk updates are an effective way to make mass changes to the database. This is not often required by
an online transaction processing application, but may be useful for batch updates and schema migration
applications.

You should be aware of the following before using bulk updates.

❑ The results of bulk updates are not synchronized with the persistence context. Consequently, it
is best not to mix bulk updates in the same transaction as normal JPA code.

179

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 180

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

❑ Bulk updates do not automatically update optimistic locking version columns, nor check
whether optimistic locking assertions have been violated. If you wish the bulk operations to
interact correctly with other application transactions, the update expression should explicitly
update the value of the version column, if desired, and explicitly verify that the version column
has the correct value. We discuss optimistic locking at length later in this chapter.

Best Practice
Use bulk updates where you can for wholesale changes to the database, such as might
be required by batch processing or for schema version migration applications.

Be careful when mixing bulk updates with other JPA operations. The results are not
automatically synchronized with the persistence context, and you should ensure the
update expressions perform any necessary version updates and checks.

Embedded Entity Classes
JPA provides the notion of embedded entity classes to allow entities to be composed of smaller, fine-
grained classes. Instances of embedded entity classes are value objects that have no persistent identity
of their own. They are wholly owned by a single entity. An instance of an embeddable class cannot be
shared between two entities.

Embeddable classes are marked with the @javax.persistence.Embeddable annotation. The
owning entity can have one or more fields of an embeddable class, each indicated with a
@javax.persistence.Embedded annotation. The attributes of an embeddable class are mapped
with metadata (as annotations, or in orm.xml) as if they were expanded in line in the owning entity.

Embedded entity classes allow the identification and grouping of attributes to create a more appropriate
Java class model. This can be independent of the underlying schema; that is, the schema has no notion of a
distinct object. Embeddable class can also be used to map the Java class model to a denormalized database
schema; in this case the schema has multiple tables, each of which contains the columns corresponding
to the embeddable class’s attributes.

You can find examples of embedded entity classes in the bigrez.com application. For example, both the
GuestProfile and the Reservation entities use the CardDetails embedded class.

Eager and Lazy Fetching
If you have an entity with a large field that is infrequently accessed, you might not want the field to be
brought back into memory every time the entity is refreshed from the database. If so, you can add an
explicit @javax.persistence.Basic annotation to those fields with a fetch=FetchType.LAZY element.
The field will then be fetched on demand.

The fetch=FetchType.LAZY element can also be added to @OneToOne and @ManyToOne associations to
change their default, eager loading behavior.

@OneToMany and @ManyToMany associations are lazy by default; they can be made eager using
fetch=FetchType.EAGER. This is appropriate if you know the collections are small and likely to be
accessed.

180

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 181

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Configuring fields for lazy loading can be very useful when tuning an application. However, be aware
that the JPA specification defines FetchType.LAZY as a hint that the container is free to ignore. Also,
lazily fetched fields and associations are ignored when entities are detached from the persistence context,
or reattached with an EntityManager.merge() operation. Consequently, lazy loading is vendor-specific
behavior.

Later in this chapter we describe our preference for setting vendor-specific behavior in deployment
descriptors, rather than annotations. It is also a good idea to keep tuning information in descriptors,
because it can change with different environments, particularly between databases of different sizes.

Best Practice
Tune large and infrequently accessed fields and associations to be fetched lazily from
the database. Tune small, or very frequently accessed fields and associations to be
eagerly fetched.

Fetch behavior is vendor-specific, and may need to be tuned per environment, so it is
generally best set in the orm.xml descriptor and not in annotations.

Optimistic Locking and Version Fields
Java EE applications typically support simultaneous access by many thousands of users. A key consid-
eration for a persistent Java EE application is how to manage concurrency. In particular, how do you
ensure that changes made by a user affect other users in a well-defined manner?

Three common approaches exist: database locking, pessimistic locking, and optimistic locking.

Database Locking The database locking strategy uses a database lock to ensure that only one
user can update the database row for a particular entity for the duration of a transaction.

Database locking provides a basis for the application to interact safely with other applications that
access the database. The database will prevent the other applications from updating the locked
data, and the transaction isolation level will determine the consistency of each application’s view
of the data. The other applications can use the same, well-defined database locking so their changes
are not overwritten.

A second advantage of using database locks is that the database will guarantee that the locks are
released when the transaction commits or rolls back.

Database locking has several negative consequences.

Unless applications take care to acquire and release locks in a well-defined order, there is the pos-
sibility of encountering a deadlock between two application transactions. The database will detect
the deadlock and cause one of the application transactions to rollback.

Database locks can negatively affect scalability and performance. The database must do more work
to implement the locking. Application transactions may have to wait to obtain a lock. Applica-
tions that use database locking may require a more strict database isolation level than those that
use optimistic locking. This too negatively affects performance. There is no application tier caching
so the container is forced to read all of the data used by a transaction from the database. There is no
way to share data read by one transaction with subsequent transactions.

181

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 182

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The final and most important deficiency with database locking concerns correct application behav-
ior. The transaction controls the granularity of database access. Every time an application starts a
new transaction and reads data from the database, that data may have changed. This creates prob-
lems for conversational applications that use one transaction to present a view of the database to
the user (perhaps as an HTML form), and another transaction to write updates back to the database
(perhaps the result of the user submitting the form). What happens if some other user updates
the same data after the view has been obtained but before the update is written back? The second
transaction will blindly overwrite the changes made by the other user, resulting in lost updates.

Pessimistic Locking With pessimistic locking, the application takes out locks on an area of the
database that can survive multiple transactions. The locks might be implemented in the application
(in which case, no other application will understand and respect them), or with database features.

Pessimistic locking might be suitable for departmental applications serving a small user base, but
is impractical for the typical Java EE application.

Optimistic Locking With optimistic locking, when a user starts to use an entity, data is read
from a row in the database. The user modifies the entity and when the data is written back to the
database, the container checks that no other thread or process has updated the row in the interim.
This is how optimistic concurrency gets its name. Instead of taking out a pessimistic lock on an area
of the database between the read and the write, the code executing on behalf of the user optimisti-
cally assumes that no other code has updated the data and attempts to do the write.

How does the container check whether an entity the application is trying to write back to the
database is out of date — that is, whether someone else has changed the database since the
entity was read? Several common strategies exist, ranging from checking all attributes of the
entity, through to managing a separate version attribute. An important point is that this version
information is managed with the entity itself. This allows optimistic locking to be used as a basis
for safely caching entities across many separate transactions.

What are the attributes of an application that is suited to the optimistic concurrency strategy?

First of all, there should be low probability of write contention. It should be unlikely that two users
will be attempting to write to the same entity at the same time. Optimistic concurrency is not a
good fit for a single entity instance that must frequently be read and later updated by many users.
This does not rule out many readers. Optimistic concurrency is a great fit for applications that have
many readers and few writers for each entity.

Secondly, the application must be designed to handle write failures in a reasonable manner.
This usually involves presenting the user with a message such as ‘‘Another user has altered
this account, please refresh your view and try again.’’ Such a message might be annoying for
the user but is unlikely to occur due to the low write contention. Contrast this with pessimistic
locking where it is possible to inform the user ‘‘Another user is altering this account, please open
it read-only.’’ What if this other user has gone for a two-hour lunch? This is the reason pessimistic
locking can only scale to a small population of users that work in the same office where they
all know about the activities of their peers. Systems that use pessimistic locking may have to
incorporate complex lock override mechanisms to resolve such problems.

Fortunately the typical Java EE application (a multi-user e-commerce system with a web interface
and a database partitioned into user accounts) can be designed to satisfy both of these require-
ments.

There is a third requirement that is important if the application system is not the only system that
writes to the database, namely that all systems that update the database must use the same conven-
tion to mark a row as updated. We will see that JPA provides support for optimistic locking based

182

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 183

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

upon an application defined version attribute. OpenJPA supports other conventions, including one
based purely on changes made to the business data, which may make interoperability with other
systems easier to arrange.

EJB 2.x neither defines nor mandates a locking strategy. For EJB 2.x WebLogic Server supports database
locking (the database concurrency strategy), optimistic locking, plus two other locking strategies. The exclu-
sive concurrency strategy uses Java locking, but only works in a single JVM so is impractical for real-world
applications. The read-only concurrency strategy does not support update and allows stale reads; it can
be considered overly optimistic. The optimistic concurrency strategy is a full optimistic locking imple-
mentation that was introduced in WebLogic Server 7.0. Despite clear benefits to optimistic locking,
most EJB 2.x WebLogic Server implementations use the database concurrency strategy. Perhaps one
reason for this is WebLogic Server–specific configuration (the version field information is specified in
weblogic-ejb-jar.xml) and APIs (weblogic.ejb.OptimisticConcurrencyException) were required.

JPA assumes optimistic locking, and provides good support for implementing it. Importantly, the API
has been standardized, so applications that rely on optimistic locking should be portable between
JPA providers. In particular, a standard exception (javax.persistence.OptimisticLockException) is
thrown to the application for optimistic lock failures. Applications must add a version field to each entity
they wish to protect with optimistic locking, indicated by a @javax.persistence.Version annotation.
OpenJPA provides other options for change detection; we look at those later in this chapter.

The optimistic concurrency strategy ensures that the row in the database has not changed during the
lifecycle of the bean. This is accomplished in WebLogic Server by saving, in the entity bean instance, the
values of specific fields as they existed during the database read invocation. These saved values are then
used in database update operations to verify that the database row has not changed by including them
in the WHERE clause of the SQL UPDATE statement.

Table 6-1 presents a simple example for two clients accessing and attempting to modify the same entity.

Here are the changes to the Person entity to add support for optimistic locking.

@Entity
public class Person
{

@Version
private long version;
...

An attribute marked with @Version and the corresponding column in the database table is all that is
required to enable optimistic locking support. The application should not attempt to update the version
field itself; it is managed entirely by the JPA container.

The following driver code creates a scenario in which OptimisticLockException is thrown. Two
EntityManagers are used to simulate the actions of two distinct users.

// User 1 creates a Person.
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Person person = new Person("Mr", "Phil", "Aston");
em.persist(person);
em.getTransaction().commit();

183

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 184

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

// User 2 changes our Person.
EntityManager em2 = emf.createEntityManager();
em2.getTransaction().begin();
Person person2 = em2.find(Person.class, person.getId());
person2.setFirstName("Bob");
em2.getTransaction().commit();

// Time passes... Imagine that person is stored in User 1’s HTTPSession.

// User 1 changes our person.
person.setLastName("Smith");
em.getTransaction().begin();
em.merge(person);
try {

em.flush(); // Will throw an OptimisticLockException.
}
catch (OptimisticLockException e) {
}

In the preceding example, flush() was called explicitly to push changes out to the database. The JPA
provider is required to throw OptimisticLockException if any entity with a version field has been
modified concurrently. Explicitly calling flush() allows the application to detect early that an optimistic
exception will occur and perhaps take some corrective action. The options for this corrective action are
limited because the current transaction will have been marked for rollback.

Furthermore, because a third party can update the database at any time, the application must always
be prepared to handle an optimistic locking failure at commit time. This typically involves an exception
handler in the presentation layer that catches the exception and presents a page to the users explain-
ing that their attempted update failed. Alternatively, the application may retry its operations in a new
transaction a number of times. This is common for applications driven by JMS messages. It is up to the
caller performing the business method that caused the exception to determine whether it is safe to retry
the operation by starting the transaction again, reacquiring the bean instance with updated data from
the database, and reapplying the desired changes. Normally, it is not safe simply to reapply the changes
without asking for user permission. It may also be necessary to check whether the row still exists in
the database to determine the proper course of action. The safest technique is to report the concurrency
exception to the user and ask him or her to determine the correct action.

It is also reasonable for a session façade EJB not to try to handle the OptimisticLockException, and to
rely on its caller to do so. Often the end user will have called the session EJB based on a view obtained
a minute or two earlier. Key entities from the view will have been resupplied to the session EJB, and an
optimistic lock failure might arise because the entity version fields are out of step with the database. The
end user will almost certainly want to know that another user is altering the same part of the database.

Best Practice
Include exception handling code in client applications to trap and handle
OptimisticLockExceptions thrown by the container at the end of a bean lifecycle.
In some cases, particularly for message-driven bean implementations, the operation
can simply be retried, but often the user must be informed of the error and given the
opportunity to select a course of action.

184

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 185

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Table 6-1: Optimistic Concurrency Example

Client #1 Thread Activity Client #2 Thread Activity

The client starts a transaction and finds a
reference to entity 101.

The JPA container loads entity 101 from the
database into the client’s persistent context. The
value of the entity’s version field is read as 3.

The client starts a transaction and finds a
reference to entity 101.

The client changes the values of some of the
entity’s attributes.

The JPA container loads entity 101 from the
database into the client’s persistent context. The
value of the entity’s version field is read as 3.

The client attempts to commit its transaction,
causing the persistent context to be flushed to
the database.

The JPA container performs the database
update. The SQL expression is of the form
elements UPDATE ... set version=4 ... WHERE
version=3

The client changes the values of some of the
entity’s attributes.

The database transaction branch is committed
and the results of the transaction become visible
to others.

The client attempts to commit its transaction,
causing the persistent context to be flushed to
the database.

The container returns control back to the client,
indicating the commit completed successfully.

The JPA container performs the database
update. The SQL expression is of the form
elements UPDATE ... set version=4 ... WHERE
version=3. This update fails because the
database VERSION column now has the value 4.
The JPA container marks the transaction for
rollback and throws an
OptimisticLockException to the client.

When catching exceptions from a commit or a rollback, beware that the OptimisticLockException
may be wrapped in another exception. For applications using the JPA transaction manage-
ment, this might be a javax.persistence.RollbackException. For Java EE applications using
JTA transaction management, the OptimisticLockException will probably be wrapped in a
javax.transaction.RollbackException. Clients who wish to handle optimistic concurrency failures
must unwrap the exception they catch and look for an OptimisticLockException. This can be done by
calling the isOptimisticLockingException() method shown here.

public static final boolean isOptimisticLockingException(Throwable t)
{

while (t != null && t.getCause() != t) {
if (t instanceof OptimisticLockException) {

return true;

185

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 186

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

}
t = t.getCause();

}
return false;

}

Explicit Locking
Optimistic locking only protects against concurrent modifications to the same entities. It does not stop an
application from using stale data from an entity it has loaded, but not changed.

For example, consider an application transaction that queries the Person entities for a particular Team,
uses this to create a string describing the members of team, then writes this description to a field of the
Team entity. Because the transaction has not modified any of the Person entities, the optimistic locking
assertion on the SQL update will only check the version column for the Team entity. If a separate trans-
action concurrently updates a Person’s name, there is a danger that the team description will be out of
date.

To protect against this non-repeatable read scenario, the application can use the EntityManager.lock()
method to take out read locks on each Person it reads from.

StringBuilder sb = new StringBuilder();
for (Person p : team.getTeamMembers()) {

if (sb.length() > 0) {
sb.append(", ");

}
em.lock(p, LockModeType.READ);
sb.append(p.getFirstName());

}
team.setDescription(sb.toString());

The lock() method name is a little misleading because it doesn’t necessarily need to lock anything. The
implementation may take out a database lock on the entity row, or simply add the supplied entity to the
list of entities to be checked for version changes when the persistence context is flushed or committed.

Calling lock() with a lock mode of LockModeType.WRITE behaves in the same way, but also causes the
version column to be updated when the persistence context is next flushed or committed. Because the
transaction will then hold a write lock on the row, this will prevent other transactions from updating the
entity until the transaction commit completes.

Best Practice
If your application reads data from an entity it does not update, and then uses that data
to update another entity, you should strongly consider taking out a read lock on the
entity to ensure your transaction leaves the database in a consistent state.

If you wish to prevent other concurrent transactions from updating an entity, take
out a write lock instead and flush() the persistence context. This will likely acquire
a database lock on the row, so be wary of using write locks in lengthy transactions
because they will constrain performance and increase the probability of database dead-
locks.

186

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 187

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Writing a Web Layer Suited to Optimistic Locking
One final nuance related to optimistic concurrency and web applications is worth discussing: there is a
difference between enforcing concurrency in the context of a container transaction and ensuring that mul-
tiple users do not perform conflicting updates. Consider a typical web application having an HTML form
used to edit entity data. The form might be populated with entity data during one read transaction, and
sent to the user’s browser for update. Later, the updated fields may be posted to a controller or action JSP
page, and used to modify entity data during a second write transaction. Optimistic concurrency ensures
integrity during each of the two transactions, but it does not inherently prevent two users from viewing
the same entity data simultaneously and submitting conflicting changes one at a time. To understand
why, note that the write transaction will re-read all the entity data from the database, including the ver-
sion column. Each write transaction will succeed for both users, one after another, because value of the
version column does not change between the start and end of the transaction.

To avoid this, the web layer should hold on to the version information associated with the entities used to
render a particular view, and resubmit the version information with the write transaction. Two straight-
forward implementation strategies exist: store the original entities in the HTTP session, or extract the
version information and place it in hidden form fields.

Store view entities in the HTTP session With this strategy, the web layer stores the detached
entities used to render the view in the HTTP session. It returns those same entities (with the
fields updated to reflect user edits) as parameters to the write transaction. Instead of re-reading
the entities from the database, the write transaction uses the EntityManager.merge() method
to merge the supplied entities into its persistence context. The original version field will then be
used by optimistic locking assertion to ensure that no other user has modified the data in the
meantime.

Store version information in hidden fields The web layer can store the value of the identity and
version fields in hidden fields on the HTML form. When the form is submitted, the web layer cre-
ates new detached entity instances, including the user edits, sets the value of identity and version
fields from the hidden form fields, then submits the new entities as parameters to the write trans-
action. The write transaction uses EntityManager.merge() to merge the supplied entities into its
persistence context with optimistic locking checks.

It is valid for the application to set the version field of a newly created instance that also has the
identity field set. All other attempts to modify the version field are invalid, and will be detected as
such by OpenJPA.

The first approach is simple in JPA terms, but requires the web layer to keep a set of entities in the session
for each page flow the user begins. This uses more memory, and if the user leaves the page and never
returns, the HTTP session may fill up with unused information.

The second approach involves copying additional information out of the entities into the HTML form,
and the application must handle the otherwise opaque identity and version fields. This copying can
almost certainly reuse whatever existing approach the application uses for populating a form with
entity data. It has the distinct advantage of not requiring any session state; however, it is not compat-
ible with the Kodo surrogate version column and lock group features — we discuss this later in this
chapter.

The combination of this type of application-level check and the server-based optimistic concurrency logic
provides a strong level of concurrency control for your application.

187

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 188

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
To take full advantage of optimistic locking, allowing it to work across multiple trans-
actions and to synchronize a view of application data with an associated user edit, the
web layer and other user interfaces need to manage version information associated
with each view.

Inheritance
Support for mapping inheritance hierarchies is one of the touted advantages of JPA over EJB 2.x entity
beans. In practice, inheritance is an advanced feature that is rarely appropriate.

JPA supports three mapping strategies. Each has advantages and disadvantages. There is no general-
purpose, efficient mapping of inheritance hierarchies to the relational model.

The single table strategy maps all the classes in the inheritance hierarchy to the same table. A special dis-
criminator column in the table is used to store the entity class for a row. This is a simple, fast strategy. The
table will contain columns that are only used by some of the derived classes, and will be NULL in rows
for entities belonging to other classes. The presence of many optional columns is undesirable from a rela-
tional design perspective, and prevents the use of database constraints to maintain structural integrity.

In the joined tables strategy, each class in the hierarchy maps to its own table. The table for the most
abstract class contains a discriminator column. This approach produces a normalized database schema,
but leads to more complex, slower SQL statements. When entities are loaded from the database, the
query has to join tables for subclasses to the superclass tables. Similarly, updates to a single entity affect
multiple rows.

The table per class strategy maps each concrete (non-abstract) class to its own table. Each table contains all
of the information for a particular entity type. A discriminator column is not required, so it conceivably
could be retrofitted to an existing schema. This strategy does not require unnormalized tables with empty
columns, and the SQL statements for basic operations operate on a single table so are straightforward
and efficient. Nevertheless, it has a number of significant limitations if you wish to treat the entities
in a polymorphic manner. You cannot map to a non-leaf entity class (that is, an entity class from which
another entity is derived) using an inverse foreign key — to what table would the key refer? Also, identity
lookups and queries require multiple SELECT statements or a complex UNION.

It is common wisdom that inheritance is often overused in object-oriented design. Often, aggregation
and composition are more appropriate and lead to simpler, flexible, and less brittle implementations.
This principle becomes even more important with the added complexity of mapping between the object
and relational models. Only use inheritance where you truly need polymorphic behavior from your
entity object model.

JPA also provides for mapped superclasses. Mapped superclasses are similar to embedded classes, and
allow the abstraction of the behavior of fields that are common to many entities. This is not a strategy for
entity inheritance mapping. The superclass is not an entity itself; its fields are mapped to columns that
are present in each of the entity’s tables.

We often create a utility mapped superclass that deals with identity and versioning concerns. This super-
class can provide standard implementations of hashCode() and equals(), as well as utility methods
common to each entity class. See bigrez.com for an example.

188

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 189

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Applying JPA
Although JPA is a relatively new specification, it builds on experience derived from mature products such
as Kodo, TopLink, and Hibernate. The breadth and detail of the specification can be a little daunting to
the first-time user. In practice, it is straightforward to apply.

The following list is our recommended approach for applying JPA effectively.

❑ Don’t start off by attempting to learn the entire specification — look for additional features as
you need them.

❑ Create a utility mapped superclass that deals with identity and versioning concerns.

❑ Apply the Don’t Repeat Yourself principle. If your schema tables repeatedly use the same group of
columns, use embedded entities to map these to a single Java class.

❑ Use inheritance between entities with caution. It is rarely appropriate, and has significant perfor-
mance costs due to the mismatch between inheritance and the relational model.

❑ Your schema will most likely outlive your application, and will be used by other applications.
Allowing the JPA provider to generate the schema can be useful for rapid prototyping, but the
database schema, rather than your object model, should be considered authoritative.

❑ Use SLSBs to manage transactions, and use container-managed persistence contexts.

❑ Estimate the scope of each transaction. How many entities will it affect? Apply lazy loading to
avoid unnecessarily loading large collections into memory.

❑ Use optimistic locking. Design optimistic locking exception handling mechanisms into the layers
that call JPA.

❑ Don’t be afraid to use advanced features of your JPA provider, but minimize the points in your
application that rely on them. For example, avoid proprietary annotations and make the corre-
sponding changes in a deployment descriptor instead.

And our most important piece of advice:

❑ Write full unit tests for your entity classes. Set openjpa.Log property to TRACE, and check that
the generated SQL is as you would expect. This will give you confidence that the JPA provider
is performing correctly, and provide early warning of potential performance problems. The
openjpa.Log property is ignored when deploying to WebLogic Server — use the WebLogic
Server debug facility instead.

Now that we’ve completed our review of EJB key concepts and looked at a few generic EJB examples, it
is time to dive in to the unique features and capabilities of the WebLogic Server EJB container.

WebLogic Server EJB Container
Our discussion of WebLogic Server EJB features concentrates on features useful in the creation of classic
Java EE applications using EJB components for the business layer of the application. We start with a
brief review of the EJB container and the lifecycle of EJB components in the WebLogic Server container
implementation. The next section documents WebLogic Server EJB features common to many of the EJB
component types. The remainder of the chapter is then spent discussing features applicable to specific
types of EJB components.

189

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 190

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

WebLogic Server has so many EJB-related features and configuration parameters that we had to make
some choices in the interest of space. The theme for this book is best practices, after all, and some
advanced features and capabilities represent more useful and important concepts for typical Java EE
applications than others. The next chapter applies the best practices discussed here to a realistic Java EE
application.

EJB Container Basics
The EJB container is a fundamental part of the EJB architecture. In a nutshell, the EJB container provides
the environment used to host and manage the EJB components deployed in the container. The container is
responsible for providing a standard set of services, including caching, concurrency, persistence, security,
transaction management, and locking services. The container also provides distributed access and lookup
functions for hosted components, and it intercepts all method invocations on hosted components to
enforce declarative security and transaction contexts.

The EJB container is not a single Java class, nor is it a single API or service accessible to the contained
components or external client code. It is more of an abstract concept implemented by each server vendor
in a unique fashion. Note that most of the unique features of WebLogic Server described in the remaining
sections of this chapter are actually features of the EJB container itself.

EJB Lifecycle in WebLogic Server
One of the key responsibilities of the EJB container is the management of EJB component lifecycles. Bean
instances are pooled and reused by the container to reduce the number of object instantiations. Rather
than spend time reviewing the complex and confusing processes involved in pooling, passivation, acti-
vation, and other memory-management issues, we’ll take a more pragmatic approach by concentrating
on the key lifecycle events of an EJB component from the point of view of a client of the component.

Given that approach, the lifecycle of a stateless session bean, for example, becomes fairly simple:

1. The client obtains a reference to the SLSB. There are three options here. First, the reference
can be injected into the client via an @EJB annotation. Second, the reference can be bound into
the client’s local java:comp/env environment, using the @EJB annotation at class-level or a
deployment descriptor entry, and the client can retrieve the reference with a JNDI lookup.
Third, the client can look up the SLSB in the server’s global JNDI tree. The client can also
use the EJB 2.1 client view to look up the SLSB Home interface, using any of the three meth-
ods, and call create(). (The EJB 2.1 client view allows EJB 2.x clients to call EJB 3.0 beans,
providing backward compatibility, as required by the specification).

2. The client invokes a business method on the bean reference.

3. The container can reuse an existing instance of the SLSB from a pool, if available, or can
instantiate a new bean instance. If a bean instance is newly created, the container will first
perform dependency injection. If the SLSB implements the optional javax.ejb.SessionBean
interface, the container will call setSessionContext(). The session context will also be
injected to any SessionContext field marked with the @Resource annotation. After
completing injection of the session context and other dependencies, the container will call
any methods marked with the @PostConstruct annotation.

190

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 191

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

4. The container starts a transaction, if appropriate. This is controlled by the
@javax.ejb.TransactionManagement and @javax.ejb.TransactionAttribute annota-
tions.

5. The container invokes the called business method on the bean instance, and the bean per-
forms the desired operation.

6. The container commits the transaction, if appropriate.

7. The results of the business method call are returned to the client.

8. The client may invoke additional business methods on the bean reference, each of which
may end up invoking methods on a different bean instance.

9. At some point, if the container decides to reduce the size of the bean instance pool, the con-
tainer invokes any @PreDestroy methods on the bean instance, or ejbRemove() if the bean
implements the SessionBean interface. It is important to understand that this decision is not
related to any client action.

@PostConstruct methods are equivalent to EJB 2.x ejbCreate() methods, and are good places to load
cached data in an SLSB instance, or perform other initialization steps such as JNDI lookups, or obtain an
expensive connection to a backend resource. Although SLSBs are stateless from the point of view of the
client, the bean instances are reused and may cache data in internal member variables.

The application should not assume that @PreDestroy methods will always be called. For example, bean
instances can be destroyed without the @PreDestroy methods being called if a method throws a system
exception. Similarly, the server might crash without calling these methods.

There is a stronger link between the lifecycle of a stateful session bean and the client’s use of its reference.

1. The client obtains a reference to the SFSB through one of the previously described methods.

2. The container instantiates a new bean instance. The container will perform dependency
injection. If the SLSB implements the optional javax.ejb.SessionBean interface, the
container will call setSessionContext(). The session context will also be injected to any
SessionContext field marked with the @Resource annotation. Any methods marked with
the @PostConstruct will then be called.

3. The client invokes a business method on the bean reference.

4. The container starts a transaction, if appropriate.

5. The container invokes a business method on the bean instance, and the bean performs the
desired operation.

6. The container commits the transaction, if appropriate.

7. The results of the business method call are returned to the client.

8. The client may invoke additional business methods on the bean reference and is assured that
these additional calls will go to the same instance of the bean.

9. The client calls a method annotated with @javax.ejb.Remove when it is done with the
SFSB.

10. The container invokes any @PreDestroy methods on the bean instance, or ejbRemove() if the
bean implements the SessionBean interface.

191

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 192

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Like SLSB components, @PostConstruct methods are called once when an SFSB instance is created and
are appropriate places for creating internal caches or performing other initialization steps. Of course, the
cache is specific to the particular client’s session so you could just as easily use lazy initialization because,
either way, the client will be waiting on the initialization work.

This very brief introduction to the lifecycle of session EJB components represents a simplified view of
the process. Additional complexities are introduced by limitations in the pool and cache sizes that you
need to understand to configure your application properly. We cover some of these complexities in a
subsequent section on setting pool sizes and configuring passivation.

General WebLogic Server EJB Features
This section discusses some of the important general features of the WebLogic Server EJB container
related to all types of EJB components. Subsequent sections detail WebLogic Server features related to
specific EJB types.

EJB Deployment/Redeployment
One important feature of the WebLogic Server EJB container is the ability to deploy and redeploy EJB
components easily. Chapter 8 discusses the basic EJB packaging and deployment process, and it compares
various options for deploying EJB components in WebLogic Server.

Dynamic EJB Compilation
The normal packaging and deployment technique for EJB components involves the execution of the
WebLogic Server application compiler appc to create a complete EJB archive file containing all of the
runtime container classes required for the EJB components. The complete EJB archive file is then deployed
to WebLogic Server using one of the techniques discussed in Chapter 8.

Here’s a terminal session showing the effect of compiling an EJB jar with appc. Initially, the EJB jar just
contains the implementation class MyEJBImpl, the business interface MyEJB, and a jar manifest. After appc
has been run on the jar file, it contains several other generated classes.

% jar tf myejb.jar
META-INF/MANIFEST.MF
example/MyEJBImpl.class
META-INF/
example/
example/MyEJB.class
% java weblogic.appc myejb.jar
% jar tf myejb.jar
META-INF/MANIFEST.MF
META-INF/
_WL_GENERATED
example/
example/MyEJBImpl.class
example/MyEJBImpl_ehtkps_Impl.class
example/MyEJB.class
example/MyEJBImpl_ehtkps_Intf.class
example/MyEJBImpl_ehtkps_MyEJBImpl.class

192

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 193

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

It is possible to deploy the raw EJB archive file to WebLogic Server, without first running it through appc.
When this is done, the actual compilation step is deferred until the EJB container processes the archive
file during the deployment of the application. WebLogic Server will also recompile on deployment if
it detects that any of the files in the jar archive have changed or if the jar was created using a different
version of the compiler, even if the difference is only a service pack. This information is stored in the
_WL_GENERATED file. Automatic compilation on deployment is a good development time convenience, but
will increase the length of time it takes your EJB to deploy.

A further advantage of running appc is that it will enhance persistent classes.

Best Practice
To minimize deployment time, your formal build scripts should include an appc stage.
For this to be effective, the version of appc must be taken from a WebLogic Server
installation with the same version and service pack as the expected production envi-
ronment.

EJB Remote Business Interfaces and JNDI
Session beans can define remote business interfaces by annotating them with javax.ejb.Remote.

// MyEJB.java
package example;

public interface MyEJB
{

String helloWorld();
}

// MyEJBImpl.java
package example;

import javax.ejb.Remote;
import javax.ejb.Stateless;

@Stateless
@Remote
public class MyEJBImpl implements MyEJB
{

@Override
public String helloWorld()
{

return "Hello world";
}

}

Remote clients can look up the session bean in JNDI and invoke it over RMI. The Java EE 5 specification
does not define a portable way to map the EJB to a well-known name in JNDI. Standardized mappings
will be included in Java EE 6, and a future version of WebLogic Server. In the meantime, the mapping to
JNDI is vendor-specific behavior.

193

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 194

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

WebLogic Server provides two options for mapping a session bean’s remote business interface into the
global JNDI tree. The mapping can be specified in the weblogic-ejb-jar.xml deployment descriptor, or
the mappedName element of the @Stateless or @Stateful annotations can be used.

Here’s an example weblogic-ejb-jar.xml descriptor that maps the MyEJB remote business interface to
the global JNDI name ejbs.MyEJB.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:j2ee="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-

jar http://www.oracle.com/technology/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-
jar.xsd">

<weblogic-enterprise-bean>
<ejb-name>MyEJBImpl</ejb-name>
<stateless-session-descriptor>

<business-interface-jndi-name-map>
<business-remote>example.MyEJB</business-remote>
<jndi-name>ejbs.MyEJB</jndi-name>

</business-interface-jndi-name-map>
</stateless-session-descriptor>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

The value set in the <ejb-name> element must match the name of the EJB. There is no direct relation
between the name of the EJB and its JNDI names. The name can be set using the name element of the
@Stateless or @Stateful annotations, and defaults to the unqualified name of the bean class. The
<business-interface-jndi-name-map> element has at most one mapping for each remote business
interface of the EJB. Take care when specifying the <ejb-name> and <business-remote> values. If you
misspell these, WebLogic Server will not complain when the EJB is deployed; the EJB will simply not be
bound to the JNDI name.

The other way to bind a session bean into the global JNDI tree is to use the mappedName element of the
@Stateless or @Stateful annotations.

@Stateless(mappedName="myEjb")
@Remote
public class MyEJBImpl implements MyEJB
{

...

A bean can have multiple remote interfaces. The JNDI name used by WebLogic Server is the supplied
mappedName further qualified with the remote interface class name. In our example, the global JNDI name
will be myEJB#example.MyEJB. The way the JNDI name is constructed is specific to WebLogic Server. The
EJB specification explicitly warns that using mappedName is non-portable.

There are two minor disadvantages to using mappedName to bind an EJB into the global JNDI tree. First,
it does not allow an arbitrary JNDI name to be specified — the interface name will always be appended.
Second, it is specified within the source code, but is non-portable. We generally prefer to keep vendor-
specific behavior in deployment descriptors, but the simplicity of placing all the binding information in a
single annotation is a compelling counter-argument. We will use the mappedName element for this unless
there is a strong requirement to write portable code.

194

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 195

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

One reason to implement a remote business interface is to allow a session EJB to be called from RMI
clients or code running in other servers. WebLogic Server 11g can interoperate with clients running
on WebLogic Server 8.1 or later. However, the EJB 3.0 client view is only supported with clients run-
ning against WebLogic Server 10.0 or later. Unlike EJB 2.1 remote interfaces, an EJB 3.0 remote business
interface is not required to be a valid RMI interface. Earlier versions of WebLogic Server do not have
the client side classes necessary to call the non-RMI interfaces. If you need to call a session EJB from
WebLogic Server 9.2 or earlier, and other clients that are not EJB 3.0 aware, you should either add an EJB
2.1 client view to the EJB, or ensure that the remote business interface is also a valid RMI interface — that
is, it extends java.rmi.Remote and each method declares that it throws RemoteException. You will also
need to ensure the client is using a version of the remote business interface compiled with a compatible
version of javac.

For an EJB to be called remotely by a client running on WebLogic Server 9.2 or
earlier, it must either implement an EJB 2.1 client view or ensure that its remote
business interface is a valid RMI interface.

References between EJBs
EJBs rarely exist in isolation. Their implementations often need to call other EJBs, and require a way to
look up these EJBs. The EJB specification allows an EJB to declare references to other EJBs, either in its
deployment descriptor, or by using the @EJB annotation. This avoids the need to hard code the global
JNDI names or locations of the referenced beans in the EJB implementation code. The references can be
customized by modifying the deployment descriptor or using a deployment plan. This makes the EJB a
more reusable component.

The <ejb-ref> and <ejb-local-ref> elements in the ejb-jar.xml descriptor are used to map references
to other EJBs into the local java:comp/env environment. The application code then uses logical JNDI
names in the java:comp/env namespace, and the deployment descriptor specifies how the container
should resolve these names.

Setting up an EJB reference in deployment descriptors requires coordinated changes to the code, the
ejb-jar.xml descriptor, and sometimes the weblogic-ejb-jar.xml descriptor as well. The annotation
and dependency injection features introduced in EJB 3.0 are much more convenient. The @EJB annotation
keeps the declaration of an EJB reference within the code, but the mapping can still be overridden if
necessary in a deployment descriptor.

In this section, we discuss the details of setting up references to EJBs in the same application, and to EJBs
in other applications. We end this section with a discussion of the WebLogic Server pass-by-reference
optimization

Referring to EJB Components in the Same Application
It is very common for EJB components to refer to other EJB components contained in the same Java EE
application. All EJB components in the same EJB archive file are in the same application, as are all EJB
components in different archive files packaged in a single enterprise application (.ear).

195

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 196

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

EJBs can, of course, look up each other directly using known global JNDI names.

Context ctx = new InitialContext();
MyOtherEJB myOtherEJB = (MyOtherEJB)ctx.lookup("myejbs.MyOtherEJB");

This technique increases the coupling between EJB components because the global JNDI name of the
referenced EJB is hard coded in multiple places. When a global JNDI lookup is used directly, the container
knows nothing of the reference.

Alternatively, an EJB reference can be declared to the container. The container resolves the target EJB
during deployment, and makes it available in the local java:comp/env environment.

MyOtherEJB myOtherEJB = (MyOtherEJB)ctx.lookup("java:comp/env/ejb/MyEJB");

EJB 3.0 has added a lookup() convenience method to EJBContext that provides direct access to an EJB’s
environment without the need to use JNDI APIs, so the following will also work.

@Resource
SessionContext sessionContext;
...
MyOtherEJB myOtherEJB = (MyOtherEJB)context.lookup("ejb/MyEJB");

There are three ways to map an environment entry to the target EJB.

In the first approach, the referring component declares the reference by including an <ejb-ref> element
(for remote business interfaces) or an <ejb-local-ref> element (for local business interfaces) in the
ejb-jar.xml descriptor.

<session>
<ejb-name>MyEJBImpl</ejb-name>
<ejb-local-ref>
<ejb-ref-name>ejb/MyOtherEJB</ejb-ref-name>
<local>example.MyOtherEJB</local>

</ejb-local-ref>
</session>

The <ejb-local-reference-description> element in the weblogic-ejb-jar.xml descriptor is then
used to map this reference to a particular global JNDI name.

<ejb-local-reference-description>
<ejb-ref-name>ejb/MyOtherEJB</ejb-ref-name> <!-- Matches name in ejb-jar.xml -->
<jndi-name>myejbs.MyOtherEJB</jndi-name>

</ejb-local-reference-description>

In the second approach, the referring component includes an <ejb-link> element in the
<ejb-local-ref> element in ejb-jar.xml, specifying the name of the other EJB component.

<ejb-local-ref>
<ejb-ref-name>ejb/MyOtherEJB</ejb-ref-name>
<local>example.MyOtherEJB</local>
<ejb-link>MyOtherEJBImpl</ejb-link>

</ejb-local-ref>

196

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 197

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

With this approach there is no need to bind the referenced EJB into the global JNDI tree. No elements are
required in the weblogic-ejb-jar.xml descriptor, which means the code is portable between containers.
The container automatically maps the ejb/MyOtherEJB reference to the example.MyOtherEJB business
interface and binds it to the referring EJB’s environment at java:comp/env/ejb/MyOtherEJB. The name
MyOtherEJBImpl is the logical name of the EJB set using the name element of the @Stateless or @Stateful
annotations or, by default, the unqualified name of the bean class. The <ejb-link> element may also
provide the name of the EJB archive file hosting the desired component.

<ejb-link>another.jar#MyOtherEJB</ejb-link>

This is necessary only if two EJBs are in two different archive files and use the same logical name.

The third approach uses the @EJB annotation on the referring EJB class.

@EJB(name="ejb/MyOtherEJB", beanInterface=example.MyOtherEJB.class)
@Stateless
@Remote
public class MyEJBImpl implements MyEJB
{

...
}

This approach is similar to using an <ejb-local-ref>, but has the benefit of requiring no deployment
descriptor entries. A JNDI lookup of java:comp/env/ejb/MyOtherEJB is still required.

The @EJB annotation also supports a beanName element, which is interpreted in the same way as the value
of an <ejb-link> element. In this case we’ve left it out, so the container will attempt to resolve the
reference based on the type of the business interface. This will work, so long as a single EJB implements
that business interface. The container will perform similar auto-wiring if we declare an <ejb-ref> or an
<ejb-local-ref> without an <ejb-link> or a binding in weblogic-ejb-jar.xml.

Finally, EJB 3.0 dependency injection can be used to remove the need for an explicit lookup. The @EJB
annotation is used again, but applied to a field of the referring EJB, rather than at class level.

@Stateless
@Remote
public class MyEJBImpl implements MyEJB
{

@EJB
private MyOtherEJB myOtherEJB;
...

}

It doesn’t get much simpler than this. When MyEJBImpl is deployed, the container will inject a reference
to an EJB with the appropriate business interface. This is portable and requires no deployment descriptor
entries. The EJB will be bound to java:comp/env/example.MyEJBImpl/myOtherEJB, but because the
container has set the reference, there is no need for a JNDI lookup. The beanInterface and beanName
elements can be used for disambiguation if the reference type is a superclass of the business interface, or
if it is implemented by multiple EJBs in the application.

A further benefit of using dependency injection is that the implementation class can be constructed
easily in a unit test context, where the value of the @EJB field is set directly by the unit test code. As we

197

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 198

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

noted earlier in this chapter, it is a best practice to add access methods to your EJBs so that unit tests can
simulate the container dependency injection and populate annotated fields.

Best Practice
Use @EJB annotations, or <ejb-ref>/<ejb-local-ref> deployment descriptor ele-
ments, rather than direct lookup using global JNDI names, to reduce coupling between
components.

In most applications, using dependency injection with the @EJB annotation will be the
simplest approach and will allow your EJB code to be unit tested easily.

Referring to External EJB Components
EJB components located in different enterprise application archive (.ear) files or other EJB jar files
not part of the current application, are considered external components whether or not they run
in the same WebLogic Server instance. These components are not part of the same deployment, so
the <ejb-link> mechanism for referring to other components is not available. Components must
use either global JNDI names or include appropriate <ejb-ref> elements in ejb-jar.xml and
<ejb-reference-description> elements in the weblogic-ejb-jar.xml descriptor to look up external
components. Note that local business interfaces can only be used within an application, so external
components must be looked up and invoked through their remote business interfaces.

Because the components are external to the current application and more likely to change their global
JNDI names, we suggest you use <ejb-ref> and <ejb-reference-description> elements instead of
directly using global JNDI names.

The <ejb-reference-description> allows lookup of components in the host WebLogic Server’s global
JNDI tree. If the location of the referenced EJB is truly remote, use WebLogic Server’s Foreign JNDI
Provider feature to create a binding in the global JNDI tree, and place the configuration of its physical
location under the administrator’s control.

Best Practice
Use <ejb-ref> and <ejb-reference-description> elements to access EJB compo-
nents in other applications.

If the referenced EJB is truly remote, use WebLogic Server’s Foreign JNDI Provider
feature to map its location into the local server’s global JNDI tree.

Calling Components by Reference
The Java EE specification requires that EJB components invoked through their remote interfaces must use
pass-by-value semantics, meaning that method parameters are copied during the invocation. Changes
made to a parameter in the bean method are not reflected in the caller’s version of the object. Copying
method parameters is required in the case of a true remote invocation, of course, because the parameters
are serialized by the underlying RMI infrastructure before being provided to the bean method. Pass-by-
value semantics are also required between components located in different enterprise applications in the
same Java virtual machine due to classloader constraints.

198

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 199

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

EJB components located in the same enterprise application archive (.ear) file are loaded by the same
classloader and have the option of using pass-by-reference semantics for all invocations, eliminating the
unnecessary copying of parameters passed during the invocation and improving performance. Set the
<enable-call-by-reference> parameter to true in the weblogic-ejb-jar.xml descriptor file to enable
this feature for each bean in your application. Local references always use pass-by-reference semantics
and are unaffected by the <enable-call-by-reference> setting.

When you deploy an EJB with a remote interface and do not enable call by reference, WebLogic
Server will issue a warning of the performance cost. You can disable this warning by adding
<disable-warning>BEA-010202</disable-warning> to the weblogic-ejb-jar.xml descriptor, or by
using the @weblogic.javaee.DisableWarnings annotation.

The default value of <enable-call-by-reference> was true in WebLogic Server 7.0
but is false in WebLogic Server 8.1 and later to comply with Sun’s Java EE
licensing policy changes that require all Java EE compatible servers to support the
specification with their out-of-the-box configuration. Be sure to set
<enable-call-by-reference> to true for all beans in your application that have
remote business interfaces to avoid parameter copying unless your application
requires copying for functional correctness.

Transaction Isolation
A purist would expect the effects of an uncommitted transaction not to be visible to other transactions.
The transactions are said to be isolated from one another. Achieving this level of isolation is costly from a
performance perspective, and in the real world it is common to relax the isolation requirements.

The JDBC API has four increasing levels of transaction isolation; they can be set on a per-transaction
basis. These are described in Table 6-2.

Table 6-2: JDBC Isolation Levels

Isolation Level Description

READ_UNCOMMITTED Transactions can view uncommitted changes made by other transactions.

READ_COMMITTED Protects against dirty reads. Transactions can view only committed changes
made by other transactions.

REPEATABLE_READ Protects against non-repeatable reads. Once a transaction has read a row, it will
not see changes made to that row by other transactions.

SERIALIZABLE Protects against phantom reads. A transaction will receive consistent answers if
it queries the same table twice. It will not see new rows committed by other
transactions between the two queries.

Your database may not support all four levels. The Oracle database only supports READ_COMMITTED and
SERIALIZABLE.

199

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 200

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

JPA maintains a consistent persistence context in memory, and can use optimistic locking to ensure the
consistency of the persistence context. Optimistic locking requires that the JDBC isolation level is at least
READ_COMMITTED. It’s usually not necessary to set the JDBC isolation level higher than this — the caching
of data in each transaction’s persistence context will protect against non-repeatable and phantom reads,
and optimistic locking will ensure that the database is consistent after flushing the persistence context.

You may need to consider setting a stricter isolation level than READ_COMMITTED for transactions that
use JPQL queries because they are partially evaluated against the database, and then augmented by
information in the persistence context. This is a phantom read problem. The results of a query may
contain changes that others have committed since the transaction began, and so not match the existing
persistence context. This can be protected against using a SERIALIZABLE isolation level, but this is rarely
required, because few transactions query the same information twice with JPQL, and if the application
accesses the data again, it usually does so from the persistence context.

Here’s another example that can be solved by using the SERIALIZABLE transaction isolation level. Con-
sider two transactions working on two Account entities, each containing $100. The first transaction finds
the Account entity for account 1, and then later finds the Account entity for account 2. In between the
two finds, the second transaction transfers $50 from account 1 to account 2. If the isolation level is
REPEATABLE_READ or less, when the first transaction looks at the balance of each Account, it will find
the first has $100 and the second has $150 — an extra $50 has been created. Let’s consider some options
to prevent this problem and provide the first transaction with the correct total of $200.

❑ Use the SERIALIZABLE isolation level. This will solve the problem, but can be expensive in per-
formance terms, particularly if applied to every transaction.

❑ Take out LockModeType.READ locks on the accounts using the EntityManager.lock().
This works if Account is a versioned entity (it has a @Version column). Rather than give
the first transaction the correct answer, it will ensure that the first transaction fails with
an OptimisticLockException. This is an appropriate solution if the chance of concurrent
modification is small, or if there is a requirement to notify the user of concurrent attempts to
modify the account.

❑ Take out LockModeType.WRITE locks on the accounts, and flush the persistent context so no oth-
ers transactions can write to it. Again, Account needs to be a versioned entity. If the flush suc-
ceeds, the second transaction will receive an OptimisticLockException and the first will be able
to commit. For LockModeType.WRITE, most implementations, including OpenJPA, will hold a
database lock on the account rows. Like the SERIALIZABLE option, this has negative performance
consequences, but at least the application can apply write locks selectively.

The first transaction could use a single JPQL query to find both accounts using one SQL statement. This
solution is simple, and efficient. It does not extend to more complex scenarios; for example, reading
a consistent view of two entities of unrelated types. However, it should be favored as a good way to
enforce read consistency.

The transaction level can be set using the <transaction-isolation> element of the weblogic-ejb-jar.
xml descriptor, or with the WebLogic Server–specific annotation @weblogic.javaee.
TransactionIsolation. If the <transaction-isolation> element isn’t used, the database’s
default transaction isolation level will apply. The default transaction isolation for the Oracle database is
READ_COMMITTED.

200

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 201

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Here’s a weblogic-ejb-jar.xml descriptor that configures all EJB methods for the
PropertyServicesImpl EJB to use the READ_COMMITTED isolation level.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:j2ee="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-

jar http://www.oracle.com/technology/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-
jar.xsd">

<transaction-isolation>
<isolation-level>TransactionReadCommitted</isolation-level>
<method>

<ejb-name>PropertyServicesImpl</ejb-name>
<method-name>*</method-name>

</method>
</transaction-isolation>

</weblogic-ejb-jar>

Best Practice
The READ_COMMITTED transaction isolation level is appropriate for most transactions
that use JPA and optimistic locking.

A more strict isolation level may be required for transactions that perform several JPQL
queries, or use features that bypass the JPA persistence context, such as Kodo’s large
result set proxies (described later). This can limit performance and scalability.

Before you increase the isolation level, consider whether you can achieve your consis-
tency goals by using JPQL to read related entities using a single SQL operation, or by
using Entity Manager locks.

Session Bean Features
We’ll now consider WebLogic Server–specific features related to session bean components and their
management by the container.

Stateless Session EJB Pooling
WebLogic Server maintains a pool of stateless session EJB instances for each SLSB deployment. This
pool improves performance, because a client request can be handled immediately by any free initialized
EJB instance. By default, the pool starts empty, and grows on demand. This can be controlled with the
<initial-beans-in-free-pool> and <max-beans-in-free-pool> deployment descriptor parameters.

The SLSB pool can also shrink in size. A bean instance will be removed if it has been idle for more
than the value of <idle-timeout-seconds> (by default, 600 seconds), and there are more than
<initial-beans-in-free-pool> beans in the pool.

201

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 202

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

The default value of 0 for <initial-beans-in-free-pool> is fine for most SLSB deployments. You may
wish to set <initial-beans-in-free-pool> if your SLSB is particularly expensive to initialize so that
you force the initialization of a number of bean instances at deployment time, and you ensure that pool
shrinking does not discard these beans.

The default value of 1000 for <max-beans-in-free-pool> is also appropriate for most SLSB
deployments. Unless an SLSB recursively calls itself (the only way that a single execute thread might
require more than one active instance of the SLSB), this default limit will not practically be reached.
If you set <max-beans-in-free-pool>, you are choosing deliberately to throttle your application.
If there are no idle bean instances, an execute thread making a new request will block until a bean
becomes available or the transaction times out. If remote clients call the SLSB, it is a good idea to use
the <dispatch-policy> deployment descriptor element to assign the EJB instance to a custom work
manager with a <max-threads-constraint> set to the same value as <max-beans-in-free-pool>.
The <max-threads-constraint> will mean that surplus requests are left in the self-tuning thread pool’s
execute queue, rather than requiring an execute thread. The <max-beans-in-free-pool> setting is still
required to ensure that non-remote calls to the SLSB (which will not use the work manager specified by
the <dispatch-policy>) do not cause the pool size to increase beyond the desired limit.

Best Practice
The default pool settings for stateless session beans are usually appropriate.
Set <initial-beans-in-free-pool> if an SLSB is expensive to initialize. Set
<max-beans-in-free-pool> if you wish to constrain the number of concurrent
requests to the SLSB.

If you set <max-beans-in-free-pool> and your SLSB is called by remote
clients, consider associating the bean with a custom work manager that has a
<max-threads-constraint> of the same size as <max-beans-in-free-pool>.

Stateless session beans provide a simple way to implement a managed resource pool. Suppose you use
an SLSB to control access to a backend resource with which you communicate over a TCP socket. Each
SLSB instance manages its own TCP connection, which is initialized in a @PostConstruct method. The
<initial-beans-in-free-pool> parameter controls the initial number of connections in the pool, and
the <max-beans-in-free-pool> parameter controls the maximum number of connections.

Best Practice
Stateless session beans are an effective way to implement a managed resource pool.

Stateful Session EJB Cache Management
WebLogic Server creates stateful session bean instances as they are needed to service client
requests. Between requests these instances reside in a bean-specific cache in the active state, ready
for the next request. The size of the cache is limited by the <max-beans-in-cache> element in the
weblogic-ejb-jar.xml deployment descriptor file. The default value is 1000. So long as your application

202

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 203

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

never requires more than <max-beans-in-cache> instances of the SFSB at any given time to service
all concurrent clients, there is no contention for the cache and performance is optimal. If you limit the
number of beans in the cache, WebLogic Server may be forced to manage the cache in a fairly active
manner using the following rules.

❑ If the cache is full, bean instances that are not being used at that moment for client requests are
subject to passivation. Setting the <idle-timeout-seconds> parameter has no effect on this rule
because the server must make room for additional instances.

❑ If bean-managed transaction demarcation is used, a transaction may not be committed or rolled
back at the end of a business method call. This leaves the bean instance associated with the trans-
action, pinned in the cache, and not eligible for passivation. Earlier in this chapter, we noted
applications that keep transactions open between SFSB calls do not scale well and are difficult
to manage.

❑ If the cache is full and all instances are currently pinned in the cache fulfilling client requests,
WebLogic Server throws a CacheFullException. It will not block and wait for an instance to
become available for passivation. If container-managed transaction demarcation is used, this
condition cannot occur if the <max-beans-in-cache> setting is higher than the maximum num-
ber of execute threads and the processing of each client request uses a single SFSB.

❑ Passivation logic is controlled by the <cache-type> and <idle-timeout-seconds> elements
in the descriptor. The default setting for <cache-type>, not recently used (NRU), passivates
beans only when the number of active beans approaches the <max-beans-in-cache> setting.
An alternative <cache-type> value, least recently used (LRU), passivates based on both
the maximum cache size and when the bean hasn’t been used for longer than the value of
the <idle-timeout-seconds> setting. The NRU strategy is lazy; the LRU strategy is eager.
Although the LRU setting can be a convenient way of enforcing idle timeouts on the resources
the objects encapsulate, it requires the container to keep track of the bean’s access time and
maintain an ordered list that gets updated after each bean access. Unless you have a good
reason to need idle timeouts strictly enforced, most applications should retain the default NRU
algorithm.

❑ In addition to its role with the LRU cache type, the <idle-timeout-seconds> property has
another purpose. It is the default timeout value for passivated instances, unless the separate
<session-timeout-seconds> property has been set. Passivated instances that have been
unused for longer than this timeout are subject to removal from disk storage during cache
maintenance. If the container removes an SFSB in this way, it does not invoke @PreDestroy or
ejbRemove() methods.

❑ If the <idle-timeout-seconds> property is set to zero, beans are simply removed when
chosen for passivation and are never passivated to disk storage. This can be a useful option to
avoid passivating old instances representing lost clients or transactions that were completed
long before. Of course, this can also cause long-running clients to lose their sessions if the
<max-beans-in-cache> is not properly tuned.

Recall that passivation of beans refers to the serialization of non-transient data in the bean to disk storage
to release the memory used by the bean. The next request for the passivated bean will require activation,
the reverse process, where bean elements are read from the disk store and the active bean instance is
recreated in memory. Needless to say, passivation and activation cycles can be extremely expensive.
You should monitor the amount of passivation activity occurring in your system using the WebLogic
Console and tune the <max-beans-in-cache> setting to reduce or eliminate this activity to achieve high
performance.

203

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 204

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
Avoid excessive passivation of stateful session beans by setting <max-beans-in-cache>
high enough to meet the instance requirements for the expected maximum concurrent
user count.

Your application should always call a @Remove method to delete the active bean instance from the cache
when a client is through using the instance. Failure to call a @Remove method leaves the bean instance in
the active state and consumes one slot in the cache, requiring eventual passivation by WebLogic Server
during cache management to make room for additional client beans.

Best Practice
Always call a @Remove method on a stateful session bean after you are done using it to
delete it from the bean cache to free up memory and prevent unnecessary passivation.

The <idle-timeout-seconds> setting clearly is very important in cache management. The bean is sub-
ject to passivation once the timeout expires, assuming the LRU algorithm is being used, and may be
removed from storage completely after the timeout period passes again. The default timeout value, 600
seconds, may be too short if users are likely to pause between requests for a longer period of time. If
you are using SFSBs with a web application, it might make sense to set this timeout value equal to the
HttpSession timeout value for your web application, for example, to be more consistent. Otherwise,
review your business requirements and set the <idle-timeout-seconds> to the lowest value possible
that still meets your application’s requirements.

Best Practice
Set the <idle-timeout-seconds> to the lowest value possible while still meeting your
business requirements for the application.

In-Memory Replication for Stateful Session EJBs
Stateful session bean components are used to encapsulate client-specific data and processes that must
maintain state across multiple method invocations. These invocations may be separated by periods as
short as milliseconds or as long as hours, subject to timeout settings. State that is maintained across mul-
tiple invocations would be lost if the SFSB was deployed to a single server instance that failed or became
unavailable to the client. Fortunately, WebLogic Server provides failover for stateful session beans
deployed in a cluster, just as it does for HttpSession data through the use of in-memory replication.

Figure 6-1 illustrates the basic in-memory replication scenario and shows communication paths before
and after the failure of Server2. In this example, Client155 was using the SFSB155 component hosted on

204

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 205

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Server2 as the primary copy of the bean. When that server failed, Client155 was automatically redirected
to the backup copy of the SFSB155 component hosted on the other server. This failover logic is provided
by the replica-aware stub object used by the client for all communication with the bean. The stub acts as
a proxy for the bean in much the same way the web server plug-in acts as a proxy for web applications
and provides failover in the presentation tier.

Client Code

Client101

SFSB101 stub

SFSB101

Server1

SFSB155_copy

Client Code

Client155

Normal Clustered Operation

SFSB155 stub

Server2

SFSB155

Client Code

Client101

SFSB101 stub

SFSB101

Server1

SFSB155

Client Code

Client155

Operation After Failure of Server2

SFSB155 stub

SFSB101_copy

Server2

SFSB155

SFSB101_copy

Figure 6-1: The replica-aware stub provides SFSB failover.

Changes made to the primary copy of an SFSB component are copied to the replicated version on the
backup server at the end of a committed transaction involving the SFSB component. Note that modified
SFSB data may be lost if either server fails during the post-commit transfer of data to the backup server
because the replication is done outside the scope of the transaction.

Although we generally recommend storing session data in the HttpSession and using HttpSession
replication alone when possible, you might consider using SFSB replication to store business data or the
intermediate results of a multi-step process under some conditions. Figure 6-2 illustrates the web appli-
cation replication scenario using an HttpSession to store the replica-aware stub object and a replicated
SFSB component to store the business data.

Note that both the web application and EJB components are located on the same machine. Failure of that
machine will cause the web server plug-in to fail over to servlets and JSPs to a WebLogic Server instance
running on another machine. How can you be sure that the backup copy of the SFSB data will be located
on the same machine as the backup copy of the HttpSession data, as illustrated in Figure 6-2? Just as
WebLogic Server always prefers to communicate with EJB components located in the same application
as the web application components, it normally configures the failover copies of both the HttpSession
data and the replicated SFSB data on the same backup server.

Unfortunately, the collocation of both kinds of backup data is not guaranteed to occur in all conditions. If
the HttpSession secondary and the SFSB secondary are located on different machines, you can easily get
into a situation where a single client request involves calling from one WebLogic Server cluster member
to another to process the request. Performance will suffer if this scenario occurs, and the large number
of cross-server messages and the threads consumed by these messages also expose your application to a
potential deadlock condition discussed in Chapter 13.

205

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 206

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Be careful when storing SFSB references in the HttpSession because in-memory
replication doesn’t guarantee collocation of secondary objects and may lead to
excessive server-to-server calls in the same cluster after a primary server failure. Not
only will this kill your performance, but it also will expose your application to
potential deadlock situations.

SFSB101 stub

Client101

SFSB155 stub copy

HttpSession

SFSB101

Server1

SFSB155_copy

Client155

Normal Clustered Operation

JSP/Servlet

SFSB155 stub

SFSB101 stub copy

HttpSession

SFSB155

Server2

SFSB101_copy

JSP/Servlet

SFSB101 stub

Client101

SFSB155 stub

HttpSession

SFSB101

Server1

SFSB155

Client155

Operation After Failure of Server2

JSP/Servlet

SFSB155 stub

SFSB101 stub copy

HttpSession

SFSB155

Server2

SFSB101_copy

JSP/Servlet

Figure 6-2: Replicated HttpSession and SFSB component.

Recognize that SFSB replication is more costly in terms of memory and performance than HttpSession
replication because there is no simple way for the container to determine which portions of the bean
have changed. Whereas HttpSession replication relies on setAttribute() calls to determine the data
that must be sent to the backup server, SFSB replication requires before and after images of the SFSB to
determine changes requiring replication at the end of the transaction. For efficiency, the server keeps the
after image from the last transaction to use as the before image for the next; this means that you have two
copies of the bean in memory in the primary server and one in the secondary server.

Why would you use replicated SFSB components when HttpSession replication fills essentially the same
role? Web applications should probably stick with HttpSession replication to maximize performance
and avoid introducing additional complexity, but not all applications are web applications. Replicated
SFSB components allow non-web applications to maintain state between method invocations in a fully
clustered fashion as well.

Configuring SFSB components for in-memory replication requires a <replication-type> element in
the descriptor for the stateless session bean in weblogic-ejb-jar.xml.

<stateful-session-clustering>
...
<replication-type>InMemory</replication-type>

</stateful-session-clustering>

206

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 207

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Handles to Session Beans
EJB 2.x defines the concept of a handle to an EJB. A handle is an object that represents a remote EJB
instance. It can be serialized to a persistent store, or perhaps sent to a different client process. When
deserialized, it can be used to access the EJB so long as the EJB still exists on the server.

Although the simplified EJB 3.0 API does not include support for handles, WebLogic Server provides
an extension API to generate handles for EJB 3.0 session beans with remote business interfaces. The
RMI stub to a remote business interface can be cast to the weblogic.ejb.spi.BusinessObject interface.
BusinessObject has a _WL_getBusinessObjectHandle() method that returns a handle. The handle
implements weblogic.ejb.spi.BusinessHandle. The handle’s getBusinessObject() method can be
used to restore a reference to the session EJB’s business interface.

Best Practice
The weblogic.ejb.spi.BusinessHandle API is convenient, but is proprietary and will
tie your code to WebLogic Server. If you need to create a handle to a session bean,
consider modifying your bean to support the EJB 2.1 client view, and then using the
standard javax.ejb.Handle API.

Idempotent Methods
Session beans can declare to the container that some of their methods are idempotent; that is, they have
the same result if called once as if they are called multiple times. For example, a setAddress() method
may well be idempotent, because setting the same information again won’t change anything and con-
currency can be handled by standard transaction and optimistic locking features. On the other hand,
creditAccount(Money amount) certainly isn’t idempotent.

Idempotent methods are declared using the <idempotent-methods> element of the weblogic-ejb-jar.
xml descriptor, or the @weblogic.javaee.Idempotent annotation.

WebLogic Server takes advantage of knowing a method is idempotent when making remote calls to a
cluster. If a remote call fails, and the EJB client stub knows it didn’t manage to establish the connection to
the server, it can always retry the operation on another server in the cluster. If a remote call fails in flight,
and the method is idempotent, the EJB stub can always retry the operation on another server.

With modern, reliable networks this automatic retry may not seem a huge advantage. It can be of benefit
if you wish to restart a server with minimal disruption to its clients.

Best Practice
When deploying remotely accessed EJBs to a cluster, consider declaring the idempo-
tent methods in weblogic-ejb-jar.xml. This will reduce disruption to clients that are
accessing a server when it fails or is shutdown.

207

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 208

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Message-Driven Bean Features
Message-driven bean (MDB) components provide a bridge between JMS and EJB components by listen-
ing on JMS destinations and invoking EJB components. A number of WebLogic Server–specific features
are available to improve the reliability and performance of MDB components.

MDBs are pooled in a manner very similar to SLSBs. The initial and maximum number of MDB instances
can be controlled using the <initial-beans-in-free-pool> and <max-beans-in-free-pool> param-
eters in weblogic-ejb-jar.xml. Unless a custom work manager with a <max-threads-constraint>
is specified using the <dispatch-policy>, an upper limit of 16 MDB instances is enforced. This upper
limit is a significant difference compared to the behavior of WebLogic Server 8.1. In 8.1, the upper limit
of an untuned MDB was a function of the size of the default execute thread pool.

Limiting the number of instances provides a simple mechanism to throttle the processing of incoming
JMS messages. You may wish to do this to match the availability of resources used by an MDB, for
example, the number of JDBC connections in a connection pool, or to set the priority of JMS requests
versus other synchronous requests. A custom work manager should be used if more precise control is
required.

WebLogic Server supports the clustering of JMS destinations and the migration of MDB components
from failed servers to operational servers using administrative functions. MDB components may also be
deployed across all servers in a cluster to provide high levels of performance and availability.

WebLogic Server permits MDB components to be deployed against third-party JMS providers while
retaining proper container-managed transactional behaviors. WebLogic Server achieves this by starting a
new transaction, enlisting the remote JMS destination within the transaction, polling for a message, and
rolling back the transaction if none is found.

WebLogic Server can batch multiple calls to onMessage() for the receipt of messages in a single container-
managed transaction. This can improve performance by spreading the cost of the transaction man-
agement across multiple onMessage() calls. Transaction batching does not require any change to user
code; it is enabled by setting the <max-messages-in-transaction> deployment descriptor element.
Because more work is done in a transaction, you may also need to increase the transaction timeout using
<trans-timeout-seconds>.

Should the transaction batch fail due to a transaction timeout, WebLogic Server will temporarily reduce
the batch size and resubmit the messages in smaller batches. Should the batch fail due to an onMessage()
call throwing an exception or marking the transaction for rollback, WebLogic Server will reprocess each
of the messages in an individual transaction.

Transaction batching is not suited for all applications. It may cause unexpected
problems if the onMessage() relies on the transaction to isolate the effects of its
work from other calls to onMessage().

Additionally, if the onMessage() method is likely to call setRollbackOnly(),
WebLogic Server will often have to reprocess messages in individual transactions,
making transaction batching ineffective.

208

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 209

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

MDBs can be used with WebLogic Server’s advanced JMS features, such as Store-And-Forward and
Unit-Of-Order.

Chapter 10 discusses WebLogic Server JMS and MDB features and best practices in more depth.

OpenJPA and Kodo Features
In this section, we consider OpenJPA and Kodo-specific features. In what follows, when we refer to
‘‘Kodo’’ we are discussing a Kodo-only feature; when using ‘‘OpenJPA,’’ we are discussing a feature
available in both products.

Many of the OpenJPA and Kodo features we discuss here are set using product-specific annotations, and
there is no option to use a vendor descriptor instead.

Many OpenJPA and Kodo features require the use of product-specific annotations.
Using these annotations will make your application code less portable, and you
should consider this when weighing the benefits of using the feature.

The Kodo Deployment Descriptor
Kodo-specific configuration can be provided in a persistence-configuration.xmlfile, placed alongside
the persistence.xml file. Unlike the JPA persistence.xml descriptor, this file is optional. When the
persistence-configuration.xml is present, it must contain the entire Kodo-specific configuration, and
the persistence.xml file should not contain any OpenJPA or Kodo properties.

The persistence-configuration.xmlfile allows you to keep the standard descriptor clean and portable.
The XML format provides validation, and traps errors in the spelling of configuration item names. A
further advantage of providing a persistence-configuration.xml file is that the WebLogic Console
deployment tabs will provide advanced configuration support.

Kodo also allows the configuration using the standard <properties> element of the standard
persistence.xml file. This is generally better for Java SE deployments. WebLogic Server 10.3 introduced
support for using persistence-configuration.xml in a Java SE environment. However, doing this
requires weblogic.jar to be on the CLASSPATH, a SerializedSystemIni.dat security salt file must be
present in the working directory, and you will need to overwrite the default values of several properties,
including openjpa.TransactionMode and openjpa.NonTransactionalWrite to make them suited for
the Java SE environment.

Best Practice
Use the persistence-configuration.xml descriptor to set Kodo configuration for
Java EE deployments.

Use the standard JPA <properties> element to set Kodo configuration for Java SE
deployments.

209

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 210

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Although you have to choose one or the other of persistence-configuration.xml or <properties>,
both support the full range of Kodo configuration. The naming convention for the descriptor elements
differs from that of the property names. In the sections that follow, we refer to the OpenJPA and Kodo
configuration settings using their full property names. They can be converted to the corresponding
persistence-configuration.xml element by taking the last part of the name, placing hyphens
between the words, and converting it to lowercase. For example, openjpa.TransactionMode becomes
<transaction-mode>.

Fetch Groups
OpenJPA allows a set of fields to be grouped together into a fetch group. The fields in a fetch groups are
loaded together, and fetch groups can be used to tune eager loading behavior. If you are familiar with
WebLogic Server’s EJB 2.x CMP implementation, you will recognize fetch groups as being similar to the
field group feature.

A field can belong to several fetch groups. All fields that use JPA eager fetching belong to the predefined
default fetch group, but custom fetch groups may also be defined.

Suppose you are developing an application to provide access to a defect-tracking database. A typical
user might submit a query for known defects that affect a planned release of a product. The application
will return a list of summary details for each product, perhaps containing a defect ID, a description
field, the defect’s severity, the date the defect was recorded, and one or two other fields. The user may
then select one of the defects from the returned list, and be presented with full details covering perhaps
50 fields, some of them large. There are two types of queries that we wish to support — let’s call them
getDefectSummaries() and getDefectDetail(). This sort of user interaction is very common in online
applications.

With standard JPA features, you might consider one of the following approaches.

❑ Model the database using a single Defect entity, and configure all of the fields to be eagerly
loaded (the JPA default for basic fields). This approach will unnecessarily affect the performance
of getDefectSummaries(), because the fields of every Defect returned by the query will be fully
populated from the database, even though the information is unlikely to be used. A further prob-
lem is that the result will take up a large amount of memory, and perhaps may not even fit into
the available memory.

❑ Model the database using a single Defect entity, configure the summary fields to be eagerly
loaded, and the detail fields to be lazily loaded using fetch=FetchType.LAZY. This approach
works well for getDefectSummaries(), because only the information that is required to pop-
ulate the summary list will be loaded from the database. It is disastrous for the performance
of getDefectDetail(); every field in the defect detail page will cause a separate query to the
database.

❑ Model the database using DefectSummary and DefectDetail entities. Configure the one-to-one
association between DefectSummary and DefectDetails to be lazily loaded, and all other
fields to be eagerly loaded. This approach works well for both getDefectSummaries() and
getDefectDetail(). However, you have been forced to introduce a boundary into your object

210

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 211

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

model based solely on expected usage patterns. If the usage pattern changes, for example, if a
field is moved from the details page to the summary page, you will have to refactor your code.

OpenJPA fetch groups provide a straightforward, configuration-based answer to this problem, and
allow you to control the field loading separately from your object model. One simple answer, assum-
ing the model uses a single Defect entity, would be to configure the summary fields to be eagerly
loaded, the detail fields to be lazily loaded, and further configure the detail fields to belong to a detail
custom fetch group. This means that when one of the detail fields is loaded, all of the detail fields will be
loaded.

Fetch groups are configured using OpenJPA-specific annotations. Here’s what our Defect entity might
look like.

@Entity
@FetchGroups({

@FetchGroup(name="detail", attributes={
@FetchAttribute(name="additionalDetails"),
@FetchAttribute(name="workLog"),

})
})
public class Defect
{

...
@Basic(fetch=FetchType.LAZY)
private String additionalDetails;
@Basic(fetch=FetchType.LAZY)
private String workLog;
...

}

Custom fetch groups are particularly powerful when you wish to tune the loading behavior of groups of
associated entities. You can control the group of entities and the subsets of their fields to be loaded, and
also limit the depth to which recursive relationships will be traversed.

Best Practice
Configure OpenJPA fetch groups according to expected usage patterns to ensure you
are loading the data you need and no more in the fewest number of SQL statements.

Examine the generated SQL during pre-production testing to confirm that your expec-
tations were correct, and refine the fetch groups if necessary.

Also recognize one danger inherent in the use of fetch groups: Because the entity data might be fetched
in multiple queries it is possible to have an entity in memory that represents data from different points
in time, potentially representing inconsistent states. With typical transaction isolation settings, if another
transaction made changes to the database between the first and second fetches you make, your copy of
the bean might contain some data that reflects the update and some that does not. Optimistic concurrency
will avoid corruption of the database itself, but your display or business logic might show inconsistent
data.

211

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 212

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Using fetch groups to support partial loading of a bean’s data can cause the bean to
have inconsistent data loaded, with each group loaded at different points in time.
Use caution when defining fetch groups to make sure that all interdependent fields
are in the same group.

OpenJPA also provides a FetchPlan API for dynamic control of eagerly loaded fields. This might be
useful in our defect tracking application if the fields that appear on the summary page are not fixed, but
are selected according to user preference. The field groups or individual fields to load eagerly can be
dynamically set based on the user preferences for each transaction. Similar to the @FetchGroup annota-
tion, this is a valuable feature, so you may be willing to use it at the cost of tying your application to a
vendor-specific API.

Eager Fetching
Eager fetching optimizes the number of SQL queries required when performing eager loading. Eager
fetching is a Kodo feature, so is available in WebLogic Server but is not part of OpenJPA.

Eager fetching is on by default, and it is unlikely that you will have to tune it. It is useful to understand
what it does so you can interpret the SQL statements that Kodo generates.

Loading an entity often requires querying across multiple tables, either because of associations to related
entities or embedded classes or because of inheritance mappings. With eager fetching, Kodo produces a
combined query that uses appropriate joins (often left outer joins) to retrieve all of the required data in a
single database query. By default, eager fetching uses the parallel mode. In this mode, a further refinement
causes several selects to be issued to load multiple entities that have eager relationships. Using a separate
select for each entity avoids transferring more data than necessary from the database. In contrast, an
outer join across multiple tables can return the same information in multiple rows. As the name suggests,
these selects are issued in parallel, further improving performance.

Optimistic Locking Version Strategies
To apply optimistic locking in standard JPA code, you use the @Version annotation. JPA allows each
entity to have at most a single @Version column, which must be mapped to the primary table for the
entity and have one of the types int, Integer, short, Short, long, Long, Timestamp.

OpenJPA and Kodo provide more flexibility, but taking advantage of this requires the use of custom
annotations and restricts portability. The JPA specification hints that additional mechanisms may be
standardized by a future version of specification.

Support for other Version Field Types
In addition to the types supported by the JPA standard, OpenJPA allows version fields of type byte and
Byte.

Kodo (but not OpenJPA) also allows you to specify a surrogate version column; that is, one that doesn’t
map to a field of the entity class, using the @kodo.persistence.jdbc.LockGroupVersionColumn annota-
tion. If you use this feature, Kodo manages the version information for detached entities in hidden fields

212

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 213

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

of the enhanced entity classes, and your application can neither read nor write it. Similarly, the version
fields are not available to bulk update statements that use pure JPQL, so they can’t be updated or verified.

If you use Kodo’s surrogate version column feature, you cannot externalize an
entity’s version information, and so cannot use the Store version information in
hidden fields strategy we previously discussed.

Additionally, you cannot extend JPQL bulk update statements to update and verify
version information.

State Comparison Version Strategy
OpenJPA allows for versioning without any version column. Instead, an entity instance keeps a record
of the original database state of the fields that are read during the transaction, and uses this to form the
optimistic locking assertion in the WHERE clause of the SQL statements it uses to write to the database.

This state comparison strategy can be applied using the @org.apache.openjpa.persistence.jdbc.
VersionStrategy annotation.

import org.apache.openjpa.jdbc.meta.strats.StateComparisonVersionStrategy;
import org.apache.openjpa.persistence.jdbc.VersionStrategy;
@VersionStrategy(StateComparisonVersionStrategy.ALIAS)
@Entity
public class Person
{

...
}

With versioning based on a version column, the UPDATE statement for modifying the firstName attribute
of our Person entity will look something like this.

UPDATE Person SET firstName = ?, version = ? WHERE id = ? AND version = ?

The following shows how the statement changes when the state comparison versioning strategy is used.

UPDATE Person SET firstName = ? WHERE id = ? AND firstName = ? AND lastName =
? AND salutation = ?

The major advantage of the state comparison strategy is that it doesn’t require a version column. This
allows it to be used with an existing database schema, without requiring modifications.

The state comparison version strategy has a number of disadvantages.

❑ Each entity must keep a copy of the original value of every field that is read, and must send this
back to the database with every update operation. This will impact performance for entities that
have many columns.

❑ The strategy only checks the fields that are read during the transaction, and so lazily loaded
fields will be ignored if they are not otherwise used. This may allow two transactions to update
different parts of an entity independently without causing a locking exception. Depending on

213

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 214

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

your application, this may be allowable, or even desirable because it increases concurrency. With
lazily loaded fields, the state comparison strategy is more subtle and less predictable than the
version column strategy.

❑ Only fields with simple, exact types are considered. For example, columns with a float, BLOB, or
Collection value will not be taken into account. If a transaction only changes such a field, other
concurrent transactions will not detect its update.

Best Practice
If you cannot modify the database schema to add a version column, consider using the
OpenJPA state comparison versioning strategy.

Be aware of the performance cost of using this strategy with entities that have a large
number of fields; that its behavior can be less predictable when used with lazily loaded
fields; and that the strategy only detects changes in fields with simple, exact types.

Lock Groups
Optimistic locking in JPA works at entity granularity. Sometimes you may want to lock at a finer-grained
level (allowing separate application threads to concurrently update different fields of the same entity),
or not at all (that is, a commit will always overwrite the contents of the database). This can be achieved
using Kodo’s lock groups feature.

Lock groups are applied using the @kodo.persistence.LockGroup annotation. The following example
shows our Person entity with added lock groups.

@Entity
public class Person
{

@Id
private long id;
private String salutation;
private String firstName;
private String lastName;
@LockGroup("location")
private Location location;
@LockGroup("location")
private Date trackingDate;
...

}

Here we’re assuming that the location and trackingDate fields are updated regularly by a separate
tracking system. We don’t want optimistic locking exceptions to be generated when committing a trans-
action that has modified the user’s name if the tracking system has concurrently updated the location.

If the latest position set by the tracking system is acceptable, we might go further and disable
optimistic locking entirely for these fields. To achieve this, we would simply annotate the fields with
@LockGroup(LockGroup.NONE).

214

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 215

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Best Practice
Consider applying Kodo lock groups if you find contention between two types of trans-
action that update separate parts of an entity.

You should also ask yourself whether you could split the entity into two separate enti-
ties and so remove the need to use a Kodo-specific feature. This will most likely require
that the database schema is refactored but may lead to a more normalized schema that
is a better fit for your application.

The implementation of lock groups requires a separate version column for each lock group. You must
remove any existing @Version annotations from your code and add a @LockGroupVersionColumn anno-
tation for each lock group.

@LockGroupVersionColumns({
@LockGroupVersionColumn(), // Default lock group.
@LockGroupVersionColumn(lockGroup="location"),
})

@Entity public class Person {.. }

The column mappings for the version columns can be overridden using elements of the
@LockGroupVersionColumn annotation.

Lock groups require the use of the surrogate version columns. You can’t map these version columns to
fields of your entity classes. The restrictions we mentioned earlier regarding surrogate version columns
also apply to the lock groups feature.

Large Result Sets
Some database queries can return large amounts of data, perhaps more than will fit into the available
memory. This data can take a significant amount of time to transfer between the database server and
the application server. An application may find the information it needs in the early rows returned by
a query, and not have to retrieve the later rows. OpenJPA provides features to allow an application to
handle such large result sets efficiently.

Queries with Large Result Sets
When executing a database query, OpenJPA’s default behavior is to load the entire result into memory.
OpenJPA handles large result sets by loading the query results bit by bit as you iterate over the query
result, and so allows you to deal with large tables containing millions of rows that might not fit into
available memory.

To enable support for large result sets, you must set the openjpa.FetchBatchSize parameter.
FetchBatchSize should be set to a positive number corresponding to the number of rows to retrieve at a
time, or to 0 to use the JDBC driver’s default batch size.

If your JDBC driver supports it, you can also set openjpa.jdbc.ResultSetType to one of forward-only,
scroll-sensitive, or scroll-insensitive and FetchDirection to one of forward, reverse,

215

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 216

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

or unknown to control the type of cursor used. Refer to the Javadoc for java.sql.ResultSet for
details.

Finally, you can set the openjpa.jdbc.LRSSize parameter to control the strategy that OpenJPA uses
to determine the size of a collection backed by a large result set whenever the application requests
it. Under the default value of query, OpenJPA will issue a SELECT COUNT(*) query when the appli-
cation first requests the size. If set to last, and you have set ResultSetType to scroll-sensitive or
scroll-insensitive, this setting will use the JDBC driver’s support for scrollable result sets to find the
index of the last element. Otherwise, or if LRSSize is set to unknown, the size will always be reported as
Integer.MAX_VALUE.

Depending on the use of transactions and the transaction isolation level, the
observed size of a collection may change during the course of iterating over a large
result set. Further, if openjpa.jdbc.LRSSize is set to last, some JDBC drivers will
load the entire result set into memory, negating the value of the large result set
feature.

Your application will be more robust if you avoid calling size() on large
collections, and simply rely on iterating over collections.

Here’s a persistence-configuration.xml that sets the FetchBatchSize parameter to 10.

<?xml version="1.0" encoding="UTF-8"?>
<persistence-configuration xmlns="http://www.bea.com/ns/weblogic/persistence-
configuration"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.w3.org/2001/XMLSchema-

instance http://www.bea.com/ns/weblogic/persistence-configuration">
<persistence-unit-configuration name="BigRezDomain">
<fetch-batch-size>10</fetch-batch-size>

</persistence-unit-configuration>
</persistence-configuration>

Large Result Set Proxies
In addition to the large result set support for query operations, OpenJPA allows Collection and Map
fields to be marked as a large result set field, using the @org.apache.openjpa.persistence.LRS annota-
tion. OpenJPA handles such fields by delegating the collection operations to a database cursor, using a
large result set proxy.

Best Practice
Large collections don’t map well to an in-memory object model. If you are considering
using the support for large result set proxies, question carefully whether the association
belongs in your entity model. An entity with large collections is not well suited to
detachment. Further, an OpenJPA-specific annotation is required. You may be better
off using a JPQL query instead, and tuning openjpa.FetchBatchSize to prevent the
whole result set from being loaded at once.

216

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 217

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Second-level Caching
The JPA standard defines how entity instances should be cached in the persistence context. It does not
specify any support for caching shared data between persistence contexts, typically called a second-level
or L2 cache; however, because JPA uses plain Java objects and has an optimistic locking model, it is
straightforward for vendors to provide such a cache.

Kodo supports second-level caches, which it refers to as data caches. Configuring a data cache can dra-
matically increase performance with no changes to application code.

Data cache comes in several flavors. Of these, two are implemented entirely by Kodo: the concurrent
data cache and the least recently used data cache. The least recently used data cache uses a smarter evic-
tion scheme, but this requires more synchronization so the concurrent data cache generally gives better
performance.

The other types of data cache rely on third-party distributed cache products, namely Gemstone’s GemFire
and Oracle’s Coherence. Coherence Enterprise Edition is part of the WebLogic Suite and is included in
many WebLogic Server licenses. We discuss how to use Coherence as a data cache a little later.

Tuning Data Caches
The concurrent and least recently used data caches have CacheSize and SoftReferenceSize parameters.
The CacheSize parameter controls the basic size of the cache, and defaults to 1000. When the cache
overflows, surplus entities are maintained with soft references so are at the mercy of the garbage collector.
By default, the number of softly referenced entries is unlimited, but this can be constrained with the
SoftReferenceSize parameter.

You can configure an eviction schedule for all types of data cache. The eviction schedule specifies the
times and dates at which all the entries in the data cache will be cleared.

Multiple caches can be created. By default, entity instances are stored in the default cache. You can use
the @org.apache.openjpa.persistence.DataCache annotation to specify that a different cache should
be used for an entity class.

Cache entries are subject to a global DataCacheTimeout property. If a value retrieved from the cache is
older than this value, it is discarded. The property defaults to no timeout. You can override the timeout
on a per entity class basis using the @DataCache annotation.

Here’s a sample persistence-configuration.xml using these features.

<?xml version="1.0" encoding="UTF-8"?>
<persistence-configuration xmlns=...>

<persistence-unit-configuration name="BigRezDomain">
<data-caches>

<kodo-concurrent-data-cache>
<name>default</name>
<cache-size>100</cache-size>
<soft-reference-size>1000</soft-reference-size>
<!-- 2am every Sunday. -->
<eviction-schedule>00,00 02 * * 1</eviction-schedule>

</kodo-concurrent-data-cache>

217

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 218

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

</data-caches>
<data-cache-timeout>1000</data-cache-timeout>
<single-jvm-remote-commit-provider/>

</persistence-unit-configuration>
</persistence-configuration>

Data caches work best when your system has exclusive access to the database tables.
Data caches may not be appropriate if the information in your database is updated
frequently by other systems or applications. Because the data cache has no way of
learning about these updates, your application will often encounter optimistic lock
failures. It is also at risk of presenting stale data to the user.

By tuning the DataCacheTimeout, or choosing not to cache certain entity types, you
may be able to reduce these problems to an acceptable level.

Configuring a Data Cache for Multiple JVMs
You may have noticed the <single-jvm-remote-commit-provider> element in the preceding sample
persistence-configuration.xml. This configures a trivial remote commit provider, telling Kodo not to
synchronize the cache information with other JVMs.

This is rarely appropriate in a production WebLogic Server deployment. The application will typically be
deployed over one or more clusters, each containing multiple managed servers. In these situations, you
will want to configure a different remote commit provider so that the managed servers’ data caches can
be synchronized. Otherwise your application will suffer from optimistic locking and stale data problems,
similar to those that occur when a separate system is updating the database.

Kodo provides two built-in remote commit providers that can be used, one based on TCP sockets and
one on JMS topics. The JMS provider is preferred over the TCP provider in a Java EE environment like
WebLogic Server because it is integrated with the server’s threading, monitoring, and configuration
features.

Better still, an alternative, more powerful approach is to use a third-party distributed cache. A dedicated
distributed caching product will provide sophisticated tuning and monitoring features, and will allow
you fine-grained control over where your objects are cached. You may even choose to store the objects
outside of WebLogic Server, in a separate tier of standalone Java virtual machines. We show you how to
use Oracle Coherence with Kodo next.

Using Oracle Coherence as a Second-Level Cache
Oracle Coherence is installed as a separate product from WebLogic Server. You should modify your
WebLogic Server setDomainEnv.sh or setDomainEnv.cmd script to add the coherence.jar file in the
Coherence lib directory to the CLASSPATH.

Coherence can be sensitive to the correct network configuration. Before you use it with Kodo, test that you
can run Coherence in a standalone manner by using the standard cache-server.sh and coherence.sh
command-line tools. You may need to add Coherence-specific properties to the Java command line. For
example, on an Ubuntu Linux machine, we find we need to add -Djava.net.preferIPv4Stack=true.

218

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 219

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Having made these changes and restarted your server, you can modify your application to use the Coher-
ence data cache implementation and redeploy. The Coherence implementation is controlled with the
TangosolDataCache and TangosolQueryCache properties. (Tangosol was the company that developed
Coherence, and was bought by Oracle in 2007). The query cache property determines whether query
results (essentially the object identities) should be cached in the data store and returned for subsequent
queries using the same parameters.

Here’s a suitable persistence-configuration.xml to enable Coherence as a second-level cache.

<?xml version="1.0" encoding="UTF-8"?>
<persistence-configuration ...>

<persistence-unit-configuration name="BigRezDomain">
<data-caches>

<tangosol-data-cache>
<name>default</name>

</tangosol-data-cache>
</data-caches>
<data-cache-timeout>1000</data-cache-timeout>
<query-caches>

<tangosol-query-cache/>
</query-caches>

</persistence-unit-configuration>
</persistence-configuration>

The type of the Coherence cache can be set using the <tangosol-cache-type> child element of
<data-cache>. The allowed different cache types are named, distributed, and replicated. These control
the cache topologies — that is, how the cached objects are shared between JVMs. We recom-
mend that you omit the cache type from persistence-configuration.xml, in which case it will
default to named, and instead control the cache topology and other Coherence settings by adding a
tangosol-coherence-override.xml file to the server classpath. Refer to the Coherence user guide for
more details.

Controlling Flush Behavior
When preparing to evaluate a JPQL query, OpenJPA will consider whether it might be affected by
changes made to the current transaction’s persistence context that have not yet been flushed to the
database. If so, it will either evaluate the query in memory against the persistence context, or first flush
the changes before making a database query.

If you set the openjpa.IgnoreChanges property to true, OpenJPA will instead ignore any changes that
have not been flushed, and execute the query directly against the database. This is faster, but the appli-
cation will then have to call flush() whenever it wants to be sure the results of the query are consistent
with other changes made in the transaction.

Managed Inverses
We mentioned earlier in this chapter that JPA requires an application to keep bidirectional relationships
consistent by making changes to both fields.

219

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 220

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

OpenJPA can automatically manage inverse relationships. This is enabled by setting the
openjpa.InverseManager property to true. With this setting, OpenJPA detects changes to either
side of an association, and automatically corrects the other side on flush(). This is a convenience for
the programmer, but at the expense of non-portable code. It also opens the possibility of subtle bugs in
application code due to the inconsistency of the Java references before the persistence context has been
flushed.

OpenJPA can also be configured to log a warning or throw an exception when it detects an inconsistent
bidirectional association. This is more useful because it can be used as an assertion mechanism to detect
programming errors. To log inconsistencies, the openjpa.InverseManager property should be set to
true(Action=warn). To throw an exception, use true(Action=exception) instead.

Whether inconsistencies in the bidirectional associations are corrected, or just detected, the checks have
a performance overhead. The cost depends on the number of objects in the association. Because of
this, OpenJPA does not check large result set fields by default. You can enable checking by setting the
openjpa.ManageLRS to true.

Best Practice
Don’t rely on OpenJPA’s managed inverse feature because it has a performance cost
and makes your application non-portable. Fix your code instead.

Set openjpa.InverseManager to true(Action=exception) in development and func-
tional test environments. This will assert that your application is correctly maintaining
bidirectional relationships. Do not use this setting in performance test and production
environments because it will negatively impact performance.

Mixed Inheritance Strategies
The JPA standard only supports a single strategy for a given inheritance hierarchy. Kodo allows you to
use a mix of inheritance mapping strategies for a single inheritance hierarchy. This can be configured
solely in the deployment descriptors, so it need not affect the portability of your code. As we pointed out
early in this chapter, you should use inheritance with caution.

Prepared Statement Caching
OpenJPA uses JDBC prepared statements for every SQL statement it executes. Prepared statements make
life easier for the database, and significantly improve performance. Each JDBC connection has a cache of
prepared statements. If an application regularly uses more distinct statements than the cache can hold,
OpenJPA will often have to re-initialize prepared statements, losing their performance benefit.

When using OpenJPA in a standalone manner, the size of this cache is controlled by the
ConnectionFactoryProperties /MaxCachedStatements property, and defaults to 50 statements.

When deploying OpenJPA in WebLogic Server using container-managed data sources, WebLogic Server
manages prepared statement caching for each data source. The default size of the WebLogic Server
prepared statement cache is a rather miserly 10. The data source pages in the WebLogic Console provide
monitoring of the prepared statement cache statistics (you have to select the Customize this table link

220

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 221

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

and choose the prepared statement attributes). The statistics are also available via the DataSourceMBean.
You should monitor these statistics and increase the cache size, as needed.

Deployment Descriptors or Annotations?
EJB 3.0 introduces annotation-based programming. This provides the developer with a choice as to
whether to include metadata as annotations, or to use the traditional Java EE method — deployment
descriptors.

Annotations are simple to apply, and can result in much cleaner, more comprehensible code.

Deployment descriptors exist to capture environmental or product-specific differences. Extracting these
specific configuration details out of code can make it portable across environments, application servers,
database schemas, and database servers. Deployment descriptor elements always override their annota-
tion counterparts. They can also be further customized with deployment plans.

Two classes of descriptor exist — standards-defined descriptors such as ejb-jar.xml and
persistence.xml, and vendor-specific descriptors, such as weblogic-ejb-jar.xml and
persistence-configuration.xml.

When assessing where to set a particular item of metadata, we think of the hierarchy shown in Figure 6-
3: code (annotations) ➪ standard descriptors ➪ vendor descriptors ➪ deployment plans. We aim to
specify each item of metadata at the highest level that doesn’t constrain portability. For example, the
<ejb-link> mechanism allows us to describe the relationships between our application EJBs. These
relationships are the same whether the application is deployed to WebLogic Server, or to another Java
EE 5 application server. Because <ejb-link> is set in the standard ejb-jar.xml descriptor, we have
not constrained portability, so we prefer it to the alternative of using the WebLogic Server–specific
<ejb-reference-description> setting in weblogic-ejb-jar.xml. We can go further. We can use the
@EJB annotation directly in the code without sacrificing any portability but gaining much simplicity. In
this case, annotations are to be preferred.

Standard Annotations

Standard Deployment Descriptors

Vendor Deployment Descriptors

Deployment Plans

Portable

General

Declarative

Non-portable

Environment specific

Binding / definitive

Figure 6-3: The various ways to provide deployment
metadata

221

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 222

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

Be wary of product-specific annotations. Using these annotations makes your code directly dependent
on a vendor’s container and therefore harder to port should the need arise. Sometimes, a product
annotation is required to access a product feature of significant value. You should first look for
an option to configure this feature externally in a deployment descriptor. For example, use the
<enable-call-by-reference> element in the weblogic-ejb-jar.xml deployment descriptor in
preference to the @weblogic.javaee.CallByReference annotation. Similarly, if portability is a concern,
you should avoid standard annotations that have vendor-specific behavior, such as the mappedName
element of the @Stateless and @Stateful annotations.

Aim to make your JPA code portable across both databases and containers. Isolate database- or container-
specific features in deployment descriptors, and use annotations to describe only logical aspects of your
schema. As we have noted, some useful features of OpenJPA and Kodo, for example fetch groups, can
only be controlled using a product annotation.

Don’t hard code environmental information in annotations, for example IP addresses, host names, or
URLs. These will almost certainly vary between the various environments to which your application
will be deployed. Put them in a descriptor (a standard descriptor if possible), and customize them per
environment with deployment plans.

Deployment Plans
Deployment plans are a good way to customize settings for a particular environment. They can even
add missing information to a descriptor — the only requirement is that the descriptor file exists. For
example, a deployment plan can be used to set the global JNDI name for the remote business interface
example.MyEJB of the MyEJBImpl session bean.

<?xml version=’1.0’ encoding=’UTF-8’?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-

plan http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
global-variables="false">

<application-name>wls1031domain</application-name>
<variable-definition>
<variable>

<name>WeblogicEnterpriseBean_MyEJBImpl_jndiName_12326136237900</name>
<value>my.jndi.name</value>

</variable>
</variable-definition>
<module-override>
<module-name>Test</module-name>
<module-type>ejb</module-type>
<module-descriptor external="false">

<root-element>weblogic-ejb-jar</root-element>
<uri>META-INF/weblogic-ejb-jar.xml</uri>
<variable-assignment>
<name>WeblogicEnterpriseBean_MyEJBImpl_jndiName_12326136237900</name>
<xpath>/weblogic-ejb-jar/weblogic-enterprise-bean/[ejb-

name="MyEJBImpl"]/stateless-session-descriptor/business-interface-jndi-name-
map/[business-remote="example.MyEJB"]/jndi-name</xpath>

</variable-assignment>
</module-descriptor>

222

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 223

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

</module-override>
</deployment-plan>

This plan will work with an application that contains the following basic weblogic-ejb-xml.jar file.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar

http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.0/
weblogic-ejb-jar.xsd ">
</weblogic-ejb-jar>

We cover deployment plans in more depth in Chapter 12.

Annotations, Descriptors, Plans, and Dependency Injection
Consider how dependency injection works with annotations, deployment descriptors, and deployment
plans.

We’ve already spent some time looking at injection of @EJB and @PersistenceContext resources, so for
a change our next examples inject more general settings, using the @javax.annotation.Resource anno-
tations. Many different types of resources can be injected to fields annotated with @Resource, including
data sources, JMS queues and topics, and EJB context variables. We’ll illustrate how to inject a simple
integer that is a parameter for our application logic.

You can mix annotations, deployment descriptors, and deployment plans. A field in an EJB class can
have a reasonable default value that can be overridden if necessary. Here’s a session bean that declares a
searchDepth parameter.

package example;
...
@Stateless
@Remote
public class MyEJBImpl implements MyEJB
{

@Resource
int searchDepth = 7;

...
}

This parameter has been given a default value of 7. Because it has been annotated with
@javax.annotation.Resource, it can be overridden if necessary in a deployment descriptor or
plan. Here’s what to add to the ejb-jar.xml deployment descriptor to change the value to 10.

...
<session>
<ejb-name>MyEJBImpl</ejb-name>
<env-entry>

<env-entry-name>example.MyEJBImpl/searchDepth</env-entry-name>

223

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 224

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>10</env-entry-value>

</env-entry>
</session>

...

By default, the <env-entry-name> is derived from the fully qualified class name of the EJB
implementation, and the field name, but it can be overridden with the name element of the
@Resource parameter. As well as allowing the descriptor to refer to the annotated field, this
name is used to bind the value into the local JNDI namespace. In our case, the JNDI name will be
java:comp/env/example.MyEJBImpl/searchDepth.

The resource setting can be further overridden in a deployment plan. Deployment plans can
only set atomic values and not add arbitrary XML content, so the ejb-jar.xml must already
have an <env-entry> element for searchDepth. You might wonder how our previous sample
deployment plan set the JNDI name, despite the lack of the <weblogic-enterprise-bean>,
<stateless-session-descriptor>, and <business-interface-jndi-name-map> elements in the
deployment descriptor. The plan works only because during deployment, WebLogic Server builds an
implicit descriptor that contains these elements. This isn’t the case for <env-entry> elements.

Here’s a plan that sets searchDepth to 11.

<?xml version=’1.0’ encoding=’UTF-8’?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-

plan http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
global-variables="false">

<application-name>wls1031domain</application-name>
<variable-definition>
<variable>

<name>EnterpriseBean_MyEJBImpl_searchDepth</name>
<value>11</value>

</variable>
</variable-definition>
<module-override>
<module-name>ResourceInjection</module-name>
<module-type>ejb</module-type>
<module-descriptor external="false">

<root-element>ejb-jar</root-element>
<uri>META-INF/ejb-jar.xml</uri>
<variable-assignment>
<name>EnterpriseBean_MyEJBImpl_searchDepth</name>
<xpath>/ejb-jar/enterprise-beans/session/[ejb-name="MyEJBImpl"]/env-

entry/[env-entry-name="example.MyEJBImpl/searchDepth"]/env-entry-value</xpath>
</variable-assignment>

</module-descriptor>
</module-override>

</deployment-plan>

It is possible to inject a value or resource into a field of an EJB without it even being marked with an
annotation using the <injection-target> descriptor element. Here’s an example.

224

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 225

Chapter 6: Building Enterprise JavaBeans in WebLogic Server

...
<session>
<ejb-name>MyEJBImpl</ejb-name>
<env-entry>

<env-entry-name>searchDepth</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>3</env-entry-value>
<injection-target>
<injection-target-class>example.MyEJBImpl</injection-target-class>
<injection-target-name>searchDepth</injection-target-name>

</injection-target>
</env-entry>

</session>
...

Injecting dependencies to fields without annotations may seem convenient, but can be confusing to
someone just reading the source code. Apply with caution.

Best Practice
EJB developers should declare all fields they expect to be injected with an annotation
such as @Resource, @EJB, or @PersistenceContext.

Be wary of using the <injection-target> element in ejb-jar.xml to inject values
and resources into unannotated fields. Relying on this feature makes the EJB source
code harder to understand and maintain.

Chapter Review
This chapter began with a review of key EJB concepts and terminology and a discussion of the EJB life-
cycle in the WebLogic Server EJB container. Each of the EJB component types was identified, and a few
simple examples were presented in preparation for the subsequent discussions.

The bulk of the chapter was dedicated to presenting WebLogic Server–specific features and capabilities
related to EJB components. Many of these features are relatively new in the WebLogic Server product and
require careful configuration to achieve the desired performance or reliability benefits. The discussion of
each feature was accompanied by a best practice indicating its usefulness for typical EJB applications and
highlighting any limitations or configuration recommendations.

How should you design your EJB application? Which WebLogic Server configuration options should
you employ to improve performance? In the vernacular of the Java EE architect, it depends. It depends
on your specific requirements for performance, concurrency control, remote interface availability, and
many other issues. It is impossible to provide a single, overriding recommendation for EJB design or
configuration. It’s up to you to decide.

To help you make these important decisions for your project, the next chapter includes a discussion of the
key application drivers, the selection of a business layer architecture, and the appropriate configuration
options for the example EJB application, bigrez.com.

225

Patrick c06.tex V3 - 09/18/2009 12:17pm Page 226

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 227

Building an Example EJB
Application

In this chapter, we walk through the design and implementation of the business layer of the
bigrez.com example application, highlighting key concepts and best practices. Though this chapter
is not a full tutorial for constructing EJB components or the business layer of Java EE applications, it
provides insight into the construction of the example application, along with useful techniques that
you can apply in your projects.

This chapter is organized like Chapters 2 through 4, with the discussion proceeding from require-
ments to architecture and then to implementation.

❑ We identify a set of business layer requirements to guide the architecture selection process.

❑ We identify and examine candidate architectures in light of the requirements to gauge their
relative value for our application.

❑ We examine selected business layer components required for the bigrez.com application
to highlight implementation details and best practices.

Finally, we look at the necessary changes should we want to switch the JPA provider from WebLogic
Server’s Kodo implementation to Oracle’s TopLink implementation, which will replace Kodo in a
future version of WebLogic Server.

We start with the requirements.

Business Layer Requirements
As we stated in Chapter 2, you should identify and consider as many requirements as you can
before choosing a design. We spent a fair amount of time identifying the many presentation
layer requirements that a web application must address, before selecting the Spring MVC–based

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 228

Chapter 7: Building an Example EJB Application

presentation layer architecture. Requirements such as error handling and form redisplay led us to choose
a robust servlet-centric presentation layer framework rather than a simpler JSP-centric approach. We’ll
now follow the same strategy and identify the key business layer requirements that drive our choice of
architecture to ensure that we make the right decision.

As in Chapter 2, when we talk about requirements in this section we mean the general requirements of
a business layer architecture, rather than the specific requirements of a given application. Application
requirements matter in the architecture selection, but many common business layer requirements apply
to all applications.

We walk through the business layer, from the business logic requirements through to the database access
requirements, and identify key requirements that will be useful in evaluating candidate business layer
architectures.

Business Logic Requirements
The first set of business layer requirements is derived from the business logic requirements for the appli-
cation. Most applications have specific business logic requirements based on the required application
behaviors and functions. Unlike the requirements for data access or object-relational mapping, it is diffi-
cult to generalize and identify business logic requirements that are common to applications. We focus on
the common requirements shared by all Java EE business layers.

Encapsulation and the Business Layer Interface
The first common requirement is the need to give the presentation layer a simple, straightforward inter-
face. The business layer implementation may be complex and involve many steps, but this should not
concern the author of the presentation layer. The implementation is said to be encapsulated. A good prin-
ciple is to expose the minimum you can get away with — sometimes referred to as the principle of least
exposure. By following this principle, you reduce the dependencies between the presentation layer and
the business layer, decreasing the likelihood that a change to the business layer will necessitate corre-
sponding changes to the presentation layer. The two layers are then said to be more loosely coupled.

The business layer interface is usually more coarse-grained than the implementation. For example, the
interface may expose a getAccountProfile() service that returns a single AccountProfile object. The
implementation of this operation can do whatever is necessary to calculate the result; this may involve
calling several other services, merging many small objects, and using complex object-oriented patterns.
As well as simplifying the client, a coarse-grained interface may provide performance benefits in a
distributed, transactional environment by eliminating multiple transactions and the need for multiple
distributed requests from the client to the service. This is commonly known as the session façade pattern.

The standard way to implement a session façade with Java EE is to use session EJBs, and most often
these are stateless session EJBs. As illustrated in Figure 7-1, the session façade pattern provides client
components with a simple service interface. Each session bean encapsulates the service’s business logic.
The manipulation of the domain object model (usually database-backed), the use of container services
such as JPA entity managers, and use of other application services, are all hidden from the client. Without
the façade, the client component would be required to initiate and manage transactions, make multiple
calls to session beans and other business layer components, directly use JPA to interact with the database,
and trap and handle all business exceptions.

228

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 229

Chapter 7: Building an Example EJB Application

MoreServices
< < SLSB > >

Client
Component

Database
Object

Relational
Mapping

PersonImpl

TeamImpl

Domain Object Model

Authorize user access
Begin transaction
 Read entities
 Perform business logic
 Update entities
Commit transaction

Person

Team

Audit
Scheduling
Email
Billing
. . .

Application Services

Container ServicesSession Façade

JTA
JPA
JDBC
JMS
Java Mail
. . .

PersonServices
< < SLSB > >

Figure 7-1: Session façade encapsulates complex business logic.

To sum up, the chosen business layer architecture must provide a mechanism for encapsulating complex
business logic and provide a straightforward interface for client components.

Transaction Management and Security
The business layer should be responsible for managing transaction boundaries, ensuring that the effects
of a service call are atomic and only persisted and made visible to other transactions if the call completes
successfully.

The session façade is the ideal place to manage transaction boundaries. EJB provides good, declarative
mechanisms to apply transactions.

The session façade is also a good point at which to apply security policy checks to make sure the user
is authorized to use the service. This is often implemented using Java EE declarative security, which we
cover in depth later in Chapter 11.

The Domain Model and Data Transfer Objects
To make best use of the Java language, you will want to implement your business logic using a domain
model of Java objects. Here, domain refers to the application domain, and classes in the domain model
represent things that are meaningful in the application’s business context. Many domain objects are long
lived, and in the next section, we consider the best way to map the persistent parts of the domain model
to a database.

The session façade interface needs to transfer objects back and forth to the client. These objects typi-
cally contain only state and no behavior (in line with the session façade’s role of simplifying the client
interface), and are referred to as data transfer objects or DTOs.

229

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 230

Chapter 7: Building an Example EJB Application

The session façade data transfer objects are usually a subset of the business objects used in the domain
object model. For example, there may be a Customer domain class and a CustomerDTO data transfer class.
Some approaches require the session façade to translate from domain objects to data transfer objects, and
vice versa. This has the advantage that it can decouple the two representations. Classes in the domain
model can change without requiring corresponding changes to the data transfer object classes; instead,
the translation code is simply changed. Disadvantages include the need to write and maintain two similar
sets of classes, the need to write repetitive code that copies data back and forth, and the performance cost
of the copying. In general, architectural approaches that avoid this translation are more efficient and
easier to maintain.

Validation
The business layer may need to perform validation of objects and their data elements. As discussed in
Chapter 2, the data values submitted by a web application user are often validated both on the page
itself, perhaps via JavaScript, and in a presentation layer component such as the form bean or controller
class. Many applications consider this level of validation to be sufficient, and allow the business layer
components to perform operations on client-provided data without repeating the validation checks.

Other applications have more rigorous requirements and must include validation checks on all data sent
to the business layer components. This may be the case where the presentation layer and business layer
are deployed to separate physical tiers (so the business layer is directly accessible over the network and
is more exposed to a malicious user), or where the business layer has several distinct presentation clients.
The need for validation in the business layer may not be present in the original application, but it can
occur once the component is reused in a subsequent application. For example, a component intended for
use with a web application having validation checks in the presentation layer might eventually be reused
by a different application that does not include presentation layer validation.

The business layer architecture should provide a mechanism for validating objects and data and return-
ing validation errors in much the same way the controller components provided this functionality in the
presentation layer.

Object-Relational Mapping Requirements
Moving further into the business layer toward the database, the next set of requirements concerns the
mechanisms for mapping domain objects to the relational database technology. These object-relational
mapping (ORM) requirements define the functions necessary to translate between object technology and
relational database representations of the data.

Mapping Simple Classes
The simplest form of object-relational mapping is the simple one-to-one mapping of a business object to
a database table. The characteristics of this type of mapping include the following:

❑ Each instance of the business object is represented by a row in the database table.

❑ The attributes in the business object are all scalars, strings, or other simple data types.

❑ Each attribute maps to a single column in the database table.

The object-relational mapping technology must allow for a straightforward mapping of business objects
to tables, including support for basic create, read, update, and delete (CRUD) operations.

230

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 231

Chapter 7: Building an Example EJB Application

It is possible to design a database schema where a single business object is spread across multiple tables.
Inserting the business object creates a row in each table, removing the object deletes the corresponding
row in each table, and modifying the object updates all of the rows. The ORM technology must allow for
objects that span tables in a database, and maybe even across multiple databases.

You often want to use objects that contain arbitrary subsets of data from one or more tables. One good
example of such a projection object is a query result object that contains a subset of data from a table
needed for the presentation of search results.

For example, suppose we are querying for a list of Person objects. The PERSON table might have 20 or
more columns, so a result list containing many full Person business objects may need a large amount
of memory, network bandwidth, and so on. If the user interface needs to display only the first and last
name, a specialized projection object could be defined that contains only those two attributes from the
Person table plus the table primary key. The mapping technology must allow fetching a list of these
projection objects from the table using SQL statements that fetch only the required fields.

It is also valuable to create projection objects that span multiple tables, again containing only the nec-
essary attributes for the specific requirement being satisfied. A highly normalized database will require
multi-table projection objects for best query performance. The query that fetches the multi-table projec-
tion object should perform the join using the database rather than trying to fetch objects for each table
in to memory and joining them by hand. The ORM technology should allow for projection objects that
define a subset of columns from one or more tables.

Mapping Associations
Associations are relationships between objects. Associations can be one-to-one, one-to-many, many-to-
one, or many-to-many. Associations are normally between objects of different classes, but some may be
reflexive, that is, they can be from an object of one class to an object of the same class.

In a relational database, relationships between rows are implemented using foreign key relationships
between tables. They can be easily navigated starting from either end of the association — this is bidirec-
tional navigation. In Java, an association is implemented using a reference field of the object correspond-
ing to one end of the association, and because the reference can only be traversed in one direction it is
unidirectional. Where necessary, a complementary reference may be added to allow traversal in the other
direction.

For example, an Employee class may have a many-to-one relationship to itself through the field manager.
This is reflexive and unidirectional. If we want to navigate in the other direction, we can add a reports
field, representing a one-to-many relationship to the employee’s direct reports. This bidirectional naviga-
tion does not come for free. When we change an employee’s manager, we must also take care to update
the list of reports for the old and the new managers.

The difference between the natural bidirectional navigation of associations possible in a relational
database and the frequent need to manage a pair of unidirectional references in an object model is
one example of the mismatch between object and relational technologies. We would like our ORM
technology to manage all the gritty details of translating between these two worlds.

Here’s another example. A common form of association is the many-to-many relationship between two
entities that have independent lifetimes. For example, in Figure 7-2, the relationship between students at
a school and the courses offered at the school is contained in a separate relationship table, ENROLLMENT.

231

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 232

Chapter 7: Building an Example EJB Application

The ENROLLMENT relationship table exists to indicate that a particular student is taking a particular course,
and can also include additional information related directly to this relationship. In this example, the
student’s grade in the specific course would be stored in the ENROLLMENT table, not in the STUDENT or
COURSE table.

ID
FIRST_NAME
LAST_NAME
. . .

STUDENT

ID
GRADE
ABSENT_DAYS
STUDENT_ID
COURSE_ID

ENROLLMENT

ID
COURSE_NAME
INSTRUCTOR
ROOM
SEMESTER

COURSE

Figure 7-2: The ENROLLMENT table implements a many-to-many
association.

Due to differences between the object and relational models, a relationship looks different in memory
than it does in a database. In memory, objects are linked by Java references in an object graph. The object-
relational mapping technology must provide mechanisms for both creating the interconnected series of
objects in memory when reading tables, and writing out the interconnected objects to the proper database
tables when making changes.

Ideally, the ORM technology should be capable of the following:

❑ Automatically creating the object graph during a fetch operation, linking business objects appro-
priately, and pre-fetching some or all of the graph during the initial database operation.

❑ Automatically walking through all of the relationships in the object graph and performing the
necessary and appropriate CRUD operations on the objects to save any changes.

❑ Where required in the object model, managing bidirectional references.

You often want to defer the fetching of related objects until the time they are actually required. In many
cases, the source object may be all that is required to perform a calculation or present some business data
to the user, and it is a waste of resources to populate fully the object graph with all related objects. This
technique of waiting to fetch children is referred to as lazy instantiation.

The ORM technology should therefore allow the following:

❑ Fetching an object plus all of its related objects, and their related objects, recursively. This is
called a deep or full fetch of the entire object graph starting with the parent object.

❑ Fetching only the object without fetching any related objects, often called a shallow fetch.

The term composition refers to ownership, or parent-child, associations, in which the child cannot exist
without the parent. For example, the associations between students, enrollments, and courses are not
composition relationships, because students can exist without courses, and courses can exist without
students, but the association between a SCHOOL and a DEPARTMENT can be considered composition, because
the departments cannot exist without the school.

With composition, there is typically a one-to-many relationship between the parent and the child table.
Where there is a one-to-one relationship, you may be able simply to fold the child data back into the
parent table.

232

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 233

Chapter 7: Building an Example EJB Application

Some basic rules apply in composition:

❑ Deleting the parent is dependent on having no remaining children in the database. This is nor-
mally enforced by the referential integrity constraints in the database. Automatic deletion of
children during a parent delete is possible, but it must occur before the parent is deleted.

❑ Inserting child rows also depends on the existence of the parent row for the referential integrity
constraints to allow the insert.

Updating the parent primary key becomes a pain, requiring a multi-step process of copying the parent
row, changing the children to refer to the new parent row, and then deleting the original parent row. This
operation is costly and should be avoided by using immutable keys for primary key identifiers if at all
possible.

To sum up, the chosen business layer architecture must support flexible, efficient, and safe techniques for
modeling and managing complex relationships.

Mapping Inheritance
Java is an object-oriented language, and one of the strengths of object-oriented technology is the concept
of inheritance. Inheritance can be difficult to implement in an object-relational mapping environment,
however, because normal database systems do not provide a native technique for inheriting and extend-
ing tables.

Three primary techniques are available for mapping inheritance to a set of database tables: horizontal
partitioning, typed partitioning, and vertical partitioning. Figure 7-3 depicts these three techniques for a
simple example containing a single base class, Person, and two subclasses, Employee and Customer.

Customer Table

name
age
title

company

Horizontal
Partitioning

Employee Table

name
age

department
salary

Everything Table

name
age
title

company
department

salary
type

Typed
Partitioning

Person Table

name
age

Vertical
Partitioning

Customer Table

title
company

Employee Table

department
salary

Figure 7-3: Options for object-relational mapping of inheritance.

233

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 234

Chapter 7: Building an Example EJB Application

In horizontal partitioning, only concrete subclass objects are mapped to tables. These tables include all of
the base class and subclass attributes. This approach may improve performance because only one table
needs to be accessed for instances of a given concrete class.

In typed partitioning, all classes in an inheritance tree are mapped to a single table containing all
attributes required for all subclass objects. A type column is used to distinguish which type of object is
stored in each row of the table, and many type-specific columns in the table will be empty for a given
object.

Finally, in vertical partitioning, every class in the inheritance tree maps to a table in the database. Fetching
data for a concrete subclass involves a join operation between the base table and the concrete subclass
table.

All three techniques for mapping inheritance in the database are viable, but clear advantages and disad-
vantages are present in some of them. Designing the database to match the object inheritance tree exactly,
represented in the vertical partitioning technique, can dramatically affect performance and complicate
the data access services by requiring joins during all CRUD operations. On the other hand, the placement
of all attributes for all object types in a single table, the typed partitioning technique, sacrifices a great
deal of flexibility and maintainability to achieve fast and simple queries and CRUD operations. The hor-
izontal partitioning scheme often represents the best compromise between flexibility and performance,
and it can also be implemented easily with a variety of ORM technologies including JPA.

Best Practice
Horizontal partitioning provides the simplest and most efficient method for modeling
inheritance in a relational database.

All of the object-relational mapping requirements discussed in this section are important in real-world
applications containing large, complex object models. Simple architectures may have no problem imple-
menting the business logic and simple object-relational mapping requirements discussed in this section,
but they often break down when they encounter more complex requirements in the object model such
as nested composition or multiple sets of associated objects. Don’t adopt an architecture that will not
support the long-term needs in these areas.

Data Access Requirements
The business layer must provide basic data access services to support the object-relational mapping and
business logic requirements outlined previously. Although this is not a complete list, most applications
require at least the following set of data access services and functions:

❑ Basic create, read, update, and delete operations at an object level to meet basic object persistence
requirements.

❑ Creation of custom SQL statements to perform complex logic without resorting to fetching
objects and performing logic in business layer components.

❑ Standardized mechanisms for handling large result sets and limiting returned results.

❑ Standardized mechanisms for handling and reporting data-related errors.

234

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 235

Chapter 7: Building an Example EJB Application

❑ Efficient bulk insert, update, and delete mechanisms to avoid reading and updating multiple
objects one at a time.

❑ Concurrency control (optimistic or pessimistic locking) to eliminate the loss of data in the event
of multiple simultaneous update transactions.

Other Business Layer Requirements
Finally, many applications have additional business layer requirements in the following areas:

❑ Creation of detailed audit trails of business layer service requests, data access, data manipula-
tion, and other activities. The audit tracks who, what, when, and even why these activities were
performed.

❑ Robust logging and instrumentation capability. It is used to troubleshoot system problems dur-
ing system development and to provide usage profiling information during production opera-
tion.

❑ High levels of performance and scalability. These are normally expressed as overall system
requirements, of course, but the business layer architecture plays a large role in ensuring good
performance. The architecture must represent sound design principles and leverage all of the
appropriate clustering, caching, and performance-related features of the application server
hosting the components.

Review of Business Layer Requirements
Table 7-1 summarizes all of the requirements outlined in this section and provides the set of criteria we’ll
use to evaluate candidate business layer architectures for the bigrez.com application.

Business Layer Architecture Options
Chapter 3 introduced the bigrez.com example application and described the web application architec-
ture chosen for the presentation layer. The next step in the construction is the selection of a business layer
architecture based on the general business layer requirements outlined in the previous sections and our
particular application requirements for bigrez.com.

In contrast to the presentation layer, fewer architectures are worth considering for the business layer. We
examine three candidate business layer architectures in this chapter:

❑ Stateless session EJBs using JDBC to perform SQL operations.

❑ Stateless session EJBs using EJB 2.1 Container-Managed Persistence (CMP) entity beans for per-
sistence operations.

❑ Stateless session EJBs using JPA for persistence operations.

All three of the candidate architectures use stateless session EJBs to provide the required session façade.
We discuss the advantages of using SLSBs in the following section. Occasionally, you will find a need
for a stateful session façade, and so may consider using stateful session EJBs as well, but this is rarely
appropriate for applications such as bigrez.com that have a stateful presentation layer.

235

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 236

Chapter 7: Building an Example EJB Application

Table 7-1: Summary of Business Layer Requirements

Requirement Description

Session façade Straightforward technique available to encapsulate
complex or multi-step business processes behind a
simplified interface of services.

Transaction and security management Declarative specification of transaction management and
security policies.

Audit, logging, and instrumentation Techniques available to log, audit, and instrument
business layer activity at the method level.

Translation between the domain model
and DTOs

Easy translation to and from the DTOs used in the
business layer interface.

Validation Ability to perform business layer validation.

Simple object-relational mapping Basic create, read, update, and delete operations on
simple objects that map to one or more tables.

Associations Ability to map relationships and perform all required
CRUD operations on complex object graphs. Support for
lazy fetching.

Inheritance and polymorphism Ability to map inheritance in the object model to the
database.

Advanced data access operations Limiting result sets, performing dynamic queries, bulk
operations, and concurrency controls.

Performance and scalability Good performance and scalability. The ability to use
caches to share effort across many requests.

The candidates differ then in what they use for object-relational mapping. Here JPA has significant bene-
fits, and you can treat the following discussion as a justification for our choice to use JPA over previously
popular implementation technologies.

Moving outside the constraints of plain Java EE, you also might consider more proprietary frameworks
such as the Spring Framework or Oracle’s Application Development Framework (ADF) Business Compo-
nents. A complete survey of all possible architectures is beyond the scope of this book. Use the discussion
in this chapter to aid you in choosing the right architecture for your application by applying a similar
selection process that considers your particular business layer requirements and limitations.

SLSBs and the Session Façade Requirements
Stateless session EJBs easily meet the first three of our requirements; namely the need for a way to imple-
ment a session façade, support for declarative security and transaction management, and audit, logging,
and administration.

236

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 237

Chapter 7: Building an Example EJB Application

We’ll briefly contrast some of the advantages of using SLSBs over the alternative implementation of a
pure Java session façade.

First, SLSBs support both dependency injection and JNDI binding, and allow the links from clients to
the façade beans to be overridden in deployment descriptors. As you saw in Chapter 6, the @EJB anno-
tation is often all that client code requires to refer to an EJB. Such declarative coupling of components
is important for code that must work in many different environments, and that needs to be easy to unit
test. In contrast, a pure Java session façade implementation has to choose between hard coding the links
(making unit testing hard, and the code very brittle), using the Service Locator pattern (which often means
a dependency on custom framework code and verbose, application-specific property files), or using a
third-party dependency injection tool such as the Spring Framework.

Second, the SLSB threading model means that a service author rarely has to consider concurrency. In con-
trast, a pure Java session façade would require the author to code each service implementation carefully
to be thread-safe.

Third, SLSBs support declarative security and transaction policies that link directly into the services
provided by the application server, and can be specified using annotations or deployment descriptors.
A pure Java session façade would either have to code support for transactions and security into every
service implementation, or use complicated aspect-oriented programming techniques to support transac-
tions and security in a generic manner.

Fourth, SLSBs can be called remotely. It is easy to modify interfaces defined at the service level to support
remote method invocation. The main change is that the data transfer objects must be serializable to enable
passing by value via remote (RMI) invocations. As well as allowing access to clients in different physical
tiers, remote invocation supports clients deployed in different classloaders such as those packaged in a
separate enterprise application. Remote invocation is not required for bigrez.com, but may be for other
applications.

Fifth, application servers provide deployment and monitoring facilities for managing SLSBs. Additional
audit, logging, and instrumentation facilities can be added using custom interceptors.

Finally, SLSBs are defined by a standard. They are portable between Java EE application servers. There is
a large talent pool of Java developers who understand SLSBs.

We’ll use EJB 3.0 SLSBs for bigrez.com, and compare the remaining requirements against our candidate
architectures.

Stateless Session EJBs with JDBC
The first candidate business layer architecture uses SLSBs to encapsulate all business logic, a pass-by-
value technique to accept and return business objects, and simple JDBC functionality to implement
persistence. Figure 7-4 illustrates this architecture for a simple application containing a single service
and business object.

As shown in the figure, each business layer request is implemented as a separate method on the service.
Process encapsulation is achieved by creating coarse-grained methods on the service that encapsulate
multi-step processes. All of the object-relational mapping requirements and data access requirements
are implemented with custom Java code and SQL statements. You can develop methods to find business

237

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 238

Chapter 7: Building an Example EJB Application

objects by any number of criteria, and a general find method accepting the actual WHERE clause for the
SQL statement is also possible.

PersonServicefindByID

PersonDTO

SELECT * from PERSON
WHERE ID = ?

Result Set

Client
Component

findByID
findByLastName
findByFirstName
createPerson
updatePerson
deletePerson

Database

Figure 7-4: Stateless Session EJBs with JDBC

All the business layer requirements can be met with this architecture, although some require a large
amount of custom coding. JDBC is a foundational layer used by the other technologies we consider, and
anything achievable with EJB 2.1 CMP or JPA is achievable with JDBC plus custom code. You can essen-
tially do anything in this architecture because you control, and are responsible for writing, everything
in the service. Recognize, however, that with this control and flexibility comes additional complexity:
You must code everything yourself, including all object-relational mapping and advanced data access
operations. The effort to implement advanced features quickly makes the off-the-shelf alternatives more
attractive. In assessing the capabilities of JDBC, we’ll assume that the custom coding is limited to imple-
menting CRUD operations as SQL statements in stateless data access objects (DAOs), and mapping to and
from DTOs.

Table 7-2 presents a list of the business layer requirements and describes the capabilities and limitations
of this SLSB and JDBC-based architecture in each area.

The stateless session EJBs with JDBC architecture doesn’t line up well with our requirements.

Historically, straight JDBC would be used occasionally to complement EJB 2.1 CMP entity beans. For
example, JDBC might be required to make a call to a database stored procedure. JPA provides support
for native SQL queries, allowing arbitrary SQL to be used, so there is no longer a good use case for using
JDBC directly.

We don’t want the effort of hand coding the database access for our bigrez.com application and it needs
to perform well. Let’s move on to the next candidate and see if it represents an improvement.

Stateless Session EJBs with EJB 2.1 CMP Entity Beans
The second candidate architecture resembles the first choice in some respects. It also uses stateless session
EJBs, but it replaces the JDBC-based data access logic with an entity bean layer modeling the business
objects. As shown in Figure 7-5, the stateless service acts as a session façade encapsulating both business
logic and the basic persistence operations for business objects.

238

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 239

Chapter 7: Building an Example EJB Application

Table 7-2: JDBC Architecture Requirements Analysis

Requirement Support provided by the architecture

Translation between
the domain model
and DTOs

Poor Repetitive, error-prone custom code is required.
The application must maintain a separate set of DTO
classes, translate from JDBC result sets to these DTO
objects, and in the other direction, map from the DTO
objects to parameters of JDBC statements.
The alternative approach of using JDBC RowSets is even
less desirable because it does not provide the client with an
object-oriented view and fails to encapsulate the
implementation.

Validation Acceptable Validation can be performed in the SLSB or the DTO
classes.

Simple
object-relational
mapping

Acceptable Custom code required.
The SQL statements required for basic CRUD operations
are coded in data access objects (DAOs) in the business
layer. The SQL statements can be arbitrarily complex, and
can easily support projection or mapping to multiple tables.
The DAO implementations must be careful to close JDBC
resources after use.

Associations Poor Support for each association must be hand coded into
DAOs using SQL.
Support for lazy fetching is not achievable without making
the DAOs stateful.

Inheritance and
polymorphism

Poor Inheritance mapping must be hard coded into each DAO.

Advanced data
access operations

Poor There is no way to batch JDBC operations between different
DAOs that may be used in a single transaction.
Concurrency control must be coded consistently into every
DAO. A mistake in a single DAO can open up the
application to concurrency issues.

Performance and
scalability

Poor Stateless DAOs cannot cache by definition. Not only does
this prevent us caching between requests, it prevents us
caching within a single transaction. A DAO cannot use
results from other DAOs, or even previous calls to itself
within a transaction.
Even if we relax the restriction that the DAO be stateless, it
is hard to see how a generic cache might be easily applied.
Caching requires a standard CRUD interface, a consistent
object model with well-defined keys, and consistently
implemented locking features. You should have reached for
one of the more advanced architectures well before this
point.

239

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 240

Chapter 7: Building an Example EJB Application

PersonServicefindByID

PersonDTO

findByPrimaryKey

getAttributesClient
Component

findByID
findByLastName
findByFirstName
createPerson
updatePerson
deletePerson

Database

PersonEJB

PersonHome

Figure 7-5: Stateless Session EJBs with EJB 2.1 CMP entity beans

Each business layer request is implemented as a separate method on the service, meeting the pro-
cess encapsulation, validation, and other business layer requirements in the same manner as the first
architecture. We’ve just swapped out the JDBC-based persistence layer and replaced it with EJB 2.1
container-managed persistence (CMP) entity beans. The entity beans are responsible for all data access
services and for meeting some, if not all, of the object-relational mapping requirements. Using CMP beans
eliminates the hand coding of persistence logic and provides access to all of the persistence optimization
capabilities of the WebLogic Server EJB container.

We don’t propose to describe the details of EJB 2.1 entity beans here. We briefly covered some drawbacks
of EJB 2.1 entity beans in Chapter 6. If you are unfamiliar with EJB 2.1, it will help to know that an entity
EJB is a full EJB component, like a session bean, and so can be invoked remotely, and have declarative
security and transaction management policies.

The client component requesting the business service is not allowed to communicate directly with the
entity bean in this architecture, nor can entity beans be passed to services or be returned by them. A sep-
arate set of data transfer objects is used to communicate with the service. These DTOs almost invariably
contain a mirror image of the attributes in the entity bean. The SLSB is responsible for copying data back
and forth between value objects and the related entity beans in addition to performing any business logic
contained in the service itself.

Table 7-3 presents our list of business layer requirements and describes the capabilities and limitations of
this SLSB and EJB 2.1 CMP entity bean architecture in each area.

As you might expect, the EJB 2.1 CMP entity bean architecture scores significantly higher against our
requirements than direct JDBC.

We identify two significant disadvantages with the EJB 2.1 CMP entity bean architecture for bigrez.com:

❑ The requirement for the data transfer object classes, and the need to map back and forward
between entity beans and their external representation.

❑ The mappings to the database are defined by the container vendor, and so are non-portable. The
mapping features depend upon the maturity of the particular container.

240

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 241

Chapter 7: Building an Example EJB Application

Table 7-3: EJB 2.1 CMP Entity Bean Architecture Requirements Analysis

Requirement Support provided by the architecture

Translation between
the domain model and
DTOs

Poor Repetitive, error-prone custom code is required.
The application must maintain a separate set of
DTO classes, translate from entity beans to these
DTO objects, and in the other direction, map from
the DTO objects to the entity beans.
CMP entity beans are a better solution than the
direct use of JDBC, because the container manages
the mapping from the raw result set to Java and can
deal with database-specific details for mapping
special types such as large object columns.

Validation Acceptable Validation can be performed in the SLSB, the DTO
classes, or the entity beans.

Simple object-relational
mapping

Good in WebLogic
Server, but
non-portable.

This is core CMP entity bean functionality.
However, the EJB specification does not define how
an entity bean is mapped to a database. This is left
entirely to the container vendor. Consequently, the
specification of the mapping to the database is not
portable between application servers.
Vendors may differ on support for advanced
features such as mapping to multiple tables.

Associations Good in WebLogic
Server, but
non-portable.

As for the ORM mapping, the details and level of
support for features such as lazy loading is vendor
specific.

Inheritance and
polymorphism

None EJB 2.1 does not support inheritance relationships
between entities.

Advanced data access
operations

Good in WebLogic
Server, but
non-portable.

Again, the EJB specification leaves the details to the
product vendor.
WebLogic Server uses JDBC batching, supports field
groups (for projection), and provides support for
pessimistic and optimistic locking schemes.

Performance and
scalability

Acceptable EJB 2.1 entity beans are often criticized for the
container overhead. So long as entity beans are not
invoked remotely (considered to be extremely poor
practice), the container overhead need not be overly
large.
One significant advantage over plain JDBC is the
transaction level caching. An entity bean’s state is
read from the database only once per transaction.
WebLogic Server provides support for second level
caching of entity bean state, with cluster-wide
invalidation.

241

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 242

Chapter 7: Building an Example EJB Application

To dwell on the first of these disadvantages, some subtle, but significant, drawbacks are inherent in the
conversion from DTOs to entity beans in the services. The handling of associations can be significantly
more complex when all relationships must be represented in the object graph for the purposes of com-
munication with the services. As a simple example of this problem, consider the case of a parent-child
relationship between two objects and the logic required in the services to maintain these objects and their
relationships. You would need SLSB operations to perform at least the following services:

❑ Fetching one or more parent objects using supplied criteria, and returning the parent objects plus
child objects for each parent if desired by the client. The service would fetch the parent entity
beans, walk through the list creating the parent value objects, optionally iterate on the child rela-
tionship fields to fetch each child entity bean, create a value object for each child, and place it in
the object graph.

❑ Fetching one or more child objects using supplied criteria, including the parent object for each
child if desired by the client. The service would fetch the child entity beans, walk through the
list creating each child value object, optionally traverse the relationship to the parent entity bean,
create a value object for the parent, and place it in the graph.

❑ Updating a parent object, including the update of any attached child objects. The service must
determine the proper insert, update, or delete operation to perform for each child value object
in the graph. Child value objects would require a status flag set by the client, or separate lists of
child objects would have to be supplied by the client representing each desired type of operation.
The service would fetch and update the parent entity bean using the data in the parent value
object, then fetch and process each child object according to the required operation.

The difficulty in using value objects only intensifies when many-to-many relationships and other com-
plex associations are modeled in the entity beans. The simple copying of DTOs to entity beans quickly
becomes a nightmare if the object graph becomes large and complex. Remember that making multiple
calls to the service to process portions of the object graph may not be a viable solution if you have strict
requirements for transactional consistency. To ensure consistency, the service must begin and end the
transaction in a single method call, so all of the required value objects, relationships, and required CRUD
operations must be represented by the parameters and data structures passed to the service in that single
method invocation.

EJB 2.1 CMP is a step forward over direct use of JDBC, but still has its drawbacks. We’ll move on to
consider stateless session EJBs with JPA.

Stateless Session EJBs with JPA
The final candidate architecture has two significant differences to the EJB 2.1 CMP architecture. Obvi-
ously, JPA replaces EJB 2.1 CMP. The other difference, which is enabled by JPA, is that the JPA entity
object is used as the data transfer object, eliminating the need to maintain a separate set of classes and for
additional translation and copying in the stateless session bean. Figure 7-6 depicts this architecture.

The session bean interacts with the JPA entity manager to perform CRUD operations on entity instances.
The set of entities for a particular request is managed in a persistence context specific to the request. The
diagram shows an entity being passed directly back to the client; it is automatically detached (disassociated
from the persistence context) when the request transaction completes. The client receives a plain Java
object that is no longer associated with the database, with its attributes reflecting the state of the entity
when the transaction committed.

242

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 243

Chapter 7: Building an Example EJB Application

Detached entity
is returned

Persistence
Context

PersonService
findByID

find

Client
Component

findByID
findByLastName
findByFirstName
createPerson
updatePerson
deletePerson

Database

PersonEntityPersonEntity

EntityManager

Figure 7-6: Stateless session EJBs with JPA

More complex interactions with the session bean might return an entity that has references to other
entities. If the other entities were also loaded in the persistence context (which will depend on whether
the associations are set to be lazy or eager, or whether the session bean traversed the relationships), they
too will be detached and the result will be an object graph.

Up until this point, we’ve assumed that each request will use a single transaction that is managed by the
session façade. This is not the only approach, so, for completeness, we will take a little time to consider
the pros and cons of this approach, together with some alternatives:

Session Façade with Disconnected Entities: This is our preferred approach. The session façade
defines the transaction boundary and produces disconnected object graphs. Transactions and the
JPA persistence context have the same life cycle.

This is simple, and understandable. Nevertheless, the object graph the façade returns to the client
must be populated with all the information needed by the client, or the client must make further
calls to the session façade to retrieve information. This may require the client to provide additional
parameters that control the scope of the results, or to make additional transactional calls to retrieve
information (sacrificing read consistency).

Transaction Around Page Rendering: This approach moves the responsibility for transaction man-
agement to the client.

Doing this allows the client to work with managed entities in the persistence context, and lazily
load attributes and associations as needed. Otherwise, this is not an attractive approach. Encapsu-
lation is broken, because the client can directly update the database. Database locks will be held
for longer, because the page must be rendered before the transaction commits. It is unsuitable for
update operations because the transaction demarcation is outside the page rendering, making it
hard for the web layer to deal with transactional failure.

Open Session in View: This is a pattern popularized by Hibernate, and implemented by several
web frameworks.

The pattern involves committing the service layer transaction at the end of the service call, but
keeping the JPA persistence context open. New read-only transactions are started as necessary for

243

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 244

Chapter 7: Building an Example EJB Application

rendering the view, and re-use the persistence context. If the view requires information that is not
already part of the persistence context, further queries are made to the database to retrieve it.

Some frameworks explicitly define a service transaction and a view transaction as part of the
request processing life cycle, still using a single persistence context bridge for both. This has the
advantage that all of the view rendering is wrapped up in a single view transaction.

This approach also allows the client to work with managed entities in the persistence context, and
lazily load attributes and associations as needed. Nevertheless, it has many disadvantages. It can
be harder to understand and debug. It is inherently non-atomic; for example, the view transactions
might include the results of someone else’s update. It may be more inefficient, as there are multiple
queries across two or more transactions, where one might have sufficed. Container-managed entity
managers can’t be used, because they associate the persistence context with the transaction. It is
more work to implement, and requires a custom servlet filter or request listener to ensure the entity
manager is correctly closed when the servlet request processing finishes.

The client can modify the detached objects it receives, and pass them back to the session façade as param-
eters to update operations. The session bean can then merge these objects into the persistence context
for the new request. This works well in conjunction with JPA’s support for optimistic locking, because
the detached objects will maintain version information, and the merge operation will fail if some other
transaction has concurrently modified the entity’s database row. We described how a presentation layer
might manage these detached objects in its HTTP session in ‘‘Writing a Web Layer Suited to Optimistic
Locking’’ in Chapter 6.

If the entities are to be used across a remote interface, they should implement java.io.Serializable.

Using entities as DTOs couples the presentation layer more tightly to the business layer, because they
both share a single entity object model. Changes to the business layer’s entity model will directly affect
clients. In practice, this is unlikely to be a problem. There is usually no advantage to be gained by main-
taining two similar object models, and translating backward and forward. If you find a client does need a
different view of an entity, consider whether that view could be an interface that the entity implements,
allowing you to pass the entity instance directly back to the client without additional translation.

Table 7-4 presents our list of the business layer requirements and describes the capabilities and limitations
of the SLSB and JPA architecture.

The SLSB and JPA architecture meets our requirements very well.

The bigrez.com Implementation
Unsurprisingly, we’ve chosen to implement the bigrez.com application using the stateless session EJB
with JPA architecture, and to use our entities as data transfer objects across the session façade.

In this section, we walk through the implementation of various parts of the bigrez.com business layer.
We start with the database schema, look at the domain object model, and then at the implementation of
the business services and session façade. We also consider how to write effective unit tests for a business
layer, and the changes required to support optimistic locking.

244

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 245

Chapter 7: Building an Example EJB Application

Table 7-4: JPA Architecture Requirements Analysis

Requirement Support provided by the architecture

Translation between the
domain model and DTOs

Good Using the JPA entities as DTOs means no translation
is required.

Validation Acceptable Validation can be performed in the SLSB, the DTO
classes, or the entity classes. If the entities are used
as DTOs, the JPA annotations on entity fields that
define constraints such as the column length can
also be used by presentation layer frameworks to
provide additional validation in the user interface.

Simple object-relational
mapping

Good JPA provides strong support for object-relational
mapping, and standardizes the mapping to
relational databases.

Associations Good JPA provides good support for associations,
including defining advanced features such as lazy
loading. (The vendor may choose not to implement
lazy loading, but the interface remains the same.)

Inheritance and
polymorphism

Good JPA defines various ways to map a class hierarchy
of entities to database tables.

Advanced data access
operations

Good JPA defines advanced features such as optimistic
locking.
Other features, such as the JDBC batching feature of
Kodo, depend on the quality of provider
implementation. Usually, these features can be
applied without making an application
non-portable.

Performance and
scalability

Good The persistence context provides transaction level
caching. An entity’s state is read from the database
only once per transaction.
The default optimistic locking approach is
appropriate for most applications and scales well.
The clean POJO-based model allows an
implementation easily to introduce second level
caching.

Database Schema
The first version of the bigrez.com application was developed for the book Mastering BEA WebLogic
Server: Best Practices for Building and Deploying J2EE Applications by Gregory Nyberg and Robert Patrick

245

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 246

Chapter 7: Building an Example EJB Application

with Paul Bauerschmidt, Jeff McDaniel, and Raja Mukherjee (Wiley, 2003). The business layer was based
on EJB 2.0 stateless session beans and CMP entity beans, which was the most appropriate technology
available when the book was written.

We’ve completely rewritten bigrez.com for this book, using EJB 3.0 stateless session beans and JPA for
the business layer. It is common to have to fit a JPA application to an existing schema or one defined by
another group, so we’ve decided to keep the database schema as close to the original as possible.

The bigrez.com schema is presented in Figure 7-7.

The top left-hand side of Figure 7-7 shows the tables containing information that changes rarely. A row in
the PROPERTY table represents a particular hotel. Each hotel has a number of ROOMTYPES such as standard
double, executive, or penthouse. Hotels vary widely, so there is no standard room type model that
applies to all hotels. The marketing department can associate OFFERS with each property — this is impor-
tant for bigrez.com because we will present the offers on our web pages. The corporation can control the
rates charged for each room type.

11

* *

1

ID : NUMBER(10, 0)
DESCRIPTION : VARCHAR2(60 BYTE)
FEATURES : VARCHAR2(2000 BYTE)
ADDRESS1 : VARCHAR2(60 BYTE)
ADDRESS2 : VARCHAR2(60 BYTE)
CITY : VARCHAR2(30 BYTE)
STATECODE : CHAR(2 BYTE)
POSTALCODE : VARCHAR2(10 BYTE)
PHONE : VARCHAR2(30 BYTE)
IMAGEFILE : VARCHAR2(100 BYTE)

PROPERTY

ID : NUMBER(10, 0)
PROPERTY_ID : NUMBER(10, 0)
IMAGEFILE : VARCHAR2(60 BYTE)
CAPTION : VARCHAR2(60 BYTE)
DESCRIPTION : VARCHAR2(2000 BYTE)

OFFER

ID : NUMBER(10, 0)
PROPERTY_ID : NUMBER(10, 0)
DESCRIPTION : VARCHAR2(60 BYTE)
FEATURES : VARCHAR2(2000 BYTE)
MAXADULTS : NUMBER(10, 0)
SMOKINGFLAG : NUMBER(10, 0)
NUMROOMS: NUMBER(10, 0)

ROOMTYPE

ID : NUMBER(10, 0)
ROOMTYPE_ID : NUMBER(10, 0)
DAY : DATE
ROOMSAVAIL : NUMBER(10, 0)

INVENTORY

ID : NUMBER(10, 0)
ROOMTYPE_ID : NUMBER(10, 0)
STARTDATE : DATE
ENDDATE : DATE
RATE : NUMBER(12, 5)

RATE

11

* *

1

1

RESERVATION

ID : NUMBER (10, 0)
CONFIRMNUM : VARCHAR2(10 BYTE)
GUESTPROFILE_ID : NUMBER(10, 0)
ROOMTYPE_ID : NUMBER(10, 0)
ARRIVE : DATE
DEPART : DATE
CARDTYPE : VARCHAR2(20 BYTE)
CARDEXP : VARCHAR2(10 BYTE)
CARDNUM : VARCHAR2(30 BYTE)

RESERVATIONRATE

ID : NUMBER(10, 0)
RESERVATION_ID : NUMBER(10, 0)
STARTDATE : DATE
NUMNIGHTS : NUMBER(10, 0)
RATE : NUMBER(12, 5)

GUESTPROFILE

ID : NUMBER (10, 0)
LOGON : VARCHAR2(10 BYTE)
PASSWORD : VARCHAR2(10 BYTE)
FIRSTNAME : VARCHAR2(30 BYTE)
LASTNAME : VARCHAR2(30 BYTE)
PHONE : VARCHAR2(30 BYTE)
EMAIL : VARCHAR2(60 BYTE)
CARDTYPE : VARCHAR2(20 BYTE)
CARDEXP : VARCHAR2(10 BYTE)
CARDNUM : VARCHAR2(30 BYTE)

*

*

*

Figure 7-7: bigrez.com database schema.

246

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 247

Chapter 7: Building an Example EJB Application

The INVENTORY table holds the number of rooms of a particular type available on a particular day. You
might think that this could be calculated from reservation information, but that would neglect bookings
made directly with the hotel that bypass the reservation system. Additionally, last-minute cancellations
and no-shows are a fact of life for hotels, so the hotel managers need enough flexibility to overbook rooms
and control the level of overbooking. Also, notice there is no model of specific rooms; the front desk is
given free reign to assign guests to rooms on arrival.

The right-hand side of Figure 7-7 shows the three tables that support the reservation system. The
GUESTPROFILE holds information about guests making reservations. The RESERVATION table holds
information about specific reservations, including the guest information used when booking. A
real-world system would likely separate out the credit card information to a separate table, or a separate
database, so more rigorous security can be applied to the data. The RESERVATIONRATE table stores
information about the quoted room rates at the time a reservation was made.

Domain Model
Now, consider the JPA model corresponding to the database schema, which also serves as our domain
model. This is shown in Figure 7-8. These classes exist in the com.bigrez.domain package.

O..n O..n

O..n O..n

Address address
String description
String features
String imageFile
List<Offer> offers
String phone
List<RoomType> roomTypes

Property

String address1
String address2
String city
String postalCode
String stateCode

Address

String description
String features
int maximumAdults
int numberOfRooms
Property property
boolean smokingFlag

RoomType

String caption
String description
String imageFile
Property property

Offer

Date endDate
Money rate
RoomType roomType
Date startDate

Rate

Date day
RoomType roomType
int roomsAvailable

Inventory

O..n

O..n

O..n

CardDetails card
String email
String firstName
String lastName
String logon
String password
String phone
List<Reservation> reservations

GuestProfile

Date arrivalDate
CardDetails card
String confirmationNumber
Date departureDate
GuestProfile guestProfile
List<ReservationRate> reservationRates
RoomType roomType

Reservation

int numberOfNights
Money rate
Reservation reservation
Date startDate

ReservationRate

String expiry
String number
String type

CardDetails

BigDecimal amount

Money

Figure 7-8: bigrez.com domain model.

247

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 248

Chapter 7: Building an Example EJB Application

The correspondence with the database schema is strong. There are two interesting points of difference to
note.

First, some classes don’t have a one-to-one correspondence with a table, namely Address, CardDetails,
and Money. We’ve separated these in the domain model using JPA embedded classes, allowing us to have
a better object model without normalizing the database schema. The CardDetails and Money classes are
also embedded in multiple entities, so we have less code to maintain.

Best Practice
Use embedded entity classes to create a more appropriate, fine-grained Java object
model without requiring a change to the database schema.

Second, not all associations are mapped in a bidirectional manner. For example, there is a Java reference
from Inventory to RoomType, but RoomType does not have a collection of references to Inventory. This
is because we found no need for the bidirectional navigation when writing the business logic associated
with the entities. None of our code needs to find all the Reservation entities or all of the Inventory
entities or all of the Rate entities for a RoomType. There is code that needs to find some of the Inventory
or Rate entities, but these are always queries constrained by a date range so are implemented using JPQL
queries.

The benefits of not creating references in both directions are that we do not need to worry about keeping
the two references in sync (a JPA requirement we discussed in Chapter 6), and there is less code to write.
Further, because there is no need to navigate the missing references, there is no need for the related
entities to be part of a disconnected object graph that would require more memory. For example, suppose
a transaction returns a detached Property reference to a client, and that the transaction fully loads all of
its RoomType entities, and all of the related Inventory, Rate, and Reservation entities. The Property has
no references to these classes, so the client will just receive the Property, and its related Address, Offer,
and RoomType entities. The Inventory, Rate, and Reservation instances used by the transaction will be
eligible for garbage collection when the transaction finishes.

Best Practice
Create bidirectional references for associations between entities only when you find
you need them. Often, a unidirectional reference is sufficient and simpler.

How did we arrive at this domain model? We followed the following process:

❑ Generate the JPA entities from the existing schema.

❑ Reformat the generated code, and tweak some of the class or member names as needed. For
example, rename the generated Guestprofile class to GuestProfile, or expand the numnights
field to numberOfNights and add a @Column annotation to keep it mapped to the NUMNIGHTS col-
umn.

❑ Refine the model by identifying coherent groups of attributes, and encapsulating them in their
own embedded classes.

248

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 249

Chapter 7: Building an Example EJB Application

❑ For each association, make a guess at how we might need to traverse it, and add either a unidi-
rectional reference or a bidirectional pair of references.

❑ Following the best practice identified in Chapter 6, write helper methods to maintain the
integrity of bidirectional reference pairs.

❑ Following the best practice identified in Chapter 6, add cascade=CascadeType.PERSIST to all of
the associations. Add CascadeType.REMOVE to those composition associations.

❑ Extract superclasses for the entities and the embedded classes, and use these to implement com-
mon functionality such as identity and versioning.

❑ Write unit tests for the domain classes.

After you’ve been through this process once, it becomes quite natural, and you can quickly develop
a rough cut of the domain model that lets you get started with the service implementations. As you
implement the first few services, you’ll find ways in which the domain model needs to be refined. Typical
changes include adding an inverse reference to an association to make it bidirectional; changing whether
an association is loaded lazily or eagerly; finding other opportunities to extract embedded classes; adding
Cascade.MERGE or CascadeType.REFRESH to associations; and adding named JPQL queries.

Best Practice
Don’t try to perfect your JPA object model in isolation. Iteratively develop the entity
classes in conjunction with the service code that uses it.

We’ve already discussed the embedded classes, and whether associations should be implemented in a
unidirectional or bidirectional manner. We now consider the other steps in the process, starting with how
to generate JPA classes from a schema.

Generating the JPA Classes from the Schema
Many tools will generate JPA code from a database schema. When we developed bigrez.com, we used
the Eclipse IDE’s Dali Java Persistence API tools. Dali is part of the Eclipse Web Tools Platform Project,
and can be installed via the Eclipse update manager.

To generate JPA classes from a schema with Dali, follow these steps:

1. Open the Data Source Explorer view, and create a database connection to the database
schema you wish to map.

2. Create a new JPA project, choosing None as the target runtime, and the database connection
you created in step 1.

3. Right-click the project, and chose Generate Entities from Tables. A dialog will appear.
Select your database connection, and then on the next page in the dialog, select all the tables
you want to map to entities and type in the Java package name you want to use. Select
Finish and the entities will be created.

OpenJPA also has good support for generating JPA classes through its reverse mapping tool. To use
this tool, first create a persistence.xml containing database connection properties. (See ‘‘Using JPA

249

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 250

Chapter 7: Building an Example EJB Application

Entities in a Java SE Environment’’ in Chapter 6 for an example.) Then, set your environment for running
WebLogic Server and run the tool using the org.apache.openjpa.jdbc.meta.ReverseMappingTool
class.

% . /oracle/middleware/wlserver_10.3/server/bin/setWLSEnv.sh
% java org.apache.openjpa.jdbc.meta.ReverseMappingTool -properties persistence.xml
-pkg com.bigrez.domain -schema bigrez -annotations true -inverseRelations false

Refer to the OpenJPA documentation for details of the many options you can specify. Here we have
used -annotations true, so the tool will add metadata annotations to the generated entities, and
-inverseRelations false, which fits our preference of selectively adding bidirectional reference pairs.

As we pointed out in Chapter 6, the database schema is likely to outlive your application and be used by
other applications. Normally, you will want to design this schema carefully, and so it makes sense to
generate the JPA model from the schema. On occasion, you may wish instead to generate the schema
from your domain model. If so, you can set the openjpa.jdbc.SynchronizeMappings property to
buildSchema. This modifies the database schema to match your mappings, and is particularly useful for
rapid prototyping.

Generic JPA Functionality
There is common functionality that we want all of our JPA entities to share. For example, the equals()
method should compare entity instances using the primary key. We’ve extracted a DomainEntity super-
class for the entity classes, and a ValueObject superclass for the embedded classes. This is shown in
Figure 7-9. These classes exist in the com.bigrez.jpa package.

ValueObject is simple. Because we will use our domain classes as data transfer objects, it implements
Serializable. It contains two utility methods, nullSafeEquals() and nullSafeHashCode(), which sub-
classes can use to avoid repetitive checks for null values in their value-based equals() and hashCode()
method implementations. ValueObject also provides a toString() method that returns a standard for-
mat string, including the implementation class name, the hash code, and a description that subclasses
have to provide by implementing the abstract toStringDescription() method. The implementation
class is calculated by looking for the most derived class that has a package name starting com.bigrez.
This will filter out any subclasses that have been added by the JPA provider as part of its enhancement
process.

DomainEntity is a little more complicated. The class’s primary responsibility is to handle all of the com-
mon functionality related to identity. The primary key columns of all of the bigrez.com entities are of
type NUMBER(10), which is mapped to a long field in the domain model. By declaring DomainEntity
as a mapped superclass, it can manage the primary key in the id field that all of the subclasses inherit.
DomainEntity uses the @GeneratedValue and @SequenceGenerator annotations to generate primary
keys from a database sequence, so a public setID() method is not required.

Clients require a string representation of an entity’s identity. Web applications often use such identity
strings to add context information to URLs. We have declared the DomainEntity.getID() method to
be protected, so it can’t be called directly by clients. This is deliberate, and for two reasons. First, we
decided not to expose our primary keys outside of the domain model implementation, retaining the
freedom to change the primary key representation if we need to at a later date. Second, the primary key
only makes sense in conjunction with the class with which it is associated, so providing a client with
just a long value is not particularly helpful. The client would be required to keep track of the entity

250

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 251

Chapter 7: Building an Example EJB Application

class for which the long was a primary key and supply the entity class when it wanted to use the pri-
mary key for look up. Instead, a client should call getExternalIdentity(), which provides a string
encoding both the entity class and the primary key. At a later date, the client can call the static method
findByExternalIdentity() to convert the encoded string to an entity. All of this functionality is imple-
mented in the DomainEntity class, so can be inherited easily by the concrete entity classes.

DomainEntity()
long getID()
+ String getExternalIdentity()
+ T findByExternalIdentity(EntityManager em, Class<T> entityClass, String externalIdentity)
+ T findEntity(EntityManager em)
+ int hashCode()
+ boolean equals(Object o)
boolean is Transient()
+ String toString()
String toStringDescription()

DomainEntity

boolean nullSafeEquals(T one, T two)
int nullSafeHashCode(Object o)
+ String toString()
String toStringDescription()

ValueObject

GuestProfile Inventory Offer Rate RoomTypeProperty

CardDetailsAddress Money

Reservation ReservationRate

Figure 7-9: bigrez.com domain model superclasses.

Unlike ValueObject subclasses, which need to do a field-by-field value-based equality calculation, the
equality of an entity class is based purely on its primary key. DomainEntity implements equals() and
hashCode() based on the entity class and the primary key, and all subclasses inherit this behavior.
DomainEntity implements toString() in a similar manner to ValueObject; subclasses simply need
to override toStringDescription() to provide additional information from their significant fields.

251

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 252

Chapter 7: Building an Example EJB Application

Best Practice
DomainEntity and ValueObject contain generic functionality that should be useful to
any JPA implementation. Feel free to use these classes in your projects.

Changes to the bigrez.com Schema
We aimed to make the minimum number of changes to the original database schema. By and large, we
achieved this. The following is a list of differences from the original:

❑ The COMMON_SEQUENCE database table has been replaced by a database sequence. Although JPA
defines a database table–backed generator strategy, it requires that the table has both a primary
key and a value column. The original bigrez.com implementation used a table with a single col-
umn holding the sequence value, so is not compatible with the JPA table generator. We felt a
database sequence was more appropriate for the Oracle database anyway.

❑ We removed a redundant foreign key between RESERVATION and PROPERTY.

These are minor changes, and arguably we would have made these improvements whether or not we
were using JPA. A more significant change is the version column we added to support optimistic locking.
We describe this later in this chapter.

Services
Now we have a robust domain model, let’s consider the implementation of the session façade and the
business services.

Session Façade
Figure 7-10 shows the bigrez.com service interface. These classes exist in the com.bigrez.service
package.

Following the session façade pattern, the service methods are tuned to the needs of the presentation layer.
We’ve split the services into three groups. The profile services deal with guest profiles. The property
services deal with the administration of properties, marketing offers, and rates. The reservation services
deal with availability checking and making reservations.

We’ve used a subset of classes from the domain model as data transfer objects. Not all domain model
classes are exposed. In particular, Inventory and ReservationRate are hidden from the client, and
instead the client uses the AvailabilitySummary, AvailabilityAndRates, and RateDetails interfaces
that provide more appropriate views of the information. This simplifies the interface for the client. It
also helps performance because each RoomType can have many Inventory entities, but the client is only
interested in availability for a limited time period and not all of the Inventory entities.

The package contains a number of application exceptions. We’ve used checked application exceptions for
problems that the client can reasonably be expected to handle. For example, a DuplicateKeyException
will be thrown if the client tries to create a guest with the same logon name as an existing guest. The
implementation may throw unchecked exceptions for other conditions, such as not being able to connect
to the database; for these problems, the client can do little more than present a technical error page to
the user.

252

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 253

Chapter 7: Building an Example EJB Application

+ GuestProfile createOrUpdate(guestProfile)
+ GuestProfile findByLogonAndPassword(String, String)

<<java interface>>
ProfileServices

+ Property createOrUpdate(Property)
+ Property findPropertyByExternalIdentity(String)
+ List<Property> findAll()
+ List<Property> findByCityAndState(String, String)
+ List<String> getAllCities()
+ List <String> getAllStateCodes()
+ void delete(Property)
+ RoomType createOrUpdate(RoomType)
+ RoomType findRoomTypeByExternalIdentity(String)
+ void delete(RoomType)
+ Rate createOrUpdate(Rate)
+ Rate findRateByExternalIdentity(String)

+ void delete(Rate)
+ Offer createOrUpdate(Offer)
+ Offer findOfferByExternalIdentity(String)
+ List<Offer> getOffersForDisplay(Property, String, String, int)
+ void delete(Offer)

<<java interface>>
PropertyServices

+ List<AvailabilitySummary> calculateAvailabilitySummary(Property, Date, int)
+ List<Integer> calculateAvailability(RoomType, Date, Date)
+ void updateInventory(RoomType, Date, List<Integer>)
+ List<AvailabilityAndRates> calculateRatesAndAvailability(Property, Date, Date)
+ List<RateDetails> calculateRates(RoomType, Date, Date)
+ Reservation createReservation(Reservation, List<RateDetails>)
+ Reservation findReservationByExternalIdentity(String)
+ void deleteReservation(Reservation)

<<java interface>>
ReservationServices

AbstractEntityException(...)
+ DomanEntity getEntity()

+ EntityNotTransientException(...) + EntityNotFoundException(...)

+ NotFoundException(...)
+ NotFoundException(...)

+ DuplicateKeyException(...)

+ RoomTypeUnavailableException(...)
+ RoomType getRoomType()
+ List<Date> getUnavailableDates()

AbstractEntityException

EntityNotTransientException EntityNotFoundException

NotFoundException DuplicateKeyException

RoomTypeUnavailableException

+ List<Rate> findRatesByRoomType(RoomType)

Figure 7-10: bigrez.com service interface.

The interfaces and classes in the com.bigrez.service package are pure Java, and so are easy to mock up
for unit testing.

Service Implementation
The services are implemented using three stateless session EJBs in the com.bigrez.service.impl pack-
age. Let’s look at the simplest implementation, the ProfileServicesImpl EJB.

Because the presentation layer is packaged in the same enterprise application, we use ProfileServices
as a local interface. The EJB also declares an entityManager field, which the container will set up when
it deploys the application.

@Stateless
@Local
public class ProfileServicesImpl implements ProfileServices
{

@PersistenceContext
private EntityManager entityManager;

253

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 254

Chapter 7: Building an Example EJB Application

Next, we come to the creation of a utility JPABaseDAO instance. We’ll consider the details of this data
access object class in a bit; for now just note that ProfileServicesImpl implements getEntityManager()
to allow the utility class access to the entity manager.

private JPABaseDAO<GuestProfile> guestProfileDAO =
new JPABaseDAO<GuestProfile>() {

@Override
protected EntityManager getEntityManager()
{

return entityManager;
}

};

Now, look at the two method implementations:

@Override
public GuestProfile createOrUpdate(GuestProfile guestProfile)

throws DuplicateKeyException
{

GuestProfile result = guestProfileDAO.createOrUpdate(guestProfile);
try {

entityManager.flush();
}
catch (PersistenceException e) {

throw new DuplicateKeyException("GuestProfile exists with logon name ‘"
+ guestProfile.getLogon() + "’");

}
return result;

}

@Override
public GuestProfile findByLogonAndPassword(String logon, String password)

throws NotFoundException
{

return guestProfileDAO.findOne(GuestProfile.QUERY_BY_LOGON_AND_PASSWORD,
logon, password);

}

That’s the full ProfileServicesImpl EJB. The other EJBs are a little more complex, but all three follow
the same pattern.

The EJB method implementations are simple because they delegate the interaction with the entity man-
ager to the data access object. Let’s have a quick look at this class. You can see its methods in Figure 7-11.

The JPABaseDAO is a generic abstract base class that encapsulates CRUD operations with the JPA entity
manager. To use the class, a subclass is created for a particular JPA entity class, and getEntityManager()
is overridden to supply the entity manager. The class provides various methods that map frequently used
JPA operations to a form more suited to the EJB implementations, and avoids much repetitive code.

Here’s one of the methods, findOne(), which wraps up the invocation of a named JPQL query
when a single result is expected. The ProfileServicesImpl EJB used this method to implement
findByLogonAndPassword().

254

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 255

Chapter 7: Building an Example EJB Application

+ JPABaseDAO()
+ T checkExists(T t)
+ T checkTransient(T t)
+ void create(T t)
+ void createOrUpdate(T t)
+ void delete(T t)
+ List<T> find(String namedQuery, Object[] parameters)
+ List<T> findAll()
+ T findByExternalIdentity(String externalIdentity)
+ T findOne(String namedQuery, Object[] parameters)
EntityManager getEntityManager()

– Class<T> persistentClass

JPABaseDAO<T extends DomainEntity>

Figure 7-11: The JPABaseDAO class.

public T findOne(String namedQuery, Object... parameters)
throws NotFoundException

{
try {

Query query = getEntityManager().createNamedQuery(namedQuery);
int i = 0;
for (Object p : parameters) {

query.setParameter(++i, p);
}
return (T)query.getSingleResult();

}
catch (NoResultException e) {

throw new NotFoundException(e);
}

}

The findOne() method deals with the translation of the JPA NoResultException to the more neu-
tral NotFoundException session façade exception; it returns an instance of the correct entity type, so
the client doesn’t need to concern itself with casting. It also simplifies the Query interface: the client
calls one method, passing all of the query parameters, rather than having to make repeated calls to
setParameter() itself.

Best Practice
Follow the Don’t Repeat Yourself principle and encapsulate repetitive CRUD operations
in a generic data access object class. You can use the JPABaseDAO class in your own
projects if it fits your needs.

Email Integration
The bigrez.com application sends an email notification to the guest when a reservation is made or
canceled.

255

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 256

Chapter 7: Building an Example EJB Application

The first step in this process is a call from the ReservationServicesImpl EJB to an EmailServicesImpl
EJB. The EmailServicesImpl EJB is used only internally, so is in the implementation package. It supports
a simple EmailServices interface.

interface EmailServices
{

void sendReservationConfirmedEmail(String addressee, Reservation reservation);
void sendReservationCancelledEmail(String addressee, Reservation reservation);

}

EmailServicesImpl is an internal component and we might have chosen to implement it as a plain Java
class, rather than as an EJB. If we had done so, we would have still chosen to separate an EmailServices
interface because it makes unit testing simpler, so the coding difference between plain Java and EJB
amounts to adding a few simple annotations (@Stateless, @Local, and a couple for dependency injec-
tion). We get many advantages of using an EJB. First, the client can use dependency injection to obtain
a reference to the EJB and we can let the container worry about managing the life cycle of EJB instances.
Had we used plain Java we would have needed to create a factory or register the component with a
service locator class. Second, we can use dependency injection within the EJB to obtain references to
other services; we do so for EmailServicesImpl to look up a JMS connection factory and destination.
Third, the container ensures our code will only be invoked by one thread at a time, pooling and creating
additional EJB instances as necessary. Fourth, we can monitor our EJB through the WebLogic Console or
using JMX.

EmailServicesImpl’s primary responsibility is the creation of a formatted email from a Reservation,
together with an appropriate subject line depending on whether the reservation was confirmed or can-
celed. Having done so, it places the information on a JMS queue, for later processing by a separate
EmailMDBImpl EJB. We have used a JMS queue to separate the sending of an email message into its own,
repeatable transaction. This means that the original transaction (the reservation booking or cancellation)
will not be delayed or aborted if the remote mail server is unavailable. Further, our data sources and JMS
connection factories are configured to participate in the same global transaction using XA. We use this
to ensure that emails are sent only if the original transaction succeeded. If the reservation transaction
calls sendReservationConfirmedEmail() and then fails to commit, perhaps because of an optimistic
locking exception, the transaction will also rollback the sending of the JMS message and no email will be
sent out.

The JMS queue also provides a simple, configuration-based mechanism for retrying failed attempts
to send the email. This is important, because the email server is remote and may be down for main-
tenance or not contactable due to a network issue. We cover how to configure message redelivery in
Chapter 10.

Best Practice
Introduce a JMS queue where you need to split an operation into two separate transac-
tions, and ensure the second transaction is started if and only if the first one commits
successfully.

You can configure WebLogic Server’s JMS redelivery capabilities to retry the second
transaction a number of times, or to move it to an error queue for an administrator’s
attention.

256

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 257

Chapter 7: Building an Example EJB Application

As promised, the dependency injection of JMS resources into EmailServicesImpl is simple:

@Resource(mappedName="bigrez.jms.connectionfactory")
private ConnectionFactory jmsConnectionFactory;
@Resource(mappedName="bigrez.jms.emailQueue")
private Destination emailQueue;

The mappedName elements refer to the JNDI names of the connection factory and queue that are set in
the domains configuration. WebLogic Server will inject wrapped versions of the JMS resources that have
built-in pooling and error recovery. See Chapter 10 for more details on JMS wrappers.

Let’s look at the other end of the queue, and the EmailMDBImpl EJB. This is a message-driven bean that
will remove messages from the queue, and send out email messages.

@MessageDriven(mappedName = "bigrez.jms.emailQueue",
activationConfig = {

@ActivationConfigProperty(propertyName = "destinationType",
propertyValue = "javax.jms.Queue")

}
)
public class EmailMDBImpl implements MessageListener
{

public static final String EMAIL_SUBJECT = "EMAIL_SUBJECT";
public static final String EMAIL_ADDRESSEE = "EMAIL_ADDRESSEE";
@Resource
private MessageDrivenContext context;
@Resource(mappedName="bigrez.mail.session")
private Session mailSession;
@Resource
private String sender = "reservations@bigrez.com";

@Override
public void onMessage(Message message)
{

// Send email message.
}

}

The activationConfig element indicates that the MDB should be deployed to receive messages from a
JMS queue, and the mappedName element supplies the JNDI name of the queue.

The MDB has the default transaction configuration, so will use container-managed JTA transactions.
When a message arrives, the container will start a new transaction and call the onMessage() method.
Our implementation makes use of the injected JavaMail Session to convert the received JMS mes-
sage into an email, and send it using the WebLogic Server mail session that is bound to the JNDI name
bigrez.mail.session.

The bigrez.com EJB module doesn’t use deployment descriptors. We’ve chosen to use annotations to
inject the required resources. This is a good development time convenience, but a disadvantage of this
approach is that the application’s dependencies are not readily apparent to or easily changeable by an
administrator. To determine the dependencies without attempting to deploy the application, the admin-
istrator would have to read all of the application code. We addressed this by supplying a WLST script
that creates the required resources. We also include a sample deployment plan in the downloadable

257

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 258

Chapter 7: Building an Example EJB Application

examples that would allow our administrator to override these injected dependency JNDI names, should
the need arise.

When writing error-handling logic in message-driven beans, you should decide whether an exception
should rollback the current transaction. If you rollback the transaction, the message will be eligible for
redelivery. If you don’t rollback, you effectively have consumed the message. Rolling back the transac-
tion is appropriate for transient errors, where redelivery in a new transaction might succeed. We do this
in EmailMDBImpl if we received a MessagingError from the email system. You shouldn’t rollback if you
know the message can never be processed; instead you should log the problem or perhaps place the mes-
sage directly on an error queue for the attention of an administrator. For example, when EmailMDBImpl
fails to parse the recipient’s email address, it logs a warning but does not rollback the transaction. Such
messages are sometimes referred to as poison messages, and we further discuss how to handle them in
Chapter 10.

The container will automatically rollback the transaction if the MDB throws a RuntimeException. It
is poor practice to rely on this, because the container will also discard the MDB instance; a high error
rate would negate the value of MDB pooling. Instead, you should use the JTA or EJB APIs to mark the
transaction for rollback and return from the onMessage() method. EmailMDBImpl does this by calling
setRollbackOnly() on the injected MessageDrivenContext.

Alternatively, you can throw weblogic.ejb.NonDestructiveRuntimeException or an exception
that derives from that class. In this case, the container will not destroy the MDB instance. Further,
if the exception is thrown repeatedly, the MDB will be automatically suspended according to the
<init-suspend-seconds> and <max-suspend-seconds> settings. We cover these settings in Chapter 8.

Best Practice
Only mark an MDB transaction for rollback if there is a chance that reprocessing the
message will succeed. Otherwise, raise an administrative alert, perhaps by placing the
message directly on an error queue.

To force the rollback of an MDB transaction, use the JTA or EJB API or throw a
weblogic.ejb.NonDestructiveRuntimeException, rather than throwing any other
type of RuntimeException.

Logging Interceptor
We configured all of the bigrez.com EJBs to use a simple interceptor that logs the entry and exit points of
EJB methods to the WebLogic Server log. Using such an interceptor provides traceability for debugging
without having to clutter the implementation with repetitive logging code. It could easily be converted
to provide an audit trail.

Unit Tests
In Chapter 6, we mentioned that unit tests allow JPA code to be developed in an iterative fashion, and
recommended it as a best practice. For the bigrez.com service layer, our unit tests provide full coverage
for both the JPA domain model and the service implementation.

Thanks to the sea change in Java API design that has occurred over the past few years, and in particular
to dependency injection, JPA and EJB 3.0 classes are particularly easy to test. Our unit tests are based

258

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 259

Chapter 7: Building an Example EJB Application

on JUnit 4, and we used the Mockito library, which allows interfaces and classes to be easily mocked
up. All of our tests run outside of WebLogic Server, and are integrated into the standard Ant build
files. Although an application server is not required, the unit tests are written to rely upon access to a
running database. It would not be simple to simulate a database with mock objects, and doing so would
reduce the value of the unit tests, because their behavior may change subtly with different database
implementations. We want to be sure that our tests run correctly with the version of the database we
plan to use in the production environment.

A test utility class of note is AbstractEntityManager. All of our JPA unit test classes that require an
entity manager extend from this base class. Its main purpose is to provide access to an entity manager,
begin an entity manager transaction before each test method is called, and rollback the transaction after
the test method. By rolling back after each method, we leave the database in a known state for the next
test. Some unit tests require that there are no rows in a database table, so they delete all the rows with a
JPQL query in a separate setup method. Again, because we rollback the transaction after the test, deleting
the rows does not affect other transactions.

We will cover unit testing in greater depth in Chapter 14. Having a solid set of unit tests allows us to
remain confident that the code still works as designed after making a significant change. One such change
is to add support for optimistic locking. Let’s look at what was entailed.

Adding Optimistic Locking
The main changes required to add optimistic locking support to bigrez.com were to the database schema.
Columns must be added to each table to store the version information. We could have avoided the need to
change the schema by using OpenJPA’s state comparison versioning strategy, but a number of drawbacks
to this strategy were covered in Chapter 6. Instead, we went ahead and added a version column to each
entity table:

create table PROPERTY (ID NUMBER(10) NOT NULL,
VERSION NUMBER(4) NOT NULL,
DESCRIPTION VARCHAR2(60) NOT NULL,
...

Thanks to JPA’s strong support for optimistic locking, the code changes to the domain model turned out
to be very simple. As all of our entities inherit from the DomainEntity mapped superclass, we just added
a version field to that class.

@SuppressWarnings("unused")
@Version
private int version;

The @SuppressWarnings annotation is to placate the Java compiler, which would otherwise warn that the
version field is never used.

With these changes applied, all of our existing unit tests still passed. We added a couple more tests to
check that concurrent modifications result in the appropriate optimistic locking exceptions.

The business layer propagates optimistic locking exceptions directly to the presentation layer as runtime
exceptions. In Chapter 6, we mentioned that JPA could nest an OptimisticLockException inside other
exceptions. The presentation layer shouldn’t need to know the back end is implemented using JPA,

259

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 260

Chapter 7: Building an Example EJB Application

but unfortunately there is no easy way for the business layer to unwrap OptimisticLockExceptions
and translate them to an implementation-neutral exception. Optimistic lock exceptions are most likely
to occur when a transaction commits, and the container handles the commit outside the scope of any
business layer application code. We could flush() the entity manager at the end of each session bean
method and translate any optimistic lock exceptions at that point; however, this would still not catch
optimistic locking failures that occur between the flush() and the commit point, and would reduce
efficiency by increasing the length of time we hold database locks.

To allow the presentation layer to determine whether a given exception is caused by an optimistic locking
failure, we added the isOptimisticLockingException() method presented in Chapter 6 as a static
utility method in the domain model package. This at least removes the need for the presentation layer to
depend directly on JPA.

In summary, JPA made it very easy to add optimistic locking to the bigrez.com business layer.

Using TopLink instead of Kodo
We close this chapter by looking at how to switch the JPA provider used by bigrez.com from Kodo to
Oracle TopLink.

Why Would You Want to Use TopLink?
In Chapter 6, we covered the history of Kodo, TopLink, and their open source offspring, OpenJPA and
the Eclipse Persistence Platform (EclipseLink).

Let’s briefly review pros and cons of switching the JPA provider to TopLink. Kodo is the default JPA
provider for WebLogic Server 10.3.1 and earlier. It has integration into the WebLogic Console and logging
subsystems. TopLink is Oracle’s strategic JPA provider, and will replace Kodo as the default JPA provider
in a future version of WebLogic Server.

Both Kodo and TopLink are mature, sophisticated products that are fully supported by Oracle, and both
are delivered in the WebLogic Server 11g installation. At the time of writing there is no compelling tech-
nical reason to advocate one over the other. You might consider using TopLink for one of the following
reasons:

❑ You prefer TopLink to Kodo, or want to take advantage of a particular TopLink feature.

❑ You are already using TopLink for other applications.

❑ You wish to check that your application will be easy to port to TopLink, perhaps to prepare for
the day it becomes the default provider in WebLogic Server.

❑ You wish to use JPA 2.0 features. EclipseLink is the reference implementation for JPA 2.0. There
are no plans to make Kodo JPA 2.0 compliant.

Changes to bigrez.com to use TopLink
This section discusses the necessary changes to convert the bigrez.com application to use TopLink.

260

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 261

Chapter 7: Building an Example EJB Application

Change the Persistence Provider
Our standard bigrez.com persistence.xml doesn’t specify a JPA provider, so WebLogic Server will
use the default provider, Kodo. To change the provider to TopLink, we alter the persistence.xml file to
specify the EclipseLink JPA provider.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0" ... namespace declarations ...>

<persistence-unit name="BigRezDomain" transaction-type="JTA">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
<jta-data-source>bigrez.datasource.jta</jta-data-source>
<non-jta-data-source>bigrez.datasource.nonjta</non-jta-data-source>

</persistence-unit>
</persistence>

TopLink is included in the WebLogic Server 11g installation, and no further changes are needed to the
WebLogic Server domain before our application can be deployed.

TopLink Enhancement
The business layer build file runs the Kodo enhancer over the entities. This must be disabled, because it
will not work with the TopLink provider in the persistence.xml file. Doing so also avoids incompati-
bilities between the Kodo and TopLink enhancement.

TopLink can dynamically enhance the entity classes at runtime, but following the advice in Chapter 6
you may wish to enhance the classes statically at build time. This can be achieved using the
org.eclipse.persistence.tools.weaving.jpa.StaticWeaveAntTask Ant task.

<taskdef name="weave"
classname="org.eclipse.persistence.tools.weaving.jpa.StaticWeaveAntTask"
classpathref="wls.classpath"/>

<weave source="${classes.dir}"
target="${classes.dir}"
persistenceinfo="${common.basedir}/../unit-tests/src">

<classpath refid="build.classpath"/>
</weave>

There’s a minor difference in style between the Kodo enhancer that we covered in Chapter 6 and the
TopLink enhancer. The Kodo enhancer Ant task allows the classes to enhance to be passed in a nested
file set. The TopLink enhancer expects the classes to be listed in the referenced persistence.xml. The
persistence.xml we package in the application doesn’t list the entities, so we’ve pointed the enhancer
at the persistence.xml used by our unit tests, which does.

Running the Unit Tests
Because the TopLink classes are referred to by weblogic.jar, no changes are required to the classpath in
the unit test build file.

If you are launching the unit tests from an IDE that doesn’t understand manifest classpath entries, you
will need to add the EclipseLink jar file to the classpath. You can find this jar file in the modules subdi-
rectory of the WebLogic Server installation. It is named org.eclipse.persistence_1.0.0.0_1-1-0.jar
in WebLogic Server 10.3.1.

261

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 262

Chapter 7: Building an Example EJB Application

The unit tests have their own persistence.xml, configured for a Java SE environment. The EclipseLink
provider must also be set in this file.

Fix Incompatibilities
We ran the unit tests against the bigrez.com business layer, and found the following three differences of
implementation between Kodo and TopLink:

❑ There were differences in the result sets produced by JPQL fetch joins.

❑ A bug in the application exposed a difference in the behavior of cascaded persist operations that
repersist a removed entity.

❑ The application was using a Kodo extension that allows generators to be used on non-identity
fields.

Recall that a fetch join is used to retrieve associations as a side effect of the execution of a query,
even if the associations are not otherwise referred to in the query. Here’s an example from the JPA
specification:

SELECT d FROM Department d LEFT JOIN FETCH d.employees WHERE d.deptno = 1

The left join ensures that the employees field of the returned Department is populated; otherwise it would
be null. The JPA specification goes on to say the following:

A fetch join has the same join semantics as the corresponding inner or outer join,
except that the related objects specified on the right-hand side of the join operation
are not returned in the query result or otherwise referenced in the query. Hence, for
example, if department 1 has five employees, the above query returns five references
to the department 1 entity.

Source — JSR 220: Enterprise JavaBeansTM, Version 3.0 Java Persistence API.

Kodo returns a single reference to the Department in this case, whereas TopLink returns five. The Kodo
behavior is perhaps more intuitive, and provides the result we want, but TopLink is compliant with the
specification. Fortunately it is simple to modify the query so that both products return a single result by
using the DISTINCT keyword:

SELECT DISTINCT d FROM Department d LEFT JOIN FETCH d.employees WHERE d.deptno = 1

The second difference is quite subtle. One of our unit tests deletes a Reservation that was associated
with a GuestProfile, detaches the GuestProfile, and then later merges the GuestProfile back
into the persistence context. Due to a bug in bigrez.com, the GuestProfile maintained a link to
the deleted Reservation. Kodo ignored this reservation when the GuestProfile was merged, but
TopLink cascaded a persist operation to the reservation and recreated it, causing a unit test assertion
to fail. By the letter of the JPA specification, the TopLink behavior is correct: persisting a removed
entity should cause it to become managed again. The fundamental problem was the application
bug in ReservationServicesImpl.deleteReservation() that left a bidirectional association in an

262

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 263

Chapter 7: Building an Example EJB Application

inconsistent state. We fixed this method to set the GuestProfile reference to null when deleting the
reservation.

The third problem found by our unit tests was due to the use of a Kodo extension feature. The JPA speci-
fication only allows the @GeneratedValue annotation to be used for identity columns, yet the application
had applied it to the Reservation.confirmationNumber field.

@Column(name="CONFIRMNUM")
@GeneratedValue(strategy=GenerationType.SEQUENCE, generator="CommonSequence")
private String confirmationNumber;

This is a useful feature, but not portable. We provided an alternative implementation that calculates a
confirmation number in memory.

@Column(name="CONFIRMNUM")
/* @GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="CommonSequence") */
private String confirmationNumber;
...
@PrePersist
public void calculateConfirmationNumber()
{

if (confirmationNumber == null) {
confirmationNumber = String.valueOf(Math.abs((int)System.nanoTime()));

}
}

The @javax.persistence.PrePersist annotation registers the calculateConfirmationNumber() to
be called whenever the entity is persisted by the entity manager. The confirmation number is simply
derived from the result of System.nanoTime(). It is a good enough way to generate a confirmation
number because there is no need for the number to be globally unique.

With two minor changes to the code, and one bug fix, all of our unit tests now pass under both Kodo and
TopLink.

Test the Integrated Application
With the unit tests all passing, we now have a lot of confidence that the integrated application will work
with TopLink. We built the application EAR file and deployed it to WebLogic Server — bigrez.com is
now running on TopLink!

Summary
With very little change to the code, we now have an implementation that we can deploy using either
Kodo or TopLink, just by changing the provider in persistence.xml. We didn’t set out to write the
bigrez.com business layer in a particularly portable fashion, we simply found standard JPA features to
be sufficient and didn’t need to exploit advanced Kodo features. If we were happy to rely on dynamic
enhancement, we might even do this with a deployment plan.

263

Patrick c07.tex V3 - 09/18/2009 12:17pm Page 264

Chapter 7: Building an Example EJB Application

The unit tests were a very useful tool for identifying how the application may behave differently, or just
not work, when running under TopLink.

Best Practice
If you are writing JPA code that must be portable between JPA providers, you should
write full unit tests and regularly run them against at least two JPA implementations.

Chapter Review
This chapter examined the process for selecting a business layer architecture and constructing the busi-
ness layer components for the bigrez.com example application. Important business layer requirements
were identified, candidate architectures were outlined and mapped against the requirements, and a
specific architecture was chosen for the example application. The chosen stateless session EJB with JPA
architecture has clear advantages over the other candidates.

We considered various aspects of the bigrez.com implementation, including the database schema,
domain object model, and the implementation of the business services and session façade. We saw that
JPA made it very simple to add support for optimistic locking.

Finally, we investigated what would be required to deploy bigrez.com using TopLink instead of Kodo
as the JPA provider. JPA allows us to switch between TopLink and Kodo by changing a single line in a
deployment descriptor.

In the next chapter, we discuss packaging and deploying this application using WebLogic Server–specific
tools and techniques.

264

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 265

Packaging and Deploying
WebLogic Applications

This chapter covers the steps required to package and deploy WebLogic Server applications.
Chapter 5 looked at the basic packaging of web applications. This chapter covers how to create
enterprise applications from web application and EJB modules; how classloading works in a
WebLogic Server application; how to provide common functionality as Java EE optional packages
or WebLogic Server shared libraries; and how to include JDBC, JMS, and WLDF resources in the
application.

Individual web applications and EJB packages are generically referred to as modules. A Java EE
enterprise application is composed of one or more modules, and has an optional deployment
descriptor called application.xml. It is packaged in an .ear (Enterprise Archive) file, which can
be deployed as a unit to an application server. Web applications and EJBs are by far the most com-
monly used module types. Java EE defines two other module types: client applications and resource
adapters, but we don’t cover either of these in any depth. Later in the chapter you see that WebLogic
Server allows for other types of modules that contain JDBC, JMS, and WLDF resources, and that
enterprise applications can also contain bundled libraries. At the end of this chapter, we show how
the bigrez.com application is packaged and deployed.

Creating an EJB Archive File
Just like web applications, EJBs are packaged into archive files to be deployed either standalone to a
server or included in an enterprise application.

An EJB module contains one or many EJBs, and like a web application, can have associated deploy-
ment descriptors. We briefly touched upon the EJB deployment descriptors in Chapter 6, mainly to
note that they are not mandatory for an EJB 3.0 module because many standard Java EE settings can
be specified using annotations.

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 266

Chapter 8: Packaging and Deploying WebLogic Applications

The EJB module we created for bigrez.com does not use deployment descriptors. Such a module
is very easy to package — you just compile your classes and use the familiar jar tool to create an
archive file. We walked through the process in Chapter 6. The resulting .jar file can be deployed
directly to a WebLogic Server instance. Two things enable this simple packaging.

Annotations We covered the benefits of annotations at length in Chapter 6. Before EJB 3.0, an EJB
developer had to spend a lot of time keeping deployment descriptors in line with the EJB code.
Annotations make deployment descriptors optional for most EJBs, and no deployment descriptors
means there’s less to package.

Dynamic Compilation WebLogic Server automatically compiles applications if necessary when
they are deployed. It is unnecessary to precompile an EJB module with the appc compiler before
it can be deployed, but as we noted in Chapter 6, you might wish to do so to discover any errors
when the application is built, and to minimize deployment time.

EJB Deployment Descriptors
Some EJB features can only be specified using deployment descriptors, so here we consider them in
a little more depth. You may also want to use deployment descriptors to override the values set by
annotations in the application code for a specific environment.

An EJB module may contain three descriptor files; all three are optional. If they exist, the descriptors
are packaged in a top-level META-INF directory in the EJB jar file. The first descriptor is defined by
Java EE and is named ejb-jar.xml. The second descriptor contains WebLogic Server settings, and is
named weblogic-ejb-jar.xml. It is common for ejb-jar.xml to declare logical items required by
the EJB code that must be bound into the WebLogic Server environment in weblogic-ejb-jar.xml.
For example, a security role defined in ejb-jar.xml must be mapped to externally configured
security principals in weblogic-ejb-jar.xml. Here, you’ll recognize a similar pattern to the web
application descriptor web.xml, which is defined by Java EE, and weblogic.xml, which contains
WebLogic Server–specific settings.

EJB 2.x entity beans using container-managed persistence require a third descriptor called
weblogic-cmp-rdbms-jar.xml if they are to be deployed to WebLogic Server. This file contains
object relational mapping information. We don’t cover EJB 2.x entity beans in this book, so won’t
consider this file further, nor the many <entity-descriptor> settings that can be configured in
weblogic-ejb-jar.xml to tune EJB 2.x entities.

Tip to Remember
Don’t be confused by the fact the WebLogic Server reference documentation for
weblogic-ejb-jar.xml refers to the 2.1 version of the descriptors. This is to
distinguish the documentation from that of the EJB 1.1 descriptor.

The 2.1 descriptor applies equally to EJB 2.x and EJB 3.0 deployments.

A complete discussion of the contents of the ejb-jar.xml and weblogic-ejb-jar.xml files is
beyond the scope of this book. The WebLogic Server online documentation is your best reference
source for this information: See Link 8-1 in the book’s online Appendix at http://www.wrox.com/.
We’ll satisfy ourselves by summarizing the WebLogic Server settings that are commonly used for
EJB 3.0 beans, many of which we mentioned in passing in Chapter 6.

266

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 267

Chapter 8: Packaging and Deploying WebLogic Applications

JNDI Bindings and References to EJBs and Other Resources
In Chapter 6, we showed how to bind an EJB remote business interface to a JNDI name
using the <business-interface-jndi-name-map> element in weblogic-ejb-jar.xml. We
called this out as a best practice compared to the alternative of using the non-portable
mappedName element of the @Stateless or @Stateful annotations. We didn’t need to use the
<business-interface-jndi-name-map> element for bigrez.com because it doesn’t contain any
EJBs that have remote business interfaces.

We also looked at how to use deployment descriptors to define references to other EJBs, both within
the same enterprise application using <ejb-link>, and in other applications using <ejb-ref> and
<ejb-reference-description>. Please refer back to Chapter 6 for details.

An EJB can declare other types of resources in ejb-jar.xml that it expects the container to
bind into its java:comp/env JNDI environment namespace. The EJB specification provides
the <resource-env-ref> element that can be used to bind elements from the global JNDI
tree into the EJB’s environment. Each <resource-env-ref> must be mapped using the
<resource-env-description> element in weblogic-ejb-jar.xml to a specific resource by
specifying its global JNDI name or its location in another application module.

There is also a <resource-ref> element that can be used to bind JDBC data sources, JMS con-
nection factories, JavaMail sessions, and java.net.URL resources into an EJB’s environment. The
common link between these types of resources, and the reason that they are declared with a differ-
ent element, is that they are container-managed factories that the application uses to create other
resources. Each <resource-ref> must be mapped using the <resource-description> element in
weblogic-ejb-jar.xml to a specific resource by specifying its global JNDI name or its location in
another application module.

The @javax.ejb.Resource annotation may be used instead of <resource-ref> or
<resource-env-ref> elements. This annotation is a jack-of-all-trades. We used it in Chapter 6 as an
alternative to the <env-ref> descriptor element, and to inject EJB context variables. Whatever the
resource type, @Resource can be used to inject resources directly into application code, or be applied
at the class level to bind resources to the java:comp/env environment namespace. You can still use
<resource-env-description> and <resource-description> elements in weblogic-ejb-jar.xml
to bind the @Resource declarations to real resources.

We used @Resource in the bigrez.com EmailServicesImpl session EJB to inject a JMS connection
factory and a JMS destination, using the mappedName annotation element to provide the global JNDI
names of these resources directly.

@Resource(mappedName="bigrez.jms.connectionfactory")
private ConnectionFactory jmsConnectionFactory;
@Resource(mappedName="bigrez.jms.emailQueue")
private Destination emailQueue;

You can think of the mappedName value as providing an optional default value, which can be over-
ridden in the deployment descriptors and further customized using a deployment plan, just as
you saw in Chapter 6 for <env-entry>. You must specify the binding somewhere though. If we

267

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 268

Chapter 8: Packaging and Deploying WebLogic Applications

choose to leave out the mapped names, or simply want to override the values, we can do so in
weblogic-ejb-jar.xml as follows.

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
xmlns:j2ee="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-

jar http://www.oracle.com/technology/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-
jar.xsd">

<weblogic-enterprise-bean>
<ejb-name>EmailServicesImpl</ejb-name>
<resource-description>

<res-ref-name>
com.bigrez.service.impl.EmailServicesImpl/jmsConnectionFactory

</res-ref-name>
<jndi-name>bigrez.jms.connectionfactory</jndi-name>

</resource-description>
<resource-env-description>

<resource-env-ref-name>
com.bigrez.service.impl.EmailServicesImpl/emailQueue

</resource-env-ref-name>
<jndi-name>bigrez.jms.emailQueue</jndi-name>

</resource-env-description>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Here, we’ve used a <resource-description> element to bind the JMS connection factory, and a
<resource-env-description> for the JMS destination. The default reference name is formed from
the fully qualified class name and the annotated field name. If you want to use a different name, you
can use the name element of the @Resource annotation, but there is little reason to do so.

Bindings to Logical JMS Message Destinations
The preceding resource mappings are scoped to individual EJBs. For example, if desired, two differ-
ent EJBs can use the same java:comp/env binding to point to two different resources.

It is common for multiple components in an enterprise application to need to access a JMS queue
or topic. To remove the need for repetitive configuration, Java EE provides a way for logical
JMS destinations to be declared once, and shared between multiple EJBs in an application. The
<message-destination> element is used to declare a logical destination in ejb-jar.xml, and it
is bound to a physical topic or queue using the <message-destination-descriptor> element in
weblogic-ejb-jar.xml. Individual EJBs then declare references to the <message-destination>
using the <message-destination-ref> element in ejb-jar.xml or the @Resource annotation.
As you might expect, a message-driven bean can also refer to the logical destination as its
source, using the <message-destination-link> element. There is no corresponding element to
<message-driven-destination-ref> in weblogic-ejb-jar.xml, because it is simply a pointer
to the <message-driven-destination> and there is nothing specific to WebLogic Server to
customize.

Let’s modify our bigrez.com example to use a logical message destination. We’ll still inject the
destination into the code, but we need to modify our code slightly. When injecting logical message

268

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 269

Chapter 8: Packaging and Deploying WebLogic Applications

destinations, the type of the field must be Queue or Topic, so we’ve changed the type of the field to
be Queue, rather than Destination.

@Resource
private javax.jms.Queue emailQueue;

Here’s the ejb-jar.xml descriptor that declares the <message-destination> and injects a reference
into the emailQueue field.

<?xml version="1.0"?>
<ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:ejb="http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
version="3.0">

<enterprise-beans>
<session>

<ejb-name>EmailServicesImpl</ejb-name>
<message-destination-ref>
<message-destination-ref-name>

com.bigrez.service.impl.EmailServicesImpl/emailQueue
</message-destination-ref-name>
<message-destination-usage>Produces</message-destination-usage>
<message-destination-link>myDestination</message-destination-link>

</message-destination-ref>
</session>

</enterprise-beans>
<assembly-descriptor>
<message-destination>

<message-destination-name>myDestination</message-destination-name>
</message-destination>

</assembly-descriptor>
</ejb-jar>

We didn’t specify the name element in the @Resource annotation, so it is linked to
the <messsage-destination-ref> element using the default name derived from the
EJB class and the field name. The <message-destination-ref> element then further
refers to the <message-destination> element by name. We could have left out the
<message-destination-ref> element entirely by adding name="myDestination" to the
@Resource annotation. The <message-destination> can be defined in a different EJB jar file in
the same application. If there is a chance that there are multiple destinations with the same name
in different EJB jar files, the <message-destination-link> text can be qualified using the form
otherejb.jar#myDestination.

The <message-destination> is bound to a physical queue in weblogic-ejb-jar.xml as follows.

<weblogic-ejb-jar xmlns=...>
<message-destination-descriptor>
<message-destination-name>myDestination</message-destination-name>
<destination-jndi-name>bigrez.jms.emailQueue</destination-jndi-name>

</message-destination-descriptor>
</weblogic-ejb-jar>

269

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 270

Chapter 8: Packaging and Deploying WebLogic Applications

Best Practice
Use the Java EE <message-destination> element to set logical JMS destinations
only when the message destination is used by multiple components in your appli-
cation. If this doesn’t apply to your application, logical destinations add unwanted
complexity.

Security Settings
We look at how to configure declarative security policies for session EJBs and web application
modules in Chapter 11, and also show how to use the <run-as> element in ejb-jar.xml and
<run-as-role-assignment> in weblogic-ejb-jar.xml to override the caller’s identity with a fixed
identity.

WebLogic Server allows fine-grained control over the identity used to perform particular EJB life
cycle operations, using the <create-as-principal-name>, <passivate-as-principal-name>, and
<remove-as-principal-name> settings. These are occasionally required to escalate the privileges
of a session or message-driven bean, or to refine the identity set with <run-as-role-assignment>,
otherwise these life cycle operations will be performed as the anonymous user.

For example, suppose a session bean declares a reference to a JMS queue using the @Resource
annotation, and that the JMS queue is bound into the JNDI tree with a security policy that only
allows it to be looked up by members of the jmsusers group. To allow the EJB to be initialized, the
<create-as-principal-name> element could be used to specify a user belonging to the jmsusers
group.

Transaction Settings
We looked at the <transaction-isolation> settings in Chapter 6, and covered the Java EE
@TransactionManagement and @TransactionAttribute annotations, which generally are to be
preferred to the equivalent <transaction-type> and <container-transaction> elements in
ejb-jar.xml.

The <transaction-descriptor> element of weblogic-ejb-jar.xml allows the transaction timeout
to be customized for an EJB’s container-managed transactions.

<weblogic-enterprise-bean>
<ejb-name>MyEJBImpl</ejb-name>
<transaction-descriptor>
<trans-timeout-seconds>100</trans-timeout-seconds>

</transaction-descriptor>
</weblogic-enterpise-bean>

This setting applies only to new transactions started by container when the EJB is called. It has
no effect for calls to the EJB that use an existing transaction, so the EJB’s @TransactionAttribute
must either be REQUIRES_NEW or REQUIRED (the default value), and in the latter case the there
must not be an existing transaction when the call to the EJB is made. You may need to use the
<transaction-descriptor> element to increase the transaction timeout for an EJB that performs a
lengthy database operation, or for a message-driven bean that uses transaction batching. It is better
to relax the transaction timeout for specific EJBs than to increase the global default for the whole
WebLogic domain.

270

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 271

Chapter 8: Packaging and Deploying WebLogic Applications

WebLogic Server 9.0 introduced automatic retries for container-managed transactions. This is con-
figured using the <retry-methods-on-rollback> element.

<retry-methods-on-rollback>
<retry-count>2</retry-count>
<method>
<ejb-name>MyEJBImpl</ejb-name>
<method-name>*</method-name>

</method>
</retry-methods-on-rollback>

This setting also applies only to container-managed transactions started by the EJB. You must be
careful that methods you configure for retry do not have nontransactional side effects that would
cause a retried transaction to produce an invalid result.

In practice, automatic retries of EJB container-managed transactions are of limited use. This in
contrast with the JMS retry feature we describe in Chapter 10. Retries are most useful where a
transaction may fail due to a temporary condition, such as a database being restarted. JMS retries
are performed asynchronously, and allow a retry delay to be configured to make it more likely that
the transaction is retried after the temporary condition has been cleared. In contrast, EJB retries are
performed immediately, and so any retried transaction is likely to fail for the same reason as the
original transaction.

Free Pool Settings
In Chapter 6, we covered the <initial-beans-in-free-pool>, <max-beans-in-free-pool>, and
<idle-timeout-seconds> elements that are used to tune the pooling behavior of stateless session
beans and message-driven beans. There is rarely any need to tune the default settings for state-
less session beans. Here’s an example that configures a message-driven bean pool to contain three
instances that are pre-initialized on deployment.

<message-driven-descriptor>
<pool>
<max-beans-in-free-pool>3</max-beans-in-free-pool>
<initial-beans-in-free-pool>3</initial-beans-in-free-pool>

</pool>
</message-driven-descriptor>

Stateful Session Bean Cache Settings
We also covered the SFSB <max-beans-in-cache>, <cache-type>, <idle-timeout-seconds>,
<session-timeout-seconds>, and <replication-type> settings. Here’s an example that config-
ures a cache that can hold up to 5000 instances of a bean in memory, eagerly passivates instances
that haven’t been used for ten minutes from memory to disk, and if they still haven’t been used for
a further hour then discards the copies on disk when convenient.

<stateful-session-cache>
<max-beans-in-cache>5000</max-beans-in-cache>
<idle-timeout-seconds>600</idle-timeout-seconds>
<session-timeout-seconds>3600</session-timeout-seconds>
<cache-type>LRU</cache-type>

</stateful-session-cache>

271

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 272

Chapter 8: Packaging and Deploying WebLogic Applications

Message-Driven Bean Settings
In addition to the <pool> element, many other WebLogic Server–specific settings can be configured
for message-driven beans in weblogic-ejb-jar.xml.

The basic connection information can be set using <provider-url>, <initial-context-factory>,
<connection-factory-jndi-name>, and <destination-jndi-name>. Of these, <destination-
jndi-name> is most commonly used, although the destination JNDI name can also be set with the
mappedName element of the @MessageDriven annotation, or with a <message-destination-link>.
The default message-driven bean connection factory usually suffices when connecting
to a collocated destination, but a custom JMS connection factory can be configured
using <connection-factory-jndi-name>. The other two elements, <provider-url> and
<initial-context-factory>, are necessary only when connecting to remote or foreign JMS
providers without using WebLogic JMS’s Foreign Server feature. We look integration with remote
and foreign JMS providers in Chapter 10. These three elements can also be set in code using the
WebLogic Server @weblogic.javaee.MessageDestinationConfiguration annotation.

The <max-messages-in-transaction> element enables the MDB transaction-batching feature we
covered in Chapter 6, and controls the maximum number of messages per transaction.

The <jms-client-id>, <generate-unique-jms-client-id>, and <durable-subscription-
deletion> elements are used to set the client ID used for durable subscriptions to JMS topics. See
Chapter 10 for more details.

The <init-suspend-seconds> and <max-suspend-seconds> elements control what happens
when a message-driven bean repeatedly throws an exception with the same message. After ten
such exceptions have been thrown in succession, WebLogic Server will write a message to the
server log file, and suspend the JMS connection associated with the MDB for the period set by
<init-suspend-seconds>. After this period has expired, the connection will be resumed and
the message will be redelivered to the MDB. If the MDB still repeatedly throws exceptions,
the JMS connection will be suspended again, but this time for double the period. This process
will continue, with the suspension period doubled every time, until the MDB no longer throws
exceptions. The <max-suspend-seconds> element can be used to specify a maximum time a
connection will be suspended. Automatic MDB suspension allows WebLogic Server applications to
cope more gracefully with temporary resource outages without entering a tight loop, repeatedly
failing to process messages. It focuses on problems that affect the processing of many messages,
and so complements the JMS redelivery features, which deal with the processing of individual
messages. The default value of <init-suspend-seconds> is 5 seconds, and the default value of
<max-suspend-seconds> is 60 seconds, so an MDB that throws exceptions will be initially paused
for 5 seconds, then for periods of 10, 20, 40, 60, 60, 60 seconds. The default values are fine for
most applications. If you want to disable the feature, set <max-suspend-seconds> to 0.

The <jms-polling-interval-seconds> element controls the frequency at which an MDB will
attempt to reconnect to a destination that is unavailable. The default value is 10 seconds. While
an MDB is unable to connect to its destination, a message will be printed to the server log every 10
minutes.

Tuning and Optimization Settings
Several miscellaneous settings in weblogic-ejb-jar.xml can be used to tune the performance of an
EJB.

272

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 273

Chapter 8: Packaging and Deploying WebLogic Applications

The most important of these is <dispatch-policy>. This allows a custom work manager to be
specified for a message-driven bean or for remote requests to a session bean. It is common to use a
custom work manager to tune the number of threads an MDB will use for processing messages. We
cover work managers in more detail in Chapters 12 and 13, and how to tune MDB concurrency in
Chapter 10.

The <enable-call-by-reference> setting enables a performance optimization that applies if you
make calls to an EJB’s remote business interface within the same enterprise application. By default,
WebLogic Server fully serializes all parameters and returned objects for all calls to a remote busi-
ness interface method to comply with the Java EE specification. The receiving EJB deserializes
the parameters and so receives a copy of each parameter by value. Serialization is required when
communicating remotely using RMI, or when making a call between unrelated classloaders — for
example, a call between two separate enterprise applications. Setting <enable-call-by-reference>
to True causes WebLogic Server to skip serialization and deserialization for calls made between
components within the same enterprise application, and instead passes the parameters and return
value by reference. Essentially, WebLogic Server behaves as if the remote business interface is actu-
ally a local business interface. This can result in a significant performance boost, but the caller must
guard against side effects arising from any changes the EJB makes to the parameters. The origin of
this setting dates back to much earlier versions of WebLogic Server, before the introduction of local
interfaces in EJB 2.0. If you have control over the application, it is better to add a local interface; this
is both explicit and portable.

Best Practice
Instead of using the <enable-call-by-reference> setting, add a local business
interface to your EJBs for calls within the same enterprise application.

The <idempotent-method> setting is used to mark methods that can safely be retried. We covered
this in Chapter 6.

The <network-access-point> setting is used to configure a custom network channel for remote
calls to EJBs. RMI calls that arrive via other network channels will be rejected, so this can be used
to enforce a security restriction on how an EJB is accessed. We cover the configuration of network
channels in Chapter 12.

The <remote-client-timeout> element is another RMI setting. If set, WebLogic Server clients will
abort remote EJB method calls that fail to return within the configured timeout period, and throw a
weblogic.rmi.extensions.RequestTimeOutException to the client application. If the method call
is transactional and the value is greater than the transaction timeout, the transaction timeout will be
used instead. The EJB method will not be not interrupted if its client times out.

Packaging JPA Persistence Units
In Chapters 6 and 7 we examined the content of the persistence.xml deployment descriptor that defines
a JPA persistence unit. All that remains is to provide the details of how the descriptor should be packaged
in an application.

273

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 274

Chapter 8: Packaging and Deploying WebLogic Applications

The packaging of a persistence unit for a Java EE application is straightforward. Persistence units can
be defined in a module, such as an EJB or web application, or at application level. Persistence units
defined in a module are scoped to the module, and are not visible from other modules in the application.
Application-scoped persistence units are visible to all modules in the application. There can be only one
persistence unit with a given name within a scope.

The persistence.xml file can be included in the following locations.

❑ In a web application, below WEB-INF/classes, or in a .jar file in WEB-INF/lib (module-
scoped).

❑ In an EJB (module-scoped).

❑ In an application, either in a bundled library belonging to the application, or in the appli-
cation’s APP-INF/classes directory (application-scoped). We look at bundled libraries and
APP-INF/classes later in this chapter.

In each case, the persistence.xml file should be located below a META-INF directory. This rule is
applied consistently, so its correct path in a web application’s classes directory is the unusual looking
WEB-INF/classes/META-INF/persistence.xml.

Any associated orm.xml mapping file or Kodo-specific persistence-configuration.xml should be
placed alongside the persistence.xml descriptor.

In practice, many JPA applications deal with a single logical schema, and use a single persistence unit.
Multiple persistence units are only required when an application must deal with more than one database,
or when it has several distinct types of transaction, each of which deals exclusively with a disjoint part of
a large schema.

Enterprise Applications
You have a number of ways to package and deploy an application consisting of EJB and web application
modules.

1. Standalone modules. Deploy the EJB archives and web applications directly to the server
as standalone applications. The web application components can access the EJB components
using remote business interfaces.

2. Enterprise application archive. Package the EJB and web applications into an enterprise
application archive (.ear) file, which is deployed as a unit to the server.

3. Exploded enterprise application. Package the EJB and web applications into an enterprise
application directory structure, which is deployed as a unit to the server. Support for this
unarchived deployment format is a WebLogic Server extension to Java EE. In WebLogic
Server parlance, it is called an exploded deployment.

The first option, standalone deployment of EJB archives and web applications, is depicted in
Figure 8-1. Each EJB archive and web application is deployed as an independent Java EE applica-
tion in WebLogic Server using one of the standard deployment techniques (discussed later in this
chapter).

274

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 275

Chapter 8: Packaging and Deploying WebLogic Applications

ejbarchive1.jar
ejbarchive2.jar
webapp1.war
webapp2

EJB archive file
EJB archive file
Archived web application file
Exploded web application structure

JSP/html files
WEB-INF

Figure 8-1: EJBs and web applications deployed as
separate applications.

This technique is not recommended for the following reasons.

❑ Each application is loaded with a separate, independent application classloader (see Figure 8-2).
Because each classloader is independent, classes loaded by one application classloader are not
visible to classes loaded by other application classloaders. For a web application to invoke EJBs,
it must include a copy of the client-related EJB classes necessary to communicate with the EJB
components (typically remote business interfaces, and any classes used as arguments, return
types, or exceptions by the methods of the business interfaces). As the number of web appli-
cations and EJBs increases, the management of these client classes becomes tedious and error
prone.

❑ Because the application classes are loaded in separate unrelated classloaders, and each module
classloader has its own versions of the classes, communication between the modules must use
remote interfaces and RMI serialization to avoid ClassCastException errors. The overhead of
this serialization is acceptably small when making a remote network call, but is overly costly for
more frequent, local communication between an application’s modules.

❑ Applications are difficult to manage as a single unit because they are not, in fact, a single appli-
cation in the view of the server. For example, controlling the order of deployment during server
startup becomes an issue with this technique, and the WebLogic Server staging and deployment
features are unable to process multiple applications as a single deployment unit.

❑ There is no way to share a JPA persistence context across modules, or configure application-wide
resources.

ejbarchive1.jar
ejbarchive2.jar
webapp1.war
webapp2

Application Classloader

Application Classloader

Application Classloader

Application Classloader

Java System Classloader

Figure 8-2: Separate classloader used for each
application.

All classloaders used for the separate applications are children of the Java system classloader. The classes
in the system classloader (configured by the CLASSPATH environment variable) are used for the server

275

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 276

Chapter 8: Packaging and Deploying WebLogic Applications

process itself during startup. Components in a child classloader may refer to classes present in parent
classloaders, meaning that your EJB and web applications can use classes loaded by the system class-
loader. An acceptable alternative to placing client .jar files for each EJB archive in each web application
might appear to be to put such files in the system classpath, making the client classes available to all child
classloaders and therefore to all of your application components. Don’t fall into this trap! There are two
very good reasons to avoid using the system classloader for application classes.

❑ Placing application-related classes in the system classpath prevents a complete redeployment
of your application because classes loaded by the system classloader cannot be removed and
reloaded. If you need to change any classes loaded through the system classloader, you will
have to restart the whole server for the changes to be picked up. Similarly, you cannot use the
WebLogic Server FastSwap feature with classes on the system classpath.

❑ Classes in the parent classloader cannot refer directly to classes in children classloaders.
If any class in the system classloader attempts to use a class found only in the EJB archive
or web application lib or classes directory, you will get a ClassNotFoundException or a
NoClassDefFoundError exception. If you address this problem by moving more and more
classes to the system classpath, pretty soon you’ll find that every class in your application winds
up in the system classloader and all hope for hot redeployment is gone.

We recommend that only classes required for system-wide components be present in the system class-
path and therefore loaded by the Java system classloader, for example, JDBC driver classes. Even classes
such as logging utilities and frameworks used by your application do not belong in the system classpath.
There are better locations for such libraries in an enterprise application. We cover this topic in detail later
in this chapter when we consider bundled libraries, optional packages, and shared Java EE libraries.

WebLogic Server uses a separate classloader to load classes from the domain lib directory. This class-
loader is a child of the system classloader, and a parent of the application classloaders. The classes and
resources in any .jar file placed in the directory is automatically available to all applications. However,
the domain lib classloader does not support redeployment, dynamic reloading, or FastSwap, and cannot
refer directly to code in the application classloaders. You should consider the domain lib directory to be
roughly equivalent to the system classpath, and using it for application classes.

Best Practice
Place only system classes, such as JDBC drivers and WebLogic Server classes, or partic-
ularly large third-party libraries in the system classpath or the domain lib directory.
Don’t place client .jar files or any other application-specific classes in the system
classpath or you will not be able to redeploy these classes and will likely encounter
classloading problems.

Although it might be tempting to deploy your application as separate independent archives, we recom-
mend that you avoid this technique for applications containing EJB archive files. Once you get in the
habit of using remote interfaces and copying client .jar files to web applications, it may be difficult to
migrate to the better techniques discussed later.

Best Practice
Avoid deploying EJB archives and related web applications as separate, independent
applications in WebLogic Server.

276

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 277

Chapter 8: Packaging and Deploying WebLogic Applications

Enterprise Application Directory Structure
The other two options for EJB deployment involve creating an enterprise application containing all of the
EJB archives and web application components. The options differ only in the final packaging step: should
the enterprise application be deployed as an exploded directory or as a single enterprise archive (.ear)
file? We address that question later in this chapter. Here we review the contents of an enterprise appli-
cation and examine the enterprise application descriptor files that allow us to configure the application
components.

Figure 8-3 presents the standard directory structure and contents of an enterprise application. The key
difference from the previous EJB deployment option is the bigapp enterprise application root directory.
This directory contains all of the individual application components. The server treats everything in
the bigapp directory as a single Java EE application, eliminating many of the problems associated with
standalone modules.

bigapp

META-INF

application.xml

weblogic-application.xml

ejbarchive1.jar

Java EE descriptor file

WebLogic Server-specific descriptor file

EJB archive file

ejbarchive2.jar

libraries

library1.jar

webapp1.war

webapp2

Bundled libraries containing utility classes

Archived web application file

Exploded web application structure

JSP/html files

WEB-INF

descriptors, directories

Figure 8-3: Standard enterprise application directory structure.

The EJB archives and web application components are placed at the root level of the enterprise applica-
tion directory structure along with a META-INF directory containing optional descriptors and any other
directories required by your application.

Bundled libraries can be included in an enterprise application in several ways. In Figure 8-3, we have
shown them in a libraries directory to be loaded using the manifest Class-Path technique. We discuss
the use of manifest Class-Path entries and the other ways to package bundled libraries later in this
chapter.

Compared to deploying the modules in a standalone fashion, an important difference in this deployment
option is the structure of the classloaders used to load application classes. When deployed standalone,
each EJB archive and web application is loaded in a separate classloader descended directly from the Java
system classloader (see Figure 8-2). When EJB modules and web applications are placed in an enterprise
application structure, however, WebLogic Server uses the classloader structure depicted in Figure 8-4.

All EJB modules, along with bundled libraries, are loaded by a single top-level application classloader,
thereby permitting local interfaces and direct Java method calls between components in these EJB

277

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 278

Chapter 8: Packaging and Deploying WebLogic Applications

modules. More importantly, the web application classloaders are children of the application classloader
rather than siblings of it. Recall that a child classloader is able to refer to all classes loaded by its parent
classloader, so the web application components also have full access to the classes in the EJB modules.
This child-sees-parent visibility has two important ramifications.

❑ Web applications may use local EJB interfaces and make Java method calls to EJB components
located in the same enterprise application. There is no need to use remote interfaces or
Serializable parameters and return types, although their use is not precluded in this option.

❑ There is no need for the web applications to include client EJB classes, because they have full
visibility to these classes by virtue of the parent application classloader.

bigapp

ejbarchive1.jar
ejbarchive2.jar
libraries

library1.jar
webapp1.war
webapp2.war

Application Classloader

Application Classloader

Application Classloader

Java System Classloader

Figure 8-4: Classloader hierarchy in an enterprise application.

Enterprise Application Descriptor Files
The META-INF directory in the enterprise application directory structure may contain two optional
descriptor files used to control the deployment of the components and resources in the enterprise applica-
tion. The first descriptor file is application.xml, a standard file defined by the Java EE specification. The
second file, weblogic-application.xml, is a WebLogic Server–specific descriptor file used to configure
shared caches and resources common to all components in the enterprise application.

Standard application.xml Descriptor File
The application.xml descriptor file is defined by the Java EE specification and defines the basic
configuration and deployment of the application. Table 8-1 outlines the high-level sections of the
application.xml file and lists the key elements used in each section.

The module definitions are the most significant information in the application.xml descriptor. The
bigrez.com application takes advantage of the application.xml descriptor being optional in Java EE 5,
and does not define one, which brings up the interesting question of how the container knows what the
application’s modules are without a descriptor. This is done by convention, following the rules listed in
Table 8-2. These rules apply only if there is no application.xml descriptor; if a descriptor is provided,
its <module> elements fully specify the application’s modules.

Listing 8-1 presents an example of an application.xml descriptor that we could have used had we
chosen to define one for bigrez.com.

278

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 279

Chapter 8: Packaging and Deploying WebLogic Applications

Table 8-1: Sections of the application.xml Descriptor

application.xml Section Purpose and Key Top-Level XML Elements

Deployment attributes Defines optional descriptions and graphical icons used by
deployment and management tools. The standard WebLogic Sever
tools do not use this information. <icon>, <display-name>,
<description>

Module definitions Defines the location of each module contained in the enterprise
application. The connector and java module types are for resource
adapters and client modules respectively. <module>, <connector>,
<ejb>, <java>, <web>

Security information Defines application-wide security roles available for all modules.
<security-role>

Library directory Optional specification of a directory that contains bundled libraries.
<library-directory>

Table 8-2: Conventions Used to Identify an Application’s Modules when no applica-
tion.xml Descriptor is Provided

File Characteristics Interpretation

Name ends in .war. Web application module. The context
root is derived from the file name by
removing .war.

Name ends in .rar. Resource adapter module.

Directory named lib. Directory containing bundled libraries.

Name ends in .jar, and contains a jar file manifest with a
Main-Class attribute, or a
META-INF/application-client.xml descriptor.

Application client module.

Name ends in .jar, and contains a META-INF/ejb-jar.xml
descriptor or any class with an EJB component annotation.

EJB module.

Other files. Not treated as modules.

Listing 8-1: Sample bigrez.com application.xml descriptor file.

<?xml version="1.0">
<application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:application=

Continued

279

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 280

Chapter 8: Packaging and Deploying WebLogic Applications

Listing 8-1: Sample bigrez.com application.xml descriptor file. (continued)

"http://java.sun.com/xml/ns/javaee/application_5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee

http://java.sun.com/xml/ns/javaee/application_5.xsd" version="5">
<display-name>BigRezServicesEAR</display-name>
<module>
<ejb>BigRezServices.jar</ejb>

</module>
<module>
<web>

<web-uri>BigRezWebUser.war</web-uri>
<context-root>user</context-root>

</web>
</module>
<module>
<web>

<web-uri>BigRezWebAdmin.war</web-uri>
<context-root>admin</context-root>

</web>
</module>
<module>
<web>

<web-uri>BigRezWebServices.war</web-uri>
<context-root>webservices</context-root>

</web>
</module>

</application>

Web application modules must specify a URI context root with the <context-root> element. This over-
rides any value set in the web application itself. An empty <context-root> will make the web application
the default for the application server.

If there is no application.xml descriptor, the context root for a web module is derived from the relative
file name of the web module file by removing its .war extension.

Best Practice
Use an empty <context-root> element in the application.xml descriptor to specify
the server’s default web application.

weblogic-application.xml Descriptor File
The weblogic-application.xmldescriptor is a WebLogic Server–specific file used to configure resources
and control WebLogic Server features at the enterprise application level. This descriptor file is optional.

Table 8-3 outlines the high-level sections of the weblogic-application.xml file and lists the key elements
in each section. Refer to the WebLogic Server online documentation for complete information about this
descriptor file and its elements (see Link 8-2).

280

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 281

Chapter 8: Packaging and Deploying WebLogic Applications

Table 8-3: Sections of the weblogic-application.xml Descriptor

weblogic-application.xml Section Purpose and Key Top-Level XML Elements

EJB configuration Defines application-wide EJB 2.x CMP entity bean
caches and MDB startup policies. <ejb>,
<entity-cache>, <start-mdbs-with-application>

XML configuration Defines XML parsing, document building, and
transformation factories for use in this application.
Also defines XML entity mapping information. <xml>,
<parser-factory>, <entity-mapping>

JDBC connection pool configuration Deprecated method of packaging a JDBC data source
in an application. Use the <module> element to deploy
a JDBC module instead. <jdbc-connection-pool>

Security information Provides security role mappings for the application.
<security-role-assignment>

Container behavior Various minor parameters affecting container
behavior, including the character encoding used by
web applications. <application-param>

Classloader hierarchy Allows a custom classloader structure for the
application. Rarely required.
<classloader-structure>, <module-ref>

Listener, startup, and shutdown Registers custom listeners, startup classes, and
shutdown classes. <listener>, <startup>,
<shutdown>

WebLogic Server module configuration Defines WebLogic Server JDBC, JMS, and WLST
application-scoped modules in a similar way to the
use of <module> in application.xml for standard
Java EE modules. <module>

Library references Declares shared Java EE libraries used by the
application. <library-ref>

Work Manager settings Allows the application’s work manager to be tuned.
Used to override the priority the server gives to
requests for this application. <work-manager>

Administration mode stuck threads trigger Declares that the server should transition the
application to administration mode if more than the
configured number of threads have been stuck
working on application requests for a period of time.
This behavior can also be defined by customizing the
work manager. <application-admin-mode-trigger>

Continued

281

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 282

Chapter 8: Packaging and Deploying WebLogic Applications

Table 8-3: Sections of the weblogic-application.xml Descriptor (continued)

weblogic-application.xml Section Purpose and Key Top-Level XML Elements

HTTP session configuration Allows control over the HTTP sessions for web
applications belonging to the application. If this is
provided, it takes precedence over the descriptor in
the individual web applications. Setting session
parameters at the application level is mostly of use
when you also set the <sharing-enabled> to enable
sharing of a single HTTP session between all of the
web applications. <session-descriptor>

FastSwap enablement Used to enable WebLogic Server FastSwap. FastSwap
is an extension to Java 6 class redefinition, which
allows newly compiled code to be immediately used
without having to redeploy the application, thus
speeding up development cycles. <fast-swap>

The most important of the settings are those for configuring application-scoped modules and library
references. We cover the details of these later in this chapter. The other settings are things to be reached
for as and when you need them.

The bigrez.com weblogic-application.xml file, presented in Listing 8-2, is brief and simply enables
the FastSwap feature. You see how the FastSwap feature speeds up development cycles in Chapter 14.

Listing 8-2: bigrez.com weblogic-application.xml descriptor file.

<?xml version="1.0"?>
<weblogic-application

xmlns="http://xmlns.oracle.com/weblogic/weblogic-application"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-

application http://www.oracle.com/technology/weblogic/weblogic-
application/1.0/weblogic-application.xsd">

<fast-swap><enabled>true</enabled></fast-swap>
</weblogic-application>

We’ve discussed the structure and contents of an enterprise application. We can now consider exploded
enterprise applications, which are most suitable for development and unit test environments, and
archived enterprise applications, which are better for applications to be promoted to test and production
environments.

Exploded Deployments
The Java EE specification requires that an enterprise application is packaged in an .ear file archive, and
also that all modules and bundled libraries contained in the application are packaged in .war, .rar, or
.jar archive files.

282

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 283

Chapter 8: Packaging and Deploying WebLogic Applications

As an extension to the Java EE–defined behavior, WebLogic Server allows standalone modules and enter-
prise applications to be deployed in an unarchived form known as an exploded directory structure. This
exploded directory structure matches that of its archived equivalent. You can create an exploded appli-
cation from an .ear file by using the jar command to extract the .ear file’s contents to a directory. You
can then use the exploded directory structure as an argument to any of the WebLogic Server deployment
tools, just as you would an archived module or application. We cover the deployment options in depth
at the end of this chapter.

You can mix exploded and archived modules within an enterprise application, whether or not the appli-
cation itself is exploded. For example, in Figure 8-3 webapp1 is archived and webapp2 is exploded.

The conventions described in Table 8-2 also apply to exploded web applications. This means that any
directory that has a name ending .war is a web application that can be deployed to WebLogic Server.
Things are nearly as simple for enterprise applications, except that an enterprise application must have at
least one module. For example, a directory called myapp.ear containing a subdirectory called webapp.war
is a valid enterprise application.

What are the advantages of using an exploded directory structure? The main benefit is a much faster
development cycle.

❑ Application files can be changed and the application redeployed without a separate repackaging
build stage.

❑ JSPs and static web application resources such as HTML, image, CSS, and JavaScript files
can be changed in place without redeploying the application. WebLogic Server regu-
larly checks whether such files have changed according to the <page-check-secs> and
<resource-reload-check-secs> settings in the weblogic.xml descriptor. The settings deter-
mine how regularly the container checks for changes, and default to 1 second when the server is
started in development mode and −1 (no change detection) in production mode. JSP files that
have changed are compiled on the fly. To allow the JSPs to be reloaded individually without the
need for the web application to be redeployed, WebLogic Server creates a separate classloader
for each JSP as a child of the web application classloader.

❑ WebLogic Server also supports change detection for servlets and other web application classes
according to the <servlet-reload-check-secs> setting in weblogic.xml. The default for this
setting is 1 second in development mode, and –1 (no change detection) in production mode.
If checking is enabled and a change to any class loaded by the web application classloader is
detected, the container will create a new classloader for the servlet’s web application and reload
the classes. The container will also strive to maintain the old session state, servlet listeners, and
so on. In terms of cost, this is similar to a redeployment of the web application.

❑ The classes and resources in a classloader are units of redeployment. WebLogic Server allows the
partial redeployment of a module, such as a web application, that belongs to an exploded enter-
prise application, without the need to redeploy the entire enterprise application. This feature is
used by WebLogic Server–aware Integrated Development Environments (IDEs) such as the Ora-
cle Enterprise Pack for Eclipse (OEPE) to speed up deployment when a developer changes only
part of an application.

❑ If the WebLogic Server FastSwap feature is enabled, application classes that are recompiled can
immediately be reloaded in the running application without redeploying the application. This
on-the-fly class replacement is very quick, and works for classes loaded in any of the applica-
tion’s modules. FastSwap works only with exploded applications, where the class has its own
file on disk. We cover FastSwap in Chapter 14.

283

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 284

Chapter 8: Packaging and Deploying WebLogic Applications

In short, you should use exploded applications for fast, interactive development. In Chapter 14, we look
at how to configure popular IDEs to compile classes automatically into an exploded application struc-
ture. We also cover WebLogic Server’s split development directory feature that allows static resources,
deployment descriptors, and JSP files to be picked up directly from the project source directory, removing
the need to copy these to the same location to which classes are compiled, and for the different modules
of an application to be located in separate project directories.

We prefer to use archived applications for production deployment, because the configuration man-
agement is easier with a single file, but exploded applications have clear advantages in development
environments.

Best Practice
Use exploded applications in your development environment for faster turnaround.

Bundled Libraries
A bundled library is simply a .jar file, containing code and resources, that is included in the application.
A bundled library might contain a component of the application — for example, JPA entity model code,
a company’s standard foundation classes, common resources used by all of the web application modules,
client jar files for accessing remote EJBs, or third-party product library code. In fact, any code that an
application relies on or wishes to manage as a unit can be packaged in a bundled library.

In the early days of Java EE, before support for bundled libraries or even enterprise applications was
available, it was common to package such library code on the system classpath. Bundled libraries provide
three advantages over packaging classes on the system classpath. First, an application using bundled
libraries is more self-contained and has fewer dependencies on a particular server configuration. This
makes the application easier to manage and deploy. Second, as described earlier in this chapter, bundled
libraries are loaded in the application’s classloader. This allows changes to the bundled libraries to be
made effective by redeploying the application, without needing to restart the server. Third, applications
that rely on slightly different versions of the same bundled library can each have their own copies and
be deployed to the same server. This can be important where two teams are producing applications to
be deployed to a common server. For example, if one team needs to use a later version of a third-party
product, such as Spring MVC, they can do so without requiring the other team to upgrade at the same
time.

The drawbacks of bundled libraries over packaging classes on the system classpath are that they increase
the size of applications, and that if many applications include the same bundled library their combined
memory footprint can be much larger. There’s a clear trade-off here between the benefit of self-contained,
independent applications, and the inefficiency of managing multiple copies of the bundled libraries. Most
often, bundled libraries will win.

You have four different ways to include bundled libraries in an application.

Manifest Class-Path Header A module in the application (including EJB, web application,
resource adapter modules) can include a Class-Path header in its META-INF/MANIFEST.MF file that
refers to a list of .jar files. These .jar files will be loaded as bundled libraries, and can be placed
anywhere in the application directory structure. Each Class-Path list entry is treated as a path

284

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 285

Chapter 8: Packaging and Deploying WebLogic Applications

relative to the referring module. The process is transitive: Any Class-Path manifest headers in the
.jar files will be used recursively to load other bundled libraries.

Web Application WEB-INF/lib In Chapter 5, you saw that web applications provide a built-
in mechanism to load utility archives in the same classloader as the web application itself: the
WEB-INF/lib directory. Any .jar file placed in that directory will be loaded automatically by the
web application classloader, and its classes will be available to the web application components.
These .jar files can have manifest Class-Path headers that reference further bundled libraries.
There is also a WEB-INF/classes directory for unarchived class and resource files.

Classes and resources loaded from WEB-INF/classes, WEB-INF/lib, or bundled libraries referred
by libraries in WEB-INF/lib, are loaded in the web application classloader, and are not visible to
the application’s other modules. Refer back to Figure 8-4 and the associated discussion for detail.

WebLogic APP-INF/lib Since version 8.1, WebLogic Server has allowed .jar files to be included
as bundled libraries in an APP-INF/lib directory. These .jar files can have manifest Class-Path
headers that refer to further bundled libraries. WebLogic Server also supports an APP-INF/classes
directory for unarchived class and resource files. These APP-INF directories provide the same type
of behavior as the WEB-INF directories do for web applications, but load classes into the application
classloader.

Java EE 5 Application Library Directory Java EE 5 introduced a similar feature to the WebLogic
Server APP-INF/lib directory. Any .jar files in a Java EE application’s library directory will be
treated as a bundled library and loaded in the application classloader. These .jar files can have
manifest Class-Path headers that refer to further bundled libraries.

The default library directory is called lib, but this can be changed using the <library-directory>
element of the application.xml descriptor. An empty <library-directory> element means there
is no library directory.

There is no Java EE equivalent to the WebLogic Server APP-INF/classes directory.

Best Practice
Prefer the Java EE library directory to the similar WebLogic Sever APP-INF/lib fea-
ture, because the former is portable between Java EE containers. If you are upgrading
an older WebLogic Server application, you can simply set <library-directory> to
APP-INF/lib.

Let’s consider an example of packaging bundled libraries. Recall the scheme depicted in Figure 8-4. The
two EJB modules and the two web application modules will be loaded automatically according to the
conventions listed in Table 8-2. Nevertheless, the library1.jar file will not be automatically loaded and
must be specially handled. The two most obvious options for doing so are defining a Java EE library
directory or adding a manifest Class-Path entry.

The library directory option requires adding an application.xml descriptor to a META-INF directory
and using the <library-directory> element to set the Java EE library directory to libraries. Because
a descriptor has been provided, the default identification of modules by convention no longer applies,
so the descriptor must fully specify each of the application’s modules. Alternatively, the libraries
directory could be renamed to lib, allowing the application to continue to rely on Java EE defaults and
conventions.

285

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 286

Chapter 8: Packaging and Deploying WebLogic Applications

The manifest Class-Path entry option requires adding a META-INF/MANIFEST.MF file to one or more of
the EJB and web application modules.

Manifest-Version: 1.0
Class-Path: libraries/library1.jar

Modern Java EE development environments will automatically create and maintain these Class-Path
headers in manifest files. If you edit the files by hand, be aware that lines in manifest files are limited to
72 characters. Long Class-Path headers may be continued onto subsequent lines by starting each such
line with a single space.

It is generally poor practice to include two versions of the same class or resource in an application. The
manifest Class-Path header is the only packaging method to allow control over the precedence of classes
in bundled libraries. The order is not defined for the three other methods. We have seen subtle problems
arise from assuming that the order is defined, such as where an application had been running reliably
for years until the environment’s file system was changed and the loading order of WEB-INF/lib libraries
suddenly changed, causing the application to malfunction.

With the Class-Path header, the bundled libraries that appear earlier in the Class-Path header have
the higher priority. This can be useful if two bundled libraries contain the same classes and you need to
ensure that one is given priority. One use case is to patch a particular class or file of a third-party bundled
library without altering the library itself.

Best Practice
Endeavor not to package more than one version of a class or resource in an application.
Remove duplicates from bundled libraries.

If an application must contain multiple versions of a class or resource in two different
bundled libraries, use the Class-Path header to define a fixed order of precedence.

Shared Java EE Libraries and Optional Packages
WebLogic Server provides two ways to package and manage libraries to be shared between applications:
optional packages and shared Java EE libraries. There’s a lot of detail to these shared library mechanisms,
and here we only outline their purpose and functionality. For full details, please refer to the WebLogic
Server documentation at Link 8-3.

Optional packages are part of the Java EE 5 specification. An optional package is a plain .jar file con-
taining compiled classes and resources that can be deployed to a server. Applications and other optional
packages can refer to the optional packages they depend on in their manifest files — this reference will
be resolved at deployment time. Optional packages can also have a version, and different versions of the
same optional package can be deployed to the server. The manifest file of the referring application will
determine which version of the library it will use.

At runtime, optional packages are loaded in the application classloader, and so behave in a similar fash-
ion to bundled libraries packaged in the application. If two applications deployed to a server use the

286

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 287

Chapter 8: Packaging and Deploying WebLogic Applications

same optional package, there will be two separate copies of the classes loaded in the server. Optional
packages are not a way to reduce the memory footprint of an application.

Shared Java EE libraries are specific to WebLogic Server and are very similar to optional packages. Like
optional packages, shared Java EE libraries can be deployed to a server; optionally can have a version;
and can be referred to by applications or by other shared Java EE libraries. The main difference from
optional packages is that shared Java EE libraries can also be enterprise applications, EJB modules, or
web application modules, as well as plain .jar files containing classes and resources. The shared Java
EE library name refers to this ability to contain Java EE applications and modules, but it is important to
remember that this is a WebLogic Sever–specific feature.

When an application that refers to a shared Java EE library is deployed, it behaves as if the files in the
shared library were merged with its own. Like optional packages, shared Java EE libraries provide a
way to share code between applications, but each referring application is deployed with its own runtime
copies of the classes and resources.

Optional packages and shared Java EE libraries have much the same runtime characteristics as bun-
dled libraries. The benefit of optional packages and shared Java EE libraries is that they allow common
libraries to be managed independently from applications, making the application archives smaller and
often faster to deploy. On the other hand, an application that relies on optional packages is less self-
contained and less independent.

Optional packages and shared Java EE libraries come into their own when used to provide common
functionality for one or more applications, where you wish to be able to upgrade that common function-
ality without having to change the applications. Another less common use case is to ensure that each
application is using exactly the same version of a library. If neither of these applies, it is simpler to build
independent applications by fixing their dependencies at build time and use bundled libraries.

Best Practice
There are two good use cases for optional packages or shared Java EE libraries. The first
is to allow common functionality to be upgraded without having to change dependent
applications. The second is to ensure all deployed applications use the same version
of a common library. If neither of these applies, using bundled libraries is simpler and
results in more independent applications.

Following this best practice, we have used bundled libraries for bigrez.com. Toward the end of this
chapter, we show what we would have to do to repackage one of these bundled libraries as a shared Java
EE library.

Other Types of Modules
According to the Java EE specification, an enterprise application may contain four types of modules,
namely web applications, EJB modules, client applications, and resource adapters.

WebLogic Server applications can also contain three other types of modules — JDBC modules, JMS
modules, and WebLogic Diagnostic Framework (WLDF) modules. Each of these module types is defined
by a single XML configuration file, and the module does not include other classes or resources, in contrast

287

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 288

Chapter 8: Packaging and Deploying WebLogic Applications

to the standard Java EE modules. Because they provide declarative configuration that configures how
WebLogic Server manages the application, you can think of these JDBC, JMS, and WLDF modules as
special types of deployment descriptor.

A JDBC module defines a JDBC data source. A JMS module defines JMS resources, including queues,
topics, and connection factories. A WLDF module defines custom instrumentation points for the applica-
tion. You can choose whether to package JDBC and JMS modules in the application as application modules,
in the domain configuration as a system module, or deploy them on their own as standalone modules. In
contrast, you can only add instrumentation to an application using a WLDF application module. We
cover WLDF instrumentation in more depth in Chapter 12.

The JDBC and JMS configuration files for application modules and standalone modules are the same
as those used for system modules. When you create a system module by adding a JDBC data source or
JMS module to a domain using the WebLogic Server console, the XML configuration file is placed below
the config/jdbc or config/jms directory of the domain. To convert a system module to an application
module, include this file somewhere in the application, and declare the module using the <module>
element of weblogic-application.xml. Conventional practice is to place modules alongside descriptors
in META-INF. You will need to delete the system module before you can deploy your application, because
otherwise the JNDI names and other resource names will clash.

JDBC and JMS modules can also be deployed in a standalone fashion. To do this, you use the module’s
XML file as the parameter to the weblogic.Deployer tool, or deploy it through the console.

The system, standalone, and application deployment types for JDBC and JMS modules are compared in
Table 8-4.

Table 8-4: Comparison of Deployment Types for JDBC and JMS Modules

System Modules Standalone Modules Application Modules

Resource
Binding Options

Global JNDI. Global JNDI. Global JNDI — available for
use by other applications.
Application-scoped
JNDI — inaccessible to other
applications. JMS modules
can be linked directly with
<resource-link>.

Administration
Options

JMX, WLST, or the
console.

JSR-88 API and deployment
plans, with console support.
No JMX API for config-
uration. No support for
WLST.

JSR-88 API and deployment
plans, with console support.
No JMX API for config-
uration. No support for
WLST.

Standalone modules are of benefit over system modules if you wish to administer your domain using the
standard JSR-88 API rather than the WebLogic Server–specific WLST or JMX management beans. This is
a rare requirement. Standalone modules should also be considered if a separate team is responsible for
defining the required JDBC or JMS resources. It may be easier to supply a standalone module, rather than
a WLST script.

288

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 289

Chapter 8: Packaging and Deploying WebLogic Applications

Application modules can make an application more self-contained, but they do not totally remove the
burden on an administrator to understand and customize the resource configuration for deployment to a
particular environment.

When deploying JDBC application modules, the database URL and passwords will usually need to be
changed, and connection pool sizes frequently need to be tuned. If the application is not to be changed,
this customization must be done in a deployment plan. Some JDBC features, such as the use of the logging
last resource optimization, require the use of system modules.

JMS modules can have resources with specific targeting requirements, and the administrator must pro-
vide the appropriate subdeployment targets in the domain configuration. See Chapter 10 for more details
on targeting JMS resources. JMS queues and topics often contain data that should survive the redeploy-
ment of applications. When undeploying an application with a JMS module that contains a queue, any
messages in the queue will be discarded. On the positive side, a JMS application module is a good way
to package a uniform distributed topic that provides non-persistent messaging within an application
deployed to a cluster.

Best Practice
Consider using JDBC and JMS application modules instead of system modules to make
applications more self-contained, but assess carefully whether they truly decrease the
administration overhead. This will depend on exactly which resources the modules
provide, and the degree to which the configuration must be customized for each target
environment. When unsure, choose system modules.

Standalone modules can be simpler to use than WLST if a separate team is responsible
for defining JDBC or JMS resources.

Administrators will often need to modify supplied application and standalone mod-
ules. This can be done using a deployment plan.

Customizing Classloading
The classloader hierarchy used by an application can be completely changed using the
<classloader-structure> element of weblogic-application.xml. This is a development-only
feature that can be used to allow more fine-grained redeployment of parts of the application. However,
WebLogic Server already provides a wealth of redeployment and class redefinition features, so there
is little reason to do this. Unless you have a deep understanding of classloader behavior, using a
non-default structure can be the cause of many headaches.

Two other features allow more specific customization of the classloading behavior — individual EJB
classloaders and filtering classloaders.

Individual EJB classloaders are only supported for EJB 1.x and EJB 2.x beans. An individual EJB class-
loader is a development feature that is useful if you are making many changes to an EJB implementation
belonging to a larger enterprise application and using an exploded application structure. By default,
EJBs are loaded in the application-level classloader. If you enable individual EJB classloaders with the
<enable-bean-class-redeploy> element of weblogic-ejb-jar.xml, each EJB implementation is loaded
in a separate classloader in a similar manner to that used for JSPs. Individual EJBs can then be rede-
ployed using the weblogic.Deployer tool, without having to reload the entire application. Session EJB

289

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 290

Chapter 8: Packaging and Deploying WebLogic Applications

interfaces and associated classes are still loaded in the application classloader, because they are required
to be visible to other components, and require a full redeploy of the application if changed.

Best Practice
Individual EJB classloaders pre-date FastSwap, are not supported for EJB 3.0 beans, and
are deprecated in WebLogic Server 11g. FastSwap has some additional restrictions on
changes to EJBs, but is a more general and easier-to-use alternative than the individual
EJB classloader feature.

Filtering classloaders are used to resolve clashes between classes that are present in the application and
on the system classpath, or in the domain lib directory. By default, if a class is present on both the
system classpath and in the application, the system classpath copy is used. Filtering classloaders are
commonly used to package a different version of a third-party library in the application. This is similar to
the <prefer-web-inf-classes> web application feature, but applies to enterprise applications and can
target specific classes using a simple wildcard syntax.

Filtering classloaders are controlled using the <prefer-application-packages> element in
weblogic-application.xml. Suppose you wanted to use a later version of EclipseLink than the one
packaged with WebLogic Server. You could package EclipseLink as a bundled library in the application,
and use the following descriptor entry.

<prefer-application-packages>
<package-name>org.eclipse.persistence.*</package-name>

</prefer-application-packages>

The <package-name> expression can have an optional wildcard * for its last character, which matches
any characters.

In addition to classes, Java classloaders are responsible for providing access to resources that are pack-
aged with the classes, such as property files or images. The getResource() method searches the class-
loaders in priority order, and returns the first match. The getResources() method returns all matches
found, in priority order. The priority of classloaders for loading resources normally follows that for
loading classes, with a parent classloader having priority over its children.

If you configure a filtering classloader that filters one or more packages, WebLogic Server will adjust the
classloader priority so that the resources in classloaders that are parents of the application classloader
are considered after the application classloaders. For an application containing a web application, the
resource loading order will be the application classloader, the web application classloader, the system
classpath, finally followed by the domain lib directory. The configured package filters are irrelevant —
the resource loading order is changed if there is at least one filter. In contrast to the loading of classes that
match a package filter, the system and domain lib classloaders are still consulted, albeit with a lesser
priority. This allows you to package a bundled library in an application and place its configuration files
on the system classpath.

WebLogic Server 11g allows you more precise control over the resource loading, using a new
<prefer-application-resources> element in weblogic-application.xml. For example:

<prefer-application-resources>
<resource-name>com/bigrez/*</resource-name>

</prefer-application-resources>

290

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 291

Chapter 8: Packaging and Deploying WebLogic Applications

As for <package-name>, the <resource-name> expression can have an optional wildcard * for its last
character, which matches any characters. Resources with names matching a <resource-name> expression
will only be loaded from the application classloaders. The system and domain lib classloaders will not be
consulted at all. For applications that frequently attempt to load resources, this can provide a significant
performance benefit. Resources that do not match a <resource-name> expression are loaded by the old
rules.

Packaging bigrez.com
We’ve reviewed the options for packaging an enterprise application. This section looks at how the
bigrez.com application is put together.

The bigrez.com Components
The bigrez.com application is composed of four modules and several bundled libraries, as listed in
Table 8-5. We covered the web application modules and bigrez-web-common.jar in Chapter 4, the
bigrez-domain.jar library and bigrez-services.jar EJB module in Chapter 7, and we’ll come to
the bigrez-webservices.jar module in Chapter 9.

Table 8-5: The bigrez.com Components

Component Name Type Purpose

bigrez-domain.jar Bundled library JPA domain model.

bigrez-services.jar EJB module EJB 3.0 session beans providing
services as a session façade.

bigrez-web-admin.war Web application module Web interface for hotel administrators.

bigrez-web-user.war Web application module Web interface for end users.

bigrez-web-common.jar Bundled library Common functionality shared by
web-admin and web-user.

bigrez-webservices.war Web application module Web services implementation.

The dependencies between the components are shown in Figure 8-5. The web application modules
depend on third-party libraries for Spring MVC, JSTL, and Tiles that are packaged as bundled libraries.
These have been placed in the application’s APP-INF/lib directory.

The bigrez.com Projects
The application and each of the components has its own project directory. Each project has an Apache
Ant build file. There is also a unittests project containing JUnit unit test code that is not packaged in
the application.

291

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 292

Chapter 8: Packaging and Deploying WebLogic Applications

bigrez-web-user.warbigrez-web-admin.war

bigrez-web-common.jar

bigrez.ear

Third-party
web libraries
(Spring MVC,
Tiles, JSTL)

bigrez-services.jar

bigrez-domain.jar

bigrez-webservices.war

Figure 8-5: Dependencies between the bigrez.com components.

IDEs encourage a separate project per module or library, and one for the enterprise application. Split-
ting an application into projects allows the same directory structure to be used by an IDE, and allows
the application to be built using Ant build scripts. Additionally, dependencies between components
correspond directly to dependencies between projects.

Best Practice
Develop each Java EE module as a separate project, with its own build file.

The bigrez.com application is small enough for its inter-component dependencies to be understood
easily. As applications grow, dependency management becomes a significant concern.

Best Practice
As your applications grow in size, you will need to manage dependencies between
various components and third-party libraries. Consider automating dependency man-
agement using Apache Maven or Apache Ivy.

Altering bigrez.com to Use a Shared Library
Following the best practice suggested earlier in this chapter, we have used bundled libraries for
bigrez.com. As an exercise, let’s look at what we would do if we wanted to convert one of the bundled
libraries to a shared Java EE library. We’ll pick on the largest bundled library in bigrez.com — the
Spring Framework jar file, spring.jar. This is 2.9 MB in size, which accounts for more than half of the
bigrez.ear archive file.

First, we deploy spring.jar to the server as a library. We could do this through a variety of means,
including using the WebLogic Console or the weblogic.Deployer tool. We cover deployment in more
depth later. For now, here is a suitable weblogic.Deployer command and its output.

292

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 293

Chapter 8: Packaging and Deploying WebLogic Applications

% java weblogic.Deployer -adminurl t3://localhost:7001 -username weblogic -password
weblogic1 -name springframework -library -libspecver 2.5.4 -deploy ./spring.jar
weblogic.Deployer invoked with options: -adminurl t3://localhost:7001 -username
weblogic -name spring -library -libspecver 2.5.4 -deploy ./spring.jar
...
Task 11 completed: [Deployer:149117]deploy library springframework
[LibSpecVersion=2.5.4,LibImplVersion=2.5.4] on AdminServer.

Here we have deployed the spring.jar file as a shared library called springframework, and given it the
specification version 2.5.4. We didn’t specify the implementation version, but the deployer has found it
from the jar file’s manifest.

To change the bigrez.com application to use the shared library, we remove the bundled library from the
archive and add the following element to the weblogic-application.xml deployment descriptor.

<library-ref>
<library-name>springframework</library-name>
<implementation-version>2.5.4</implementation-version>
<exact-match>true</exact-match>

</library-ref>

For web application shared libraries, the <library-ref> element allows the referring application to
override the context root.

We can now deploy the bigrez.ear application.

Optional packages are deployed in exactly the same way. The difference is that they are referred to from
the manifest file of the application or one of its modules. To refer to the springframework library as an
optional package, you could use the following META-INF/MANIFEST.MF file for the bigrez.ear file.

Manifest-Version: 1.0
Extension-List: springfw
springfw-Extension-Name: springframework

Both the optional package and the shared Java EE library referring mechanisms have various options that
control which versions of the shared library are acceptable; refer to the WebLogic Server documentation
for full details (see Link 8-3).

Compiling Production Builds with appc
In Chapter 6, we recommended using the WebLogic Server appc compiler to compile production builds
of EJB modules and enhance JPA entity classes. This reduces deployment time and provides early warn-
ing of any problems. The appc compiler precompiles JSP pages, and performs validation checks against
deployment descriptors.

The build file for the bigrez.com enterprise application includes a target that compiles the bigrez.ear
file with appc. Rather than using the appc tool directly, as we did in Chapter 6, the build file uses the
WebLogic Server wlappc Ant task.

<target name="do.package">
<mkdir dir="${output.dir}" />

293

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 294

Chapter 8: Packaging and Deploying WebLogic Applications

<property name="output.jar" location="${output.dir}/bigrez.ear"/>
<!-- We don’t use the standard Ant EAR task as that expects an

application.xml deployment descriptor, and we don’t have one. -->
<jar jarfile="${output.jar}">

<zipfileset dir="../domain/output" includes="**/*.jar"/>
<zipfileset dir="../web-common/output" includes="**/*.jar"/>
<zipfileset dir="../services/output" includes="**/*.jar"/>
<zipfileset dir="../web-admin/output" includes="**/*.war"/>
<zipfileset dir="../web-user/output" includes="**/*.war"/>
<zipfileset dir="../webservices/output" includes="**/*.war"/>
<zipfileset dir="EarContent"/>

</jar>
<taskdef name="wlappc"

classpathref="build.classpath"
classname="weblogic.ant.taskdefs.j2ee.Appc"/>

<wlappc source="${output.jar}" classpathref="build.classpath"/>
</target>

As we noted in Chapter 6, for this precompilation to be effective, the appc compilation must use the same
version and patch level as the expected production environment. Otherwise WebLogic Server will repeat
the compilation when the application is deployed.

The bigrez.ear file is now complete and ready for deployment. We discuss deployment in a devel-
opment environment in the next section, and Chapter 12 covers the deployment of bigrez.com in a
production environment.

Deploying Applications
You can deploy a module or an enterprise application to a WebLogic Server environment in many ways.

❑ Automatic deployment

❑ WebLogic Server deployer utility

❑ WebLogic Console deployment

❑ The wldeploy Ant task

❑ The WebLogic Scripting Tool (WLST), in both online (connected) and offline modes

❑ The Java EE Deployment API standard (JSR-88) and the WebLogic Server deployment API

The first three methods were examined in the context of deploying web applications in Chapter 5. The
same rules, best practices, and limitations discussed in that chapter apply to their use with other module
types and enterprise applications. In this section, we discuss preparing the environment for deployment
and then walk through the deployment process for the bigrez.com enterprise application using these
three methods: automatic deployment, the WebLogic Server deployer utility, and WebLogic Console
deployment. See Chapter 5 for a further discussion of deployment tools, and Chapter 12 for information
about WLST.

JSR-88 and the WebLogic Server deployment API are primarily of interest to Java EE tool vendors, and
we do not consider them further. Refer to the WebLogic Server documentation for information (see
Link 8-4).

294

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 295

Chapter 8: Packaging and Deploying WebLogic Applications

Creating Required Services
Before attempting to deploy a module or enterprise application, you should configure the required shared
libraries and services (JDBC data sources, JMS resources, and so on) in the server environment. Although
some applications may deploy properly without the required services, others, such as applications with
JPA persistence units, will not deploy.

When an MDB component is deployed, for example, the server will attempt to connect the MDB to the
JMS destination defined in its descriptor file. If the JMS destination is not available the server will display
an error message in the log and attempt to reconnect to the destination periodically until it is available.
This will not stop the MDB from deploying, although it will not operate properly until the JMS resource
is created.

An application with a JPA persistence unit will fail to deploy if the associated data sources don’t exist.
Deployment may also fail if the database connections can be made, but the database schema does not
match that used to develop the application.

As a general rule, you should configure the required services and resources before attempting to deploy
the application.

Best Practice
Create and configure all required shared libraries, services, and resources before
attempting to deploy the application.

Table 8-6 lists the resources that bigrez.com expects from its environment.

Creating services and resources in a single server development environment is fairly easy. The WebLogic
Console provides straightforward screens for creating resources in the current domain. For bigrez.com,
it is even simpler to use the WLST script setUpDomain.py supplied in the distribution that automates
all of the necessary tasks. You can find full details of how to run this script in the accompanying
README.txt file. The setUpDomain.py script reads properties that change for each environment from the
local.properties file. You should edit this file to suit your local environment before running the script.
The Ant build scripts also use this file.

Best Practice
Take the time to create WLST scripts that set up the domain for your application. Oth-
erwise all of the developers on your team will have to master the WebLogic Server
configuration, and time will be lost due to configuration mistakes in individual envi-
ronments.

The data sources connect to a particular database account. This database account should be pre-initialized
with the appropriate schema. Please refer to the README.txt file for full details.

Having created a new domain, started the administration server, and executed the WLST script, the
domain is now prepared for the deployment of the bigrez.com enterprise application.

295

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 296

Chapter 8: Packaging and Deploying WebLogic Applications

Table 8-6: The Resources bigrez.com Requires in the Environment

Resource Name Type Purpose

BigRezJTADataSource JDBC Data Source Data source connected to the bigrez.com
schema. Configured to honor global JTA
transactions.

BigRezNonJTADataSource JDBC Data Source Data source connected to the bigrez.com
schema. Configured to ignore global JTA
transactions.

BigRezJMSServer JMS Server A JMS server must be targeted to any server
instance that hosts JMS resources. In the
development environment, the JMS server will
use the default file store; for production you
may want to configure a separate persistent
store. Refer to Chapter 10 for details.

BigRezJMSModule JMS Module A JMS module is a deployable collection of JMS
resources. This module contains the JMS
resources listed below in this table.

BigRezConnectionFactory JMS Connection
Factory

JMS connection factory. Configured to be
XA-aware, so JMS sessions created from its
connections will support global JTA
transactions.

BigRezEmailQueue JMS Queue Queue used for storing outbound email
messages. Redelivery options configured to
attempt to redeliver a message to a consumer
five further times after a delay of a minute
before placing the message in the error queue.

BigRezEmailErrorQueue JMS Queue Queue configured as an error destination for
BigRezEmailQueue.

JMSServerSubDeployment JMS Subdeployment JMS subdeployment used to target the queues
correctly.

BigRezMailSession JavaMail Session Mail session configured with details of a STMP
server that can send emails.

BigRezAdministrators Security Group Hotel administrators must belong to this group
to access the administration pages.

296

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 297

Chapter 8: Packaging and Deploying WebLogic Applications

Automatic Deployment and weblogic.Deployer
We discussed automatic deployment at some length in Chapter 5. Here, we simply review the technique
and present the steps required to deploy the bigrez.com application.

First, ensure that the domain is running in development mode so that automatic deployment is enabled.
The administration server will now scan the autodeploy directory in the domain for new (or modified)
application archives and exploded directory structures during each boot process and periodically during
server operation.

Next, copy the bigrez.ear archive file or the entire exploded application structure to the autodeploy
directory in the domain. The server can be running, if desired, although with exploded applications it
is usually best to copy the structure with the server stopped to avoid the race condition discussed in
Chapter 5.

Automatic redeployment of the application occurs whenever the bigrez.ear file is overwritten or the
META-INF/REDEPLOY file is touched so that its timestamp changes. These rules were discussed at length
in Chapter 5.

The ability to redeploy the application quickly without rebooting the server or accessing the WebLogic
Console is very useful during development. Automatic deployment is a popular way of deploying
exploded and archived enterprise applications in a single server development or test environment. How-
ever, it does involve additional copying of files, which can take some time for large applications. It is
often simpler to use the weblogic.Deployer command-line tool to deploy the application from wherever
it was built.

% java weblogic.Deployer -username weblogic -password weblogic1 -deploy bigrez.ear
weblogic.Deployer invoked with options: -username weblogic -deploy bigrez.ear
<29-Mar-2009 11:30:37 o’clock BST> <Info> <J2EE Deployment SPI> <BEA-260121>
<Initiating deploy operation for application, bigrez.ear [archive:
/home/philipa/writing/pows/bigrez2/ear/output/bigrez.ear], to configured targets.>
Task 55 initiated: [Deployer:149026]deploy application bigrez.ear on AdminServer.
Task 55 completed: [Deployer:149026]deploy application bigrez.ear on AdminServer.
Target state: deploy completed on Server AdminServer

In this use of weblogic.Deployer, we’ve relied on the server running on the default host (localhost)
and the default port (7001), so we haven’t needed to use the tool’s adminurl option.

It is similarly easy to redeploy and undeploy the application.

% java weblogic.Deployer -username weblogic -password weblogic1 -redeploy -name
bigrez.ear
...
% java weblogic.Deployer -username weblogic -password weblogic1 -undeploy -name
bigrez.ear
...

297

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 298

Chapter 8: Packaging and Deploying WebLogic Applications

Better still, modern IDEs can easily be configured to use WebLogic Server features such as the partial
redeployment, split development directory structure, and FastSwap, and make the minimal required
deployment changes through the push of a button. We return to this in Chapter 14 where we show how
to set up Eclipse and JDeveloper for bigrez.com development.

WebLogic Console Deployment
Chapter 5 also walked through the process of deploying a simple web application using the WebLogic
Console. Deploying an enterprise application to an environment is very similar to deploying a web
application.

1. Start the server and open the WebLogic Console.

2. Open the list of current applications, modules, and libraries deployed in the server using the
Deployments folder on the left side of the screen.

3. If you have unset the console preference to acquire the edit lock and apply changes automat-
ically, select Lock & Edit.

4. Click the Install link. Use the supplied screens to navigate to the location of your new
application, and select the application archive file or root directory to be deployed.

5. Continue the process by selecting that you want to deploy an application rather than a
library, targeting the new application to your server, and clicking the Finish button to
deploy the application.

6. If you have unset the console preference to acquire the edit lock and apply changes automat-
ically, select Apply Changes.

7. If the domain is running in production mode, an additional step is necessary to start the
application. Select the application in the list of deployments, and chose Start / Servicing
All Requests.

The application is now deployed and ready for users. To redeploy an application with the WebLogic
Console, acquire the edit lock, set the checkbox next to the application on the Deployments page, and
select Update. You can optionally change the path to the application, and associate a deployment plan
with the application. The application may be undeployed in a similar manner.

Chapter Review
This chapter discussed the steps required to package and deploy an enterprise application to the
WebLogic Server environment.

The first section reviewed the structure and contents of an EJB module, and the various WebLogic Server
configuration options for EJBs. The second section considered how to package JPA persistent units in
applications.

The third section covered enterprise applications. We reviewed the structure and contents of an enter-
prise application including the settings in application descriptor files, bundled libraries, and other
WebLogic Server module types. We also looked at related subjects, including exploded deployments,
optional packages, and shared Java EE libraries and classloading.

298

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 299

Chapter 8: Packaging and Deploying WebLogic Applications

The final section presented the steps necessary to deploy your enterprise application and discussed the
importance of preparing the environment before deployment.

The bigrez.com application is now complete and ready for deployment in production, a task we tackle
in Chapter 12. The following chapters continue our discussion of development-related techniques by
examining best practices and WebLogic Server features in the areas of web services, JMS messaging, and
security.

299

Patrick c08.tex V3 - 09/18/2009 12:17pm Page 300

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 301

Developing and Deploying
Web Services

In this chapter, we show you how to develop web services using WebLogic Server and we highlight
best practices for running web services on WebLogic Server.

This chapter is not intended as a general primer or introduction to web services standards and
technologies. Our primary emphasis is the web services development model, and the WebLogic
Server Web Services container and its unique features and capabilities. If you’re unfamiliar with
the basics of web services, we suggest you read Developing Java Web Services by Ramesh Nagappan,
Robert Skoczylas, and Rima Patel Sriganesh (Wiley, 2003).

We begin by briefly summarizing the relevant web services terms and key concepts. Next, we show
you how to create simple web services using WebLogic Server, followed by a demonstration of the
more advanced web services capabilities built into WebLogic Server. Finally, we show you how to
implement a web service for integrating with bigrez.com.

Throughout the chapter, we refer to standalone examples that are available on the companion web
site at http://www.wrox.com. We use code fragments in the text to demonstrate key points, but we
encourage you to download and look through the complete examples as well.

Summarizing Web Services Standards
Before we dive into building web services on WebLogic Server, let’s summarize the key underlying
standards that are most frequently used to make web services work.

SOAP Simple Object Access Protocol (SOAP) is a specification for exchanging struc-
tured information between distributed systems, using XML as the message format (see
http://www.w3.org/TR/soap/). We can use SOAP to implement synchronous remote
procedure calls (RPC) between service consumers and service providers or to implement

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 302

Chapter 9: Developing and Deploying Web Services

asynchronous messaging between distributed components. SOAP messages have an XML
structure known as a SOAP envelope. This envelope is composed of a header element and a body
element. The header contains a set of optional elements that we use to transmit extra information
about the context of the message such as security- or addressing-related data. We place the real
business data in the SOAP body, using XML elements that typically conform to one or more XML
schemas.

WSDL The Web Services Description Language (WSDL) is the specification that defines the
XML-based, interface definition language used to describe web services (see http://www.w3.org/
TR/wsdl). A WSDL document specifies the details of a web service’s operations, input and output
XML message formats, transport protocol, and endpoint URL.

WS-Security WS-Security is a specification that defines how to secure web services at the SOAP
message–level rather than just relying on existing transport-level security mechanisms like HTTP
basic authentication or Secure Sockets Layer (SSL). It includes mechanisms for service client
authentication and for message content encryption and digital signing. Security Assertion Markup
Language (SAML) is a related specification that complements WS-Security by providing an XML
token-based mechanism for exchanging authentication and authorization data between different
web service security domains. We cover SAML in more detail in Chapter 11.

WS-I Basic Profile The WS-Interoperability (WS-I) Organization is an umbrella organization of
software vendors and consumers who are interested in promoting best practices for web services
interoperability (see http://www.ws-i.org). This group produces a set of profiles, which are spec-
ifications for implementing web services to maximize interoperability. The WS-I Basic Profile is the
most widely used profile; it defines the rules for using SOAP and WSDL to implement interopera-
ble web services.

JAX-WS The Java API for XML-based Web Services (JAX-WS) is a specification that defines
a standard Java programming model for building web services and web service clients (see
http://jax-ws.dev.java.net/). JAX-WS 2.0 is part of the Java EE 5 specification. In JAX-WS,
the term Service Endpoint Interface (SEI) refers to a strongly-typed JAX-WS implementation of a
web service. JAX-WS also provides facilities for more loosely-coupled web services and handlers.
Handlers provide reusable message processing logic that can be injected into the invocation path
of the service providers and consumers.

JAXB The Java API for XML Binding (JAXB) specification describes how XML schema types
are mapped to and from Java types (see https://jaxb.dev.java.net/). Strictly speaking,
JAXB is not specifically a web services–related standard; it applies to XML and Java in general.
However, the JAX-WS standard uses JAXB to define how Java classes are used as parameters
and return types for web service operations, and how they are marshalled to and unmarshalled
from XML.

EJB 3.0 The EJB 3.0 specification requires EJB containers to support exposing a state-
less session bean via a web service interface using WSDL and SOAP or plain XML over
HTTP.

WebLogic Server supports a plethora of other web services–related standards, including the Uni-
versal Description, Discovery, and Integration API (UDDI) for accessing web service registries,
WS-Addressing for including address-related information in SOAP headers (for example, a reply-to
address for asynchronous messages), and WS-ReliableMessaging (WS-RM) for reliable delivery of
messages between SOAP consumers and producers, just to name a few.

302

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 303

Chapter 9: Developing and Deploying Web Services

Creating Web Services with WebLogic Server
In this section, we begin by describing WebLogic Server’s Web Services container architecture. Next,
we show you how to develop web services with WebLogic Server and provide two detailed examples,
one starting from Java and the other starting from WSDL. Finally, we show you how to create a client
application to invoke these web services.

Web Services Container Architecture
WebLogic Server provides a web services container for hosting Java code that processes SOAP requests
and generates SOAP responses. The container implements the JAX-WS 2.1 specification and provides
built-in WS-I Basic Profile 1.1 interoperability support. It also is integrated with WebLogic Server’s Secu-
rity Service to provide pluggable authentication and authorization, and support for web services security
standards such as WS-Security and SAML for any deployed web services. Figure 9-1 shows the structure
of WebLogic Server’s Web Services container and its relationship to some of the other WebLogic Server
subsystems.

WLS Web Svc
Message-Driven

Bean

WLS Web Svc
Servlet

Web Container

WebLogic Server

Web Services Container

Web Services Security

WebLogic Security Framework

Web
Service
Impl.

Business
Logic Code

EJB Container

JMS
Q

HTTP

T3

SOAP-HTTP
Client

SOAP-JMS
Client

Handler
Chain

Data
POJOs

Figure 9-1: WebLogic Server’s Web Services Container.

The web services container provides two transport mechanisms for invoking web services: SOAP over
HTTP and SOAP over JMS. Both mechanisms also support transport-level security using SSL. SOAP
over HTTP requests are initially processed by the web container, which dispatches them to a built-in
servlet known as the WebServiceServlet. This servlet simply routes the requests to the web services
container for processing. SOAP over JMS uses WebLogic JMS queues as intermediaries and the normal
WebLogic JMS mechanisms to deliver the message to the JMS queue. Once in the queue, WebLogic Server
uses a built-in message-driven bean that dequeues the requests and dispatches them to the web services
container.

303

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 304

Chapter 9: Developing and Deploying Web Services

Once a SOAP request arrives at the web services container, the first step is to identify the target web
service implementation class to invoke. The implementation class is a Java class that has been developed
using the JAX-WS or JAX-RPC programming model and deployed to WebLogic Server. Later in this
chapter we briefly discuss the older JAX-RPC-based web services technology also included in WebLogic
Server. Before invoking the class, the container invokes any of the handlers that are registered. Assuming
that the handlers do not short-circuit the processing, the container uses JAXB to unmarshal the incoming
SOAP message body into the appropriate set of Java objects that are then passed as arguments to the rel-
evant Java method in the implementation class. Once the Java method completes, the container marshals
the Java method’s return value into the appropriate SOAP message body for the response, invokes the
registered handlers, in reverse order, and returns the resulting SOAP response to the client.

From a high level, this is really all there is to WebLogic Server’s Web Services container. WebLogic
Server’s client-side container provides a similar architecture. When a Java client invokes a service, the
container intercepts the invocation, marshals the Java arguments, invokes any client-side handlers we
have defined, and finally invokes the remote web service. The response unwinds through the same steps,
until the Java client’s method invocation returns the response as a Java object to the client application.

Now that you understand the overall flow, we will look at the basic mechanisms that you use to write
your own web service providers and clients.

Developing Web Services for WebLogic Server
The JAX-WS programming model allows you to implement a web service by exposing the public methods
of a regular Java class as web service operations. WebLogic Server’s Web Services container supports
both SOAP 1.1 and 1.2 and WSDL 1.1. Because SOAP 1.1 is still the most commonly used version and the
WS-I Basic Profile 1.1 mandates its use for interoperability, we will develop our example web services
using SOAP 1.1. The differences between the two versions are minor and switching SOAP versions does
not require changes to the Java code apart from adding a new @BindingType annotation to the service
implementation class to specify that SOAP 1.2 is to be used.

Throughout this chapter, we use a BigRez property search web service in our examples. Our property
search service supports searching for a property by address or by unique id. The outline of the Java Web
Service (JWS) class that we use to define the property search web service is shown here.

@WebService
public class PropertySearchService
{

public PropertyInfo
getPropertyDetailsByAddress(PropertySearchAddress searchAddress)

{
...

}

public PropertyInfo getPropertyDetailsById(PropertySearchId searchId)
{

...
}

}

304

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 305

Chapter 9: Developing and Deploying Web Services

As you can see, the JWS class is just a normal Java class. There is no need for code associated with SOAP
message processing. We simply tell WebLogic Server that this class should be exposed as a web service
using JAX-WS’s @WebService annotation and the web services container takes care of the plumbing for
us. By default, all public methods of the class — except those inherited from java.lang.Object — are
exposed as web service operations.

When running in a WebLogic Server environment, each JWS class can receive multiple, concurrent
requests — very similar to a Java servlet. As such, your JWS class, and all utility classes and third-party
libraries that it might use, must be thread-safe. As with servlets, do not overly synchronize your JWS
class or risk performance and scalability problems that may not surface until stress testing or production.

When using regular Java classes to implement a web service, you must ensure that
your code is thread-safe. This includes any utility classes and third-party libraries
you use.

WebLogic Server also allows you to implement a web service by exposing the methods of a stateless
session bean as web service operations. By mixing both JAX-WS and EJB annotations together in the
same stateless session bean class, we can provide both a normal EJB client and web service client view to
a stateless session bean. One advantage of using a stateless session bean to implement a web service is
that the JWS class is an EJB and as such, the EJB container will pool the objects and make sure only one
thread at a time accesses the object. Of course, the EJB container does not do this for other classes the EJB
accesses, so this isn’t a magic solution for thread-safety problems. We don’t recommend this approach
for building externally exposed web services anyway, because it creates tighter coupling between the
business logic in the EJB and the external web service interface.

Do not place your core business logic code directly into the JWS implementation class. Instead, write the
core business logic independently of the web service interfaces. The JWS implementation class should
focus on logic specific to the web service and delegate the business logic to other components. This
provides the opportunity to expose the same business logic via other interfaces like EJB or JMS and to
unit-test the business logic code in a standalone environment. Think of the JWS class as a wrapper class
that makes your business logic remotable. By following this approach, you have the option of using
dependency injection to have a reference to the business class instances injected into your JWS class.

Best Practice
To expose business logic services as web services, create separate JWS classes that
invoke the business logic rather than mixing business logic with the JWS class. Only
use the JWS class as a thin wrapper class to make your business logic remotable.

JAX-WS defines Java annotations, such as @WebService, that we use to decorate parts of our Java class.
These annotations tell WebLogic Server’s JAX-WS tools that our Java class represents a web service and
they describe various details about the web service we want to create. WebLogic Server’s JAX-WS tools
introspect the Java class and its annotations to determine exactly what code it must generate to wire
the web service provider or consumer to the container. This generated code transparently handles the

305

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 306

Chapter 9: Developing and Deploying Web Services

communication between the remote client and the web service. On the client side, this generated code is
called a web service stub. The stub acts like a proxy, turning local Java method calls into SOAP requests
to invoke the remote web service.

WebLogic Server’s JAX-WS tools also take care of mapping between XML and Java using the rules
defined by JAXB. This capability is especially powerful when the inputs and outputs for the web ser-
vice operations are complex data types. JAXB contains rules for mapping between XML schema types
and data-oriented Java objects (data POJOs) in such a way as to maintain equivalence between the two
representations when performing round-trip mappings between the two representations. These data
POJOs are very similar to JavaBeans in that they each contain a no-args constructor, getter and setter
methods for each member variable, and no actual business logic.

Once we have written our web service, WebLogic Server’s JAX-WS tools help us package the implemen-
tation class, the generated code, and other related artifacts, like data POJOs, WSDLs, and XML schemas,
into an exploded EAR directory structure containing a deployable WAR file. Use the EAR directory
structure to add other application artifacts, package it into an EAR file, and deploy to a WebLogic Server
domain just like any other EAR file. The WAR file itself is also deployable without the EAR structure
around it, so you might decide to deploy it standalone. Throughout the rest of the chapter, we will refer
to the output as a WAR file rather than specifying that it is an exploded EAR directory structure contain-
ing a deployable WAR file. WebLogic Server’s Web Services container automatically detects the presence
of any web service endpoints when deploying the application and makes them available for processing
incoming SOAP requests.

When designing and developing a web service, we can follow one of two approaches.

Code-First This is a bottom-up, implementation-first strategy where we write the Java class and
the data POJOs representing the complex data types used by the web service operations. Then, we
use WebLogic Server’s JAX-WS tools to generate the web service’s WSDL interface and associated
XML schema types. In JAX-WS terminology, this approach is often referred to as Java-to-WSDL.

WSDL-First This is a top-down, interface-first strategy where we manually create the web ser-
vice’s WSDL interface and any associated XML schemas. Then, we use WebLogic Server’s JAX-WS
tools to generate the Java interface and the data POJOs. Finally, we complete the web service imple-
mentation by writing a class that implements the generated Java interface. In JAX-WS terminology,
this approach is often referred to as WSDL-to-Java.

Is one approach more preferable than the other? Well, this is difficult to answer because each approach
has advantages and disadvantages. One might claim that the code-first approach enables more rapid
development of web services, especially if we just want to expose existing application functionality.
However, the code-first approach forces the developer to create all the data POJO classes manually,
whereas the WSDL-first approach generates them for you.

Typically, the WSDL-first approach provides a looser coupling between the web service and its con-
sumers because it has the developer create the external interface first. Theoretically, if you spend enough
time designing the interface to match the business purpose and data exchanged, the external interface
becomes less likely to change over time — even when the underlying systems that implement the busi-
ness logic change. While we agree with the theory, our experience tells us that many people simply do
not spend enough time designing the interface to achieve these benefits. Even so, we do recommend the
WSDL-first approach for external web services in the hope that forcing people to come up with the WSDL
and XML schemas first will help them put more thought into the design.

306

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 307

Chapter 9: Developing and Deploying Web Services

Best Practice
If you need to share the same set of XML message formats across many different web
services and even across different systems in your organization, use a WSDL-first
approach to enable the externally defined XML schemas to be reused.

Developing Code-First Web Services
When developing code-first web services, you follow these basic steps:

1. Write and compile the data POJO classes.

2. Write and compile the JWS class containing the appropriate JAX-WS annotations.

3. Run WebLogic Server’s Java Web Service Compiler (JWSC) using the jwsc Ant task to gen-
erate a deployable WAR file.

4. Deploy the WAR file to one or more WebLogic Server instances or clusters using any of
WebLogic Server’s deployment tools, such as the WebLogic Console or wldeploy Ant task.

Note that the WSDL for the web service is not generated by JWSC at compile time by default, but JWSC
does provide an option to enable generation at compile time. Normally the WebLogic Server Web Ser-
vices container generates it on demand at runtime.

Listing 9-1 shows the outline of the Java class that implements the BigRez property search web service in
Example 1 of the downloadable examples for Chapter 9.

Listing 9-1: Outline of Example 1’s PropertySearchService.java.

package com.bigrez.ws.service;

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.soap.SOAPBinding;

import com.bigrez.ws.property.PropertyInfo;
import com.bigrez.ws.property.PropertyInfoFault;
import com.bigrez.ws.property.PropertyInfoFaultException;
import com.bigrez.ws.property.PropertySearchAddress;
import com.bigrez.ws.property.PropertySearchId;

@WebService(
serviceName="PropertySearchService",
targetNamespace= "http://www.wrox.com/professional-

weblogic/PropertySearchService"
)

Continued

307

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 308

Chapter 9: Developing and Deploying Web Services

Listing 9-1: Outline of Example 1’s PropertySearchService.java. (continued)

@SOAPBinding(
style=SOAPBinding.Style.DOCUMENT,
use=SOAPBinding.Use.LITERAL,
parameterStyle=SOAPBinding.ParameterStyle.WRAPPED

)
public class PropertySearchService
{

public PropertyInfo
getPropertyDetailsByAddress(PropertySearchAddress searchAddress)
throws PropertyInfoFaultException

{
PropertyInfo property;
String address1 = searchAddress.getAddress1();
String postalCode = searchAddress.getPostalCode();

if ((address1 == null) ||
(address1.trim().length() <= 0) ||
(postalCode == null) ||
(postalCode.trim().length() <= 0)) {

throwFaultException();
}

// Call business logic to search for property
//
...

return property;
}

public PropertyInfo getPropertyDetailsById(PropertySearchId searchId)
throws PropertyInfoFaultException

{
PropertyInfo property;
int id = searchId.getId();

if (id <= 0) {
throwFaultException();

}

// Call business logic to search for property
//
...

return property;
}

308

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 309

Chapter 9: Developing and Deploying Web Services

private void throwFaultException()
throws PropertyInfoFaultException

{
String error = "Property search criteria is empty";
PropertyInfoFault fault = new PropertyInfoFault();
fault.setCode("BIGREZERR-01234");
fault.setMessage(error);
throw new PropertyInfoFaultException(error, fault);

}
}

As we mentioned previously, the @WebService annotation tells WebLogic Server that this is a JWS
class. If not specified, the default name of the web service is the class name with the word Service
appended to it (for example, PropertySearchServiceService). Likewise, the default namespace
for the resulting SOAP body elements is the reverse of the package name of the class (for example,
http://service.ws.bigrez.com/). Rather than accept these default values, we explicitly specify the
web service name and target namespace using the @WebService annotation’s name and targetNamespace
elements.

We could annotate the public methods of our class with @WebMethod. In most cases, this is redundant;
by default, all public methods of a JWS class are mapped to web service operations. The @WebMethod
annotation allows you to specify a different name for the web service operation or exclude a public
method from becoming a web service operation. Because the default behavior works for our example, we
do not use the @WebMethod annotation.

We also use the optional @SoapBinding annotation. This annotation gives us influence over the XML
structure that surrounds the parameters and return values of a SOAP request and response. In the
‘‘Understanding Style and Use’’ section later in this chapter, we discuss why such settings are impor-
tant. Actually, we could omit this annotation because DOCUMENT, LITERAL, and WRAPPED are the default
values.

The JAX-WS 2.0 classes and annotations are part of both Java EE 5 and Java SE 6 and contain classes from
the following packages:

❑ javax.jws

❑ javax.jws.soap

❑ javax.xml.ws

❑ javax.xml.ws.handler

❑ javax.xml.ws.handler.soap

❑ javax.xml.ws.http

❑ javax.xml.ws.soap

However, WebLogic Server 10.3.1 actually implements version 2.1 of JAX-WS, so the best place to
find the Javadocs for the JAX-WS classes is shown in Link 9-1 in the book’s online Appendix at
http://www.wrox.com.

Because our JWS class uses complex arguments and return types, we have to create the data POJOs for
these complex types. Listing 9-2 shows the Java code for one of these data POJOs.

309

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 310

Chapter 9: Developing and Deploying Web Services

Listing 9-2: Example 1 Data POJO PropertySearchAddress.java.

public class PropertySearchAddress
{

private String address1;
private String postalCode;

public String getAddress1() { return address1; }

public void setAddress1(String value)
{

this.address1 = value;
}

public String getPostalCode() { return postalCode; }

public void setPostalCode(String value)
{

this.postalCode = value;
}

}

As you can see, a data POJO is just a JavaBean-like class with property getter and setter methods. It
purely holds data. To allow more hierarchical information, data POJO member variables can be other
data POJO types, arrays of other data POJO or primitive types, or strongly-typed Java collections used to
hold other data POJO or primitive types. When using arrays or other collection types, you must provide
the appropriate getters and setters to allow access to these collection-based member variables.

We also declared that the JWS methods could throw an exception. JAX-WS gives us a convention for
declaring custom exceptions, which can easily be converted into custom SOAP faults. A wrapper exception
(for example, PropertyFaultException) extends java.lang.Exception and contains a method called
getFaultInfo() for accessing a JavaBean-like fault object (for example, PropertyFault). In our example,
the fault object contains getters and setters for two properties that we have called Code and Message.
These will provide more information about the errors. The web service container is able to catch the
exception thrown by our JWS class, at runtime, and convert this information into the appropriate XML
data as part of the fault’s detail element of the SOAP response. The SOAP fault response generated by
our service implementation is shown here.

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<soap:Fault>

<faultcode>soap:Server</faultcode>
<faultstring>Property search criteria is emtpy</faultstring>
<detail>
<PropertyInfoFault xmlns="http://www.wrox.com/professional-

weblogic/PropertyInfo">
<Code>BIGREZERR-01234</Code>
<Message>Property search criteria is emtpy</Message>

</PropertyInfoFault>
</detail>

</soap:Fault>
</soap:Body>

</soap:Envelope>

310

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 311

Chapter 9: Developing and Deploying Web Services

Once the data POJO and JWS classes are complete, we create an Ant build.xml file to automate com-
piling the Java code, running the JWSC, and deploying the resulting WAR file to WebLogic Server. We
show portions of our example’s build.xml file that pertain to the use of WebLogic Server’s jwsc Ant
task here.

<taskdef name="jwsc" classpathref="${weblogic.classpath}"
classname="weblogic.wsee.tools.anttasks.JwscTask"/>

<jwsc srcdir="src" destdir="earcontents" classpathref="${app.classpath}">
<jws file="com/bigrez/ws/service/PropertySearchService.java"

contextpath="PropertySearchService_CodeFirst"
type="JAXWS"/>

</jwsc>

Best Practice
Write a single Ant build.xml file that compiles your Java code, runs WebLogic Server’s
JWSC, and deploys the resulting WAR file using a single command.

WebLogic Server’s JWSC generates the deployable web services artifacts and packages them into a WAR
file that is ready for deployment to WebLogic Server. These deployable artifacts include the compiled
JWS and any data POJO classes as well as the relevant deployment descriptors. The web.xml deployment
descriptor contains a servlet mapping to the WebServiceServlet that dispatches the SOAP requests to
the JWS class via WebLogic Server’s Web Services container.

The jwsc Ant task supports a multitude of attributes to customize its behavior. Typically, you only need
to specify a few of them; the most common attributes are:

❑ srcdir — The top-level directory where all JWS files are located.

❑ destdir — The directory to contain the generated EAR file’s unpacked contents.

❑ classpathref — The classpath for the compiled classes that the JWS class relies upon.

Setting the jws element’s type attribute value to JAXWS tells WebLogic Server to generate a JAX-WS web
service. If you forget to set this attribute, the jwsc Ant task will generate a JAX-RPC web service. Later
in this chapter we briefly discuss the older JAX-RPC-based web services toolkit included in WebLogic
Server.

So once we’ve deployed the web service, how do we determine what the web service’s URL is? The
answer depends on the JAX-WS annotations and Ant task attributes we used to compile the web service.
For our example, the web service’s URL is composed of the following elements:

http://<host>:<port>/<contextpath>/<webservice-annotation-service-name>

In our case, we specified a contextPath attribute in our Ant jws element. The following list shows how
the context path of the URL is determined, in order of precedence:

❑ The contextPath attribute of the jws element.

311

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 312

Chapter 9: Developing and Deploying Web Services

❑ The contextPath attribute of the WLHttpTransport or WLJMSTransport child element of jws.
WLHttpTransport and WLJMSTransport are optional and provide the ability to define additional
transport specific settings for the generated web service.

❑ The name of the JWS file without any extension.

Assuming the example WAR is deployed to a local, single server WebLogic Server domain listening on
the default port, the BigRez property search web service’s URL is:

http://localhost:7001/PropertySearchService_CodeFirst/PropertySearchService

To view the WSDL for a deployed web service, simply append ?wsdl to the URL, as shown here.

http://localhost:7001/PropertySearchService_CodeFirst/PropertySearchService?wsdl

Another way to determine the URL of a deployed web service and view its WSDL is to use the WebLogic
Console. Simply select the Deployments folder, expand the link to the deployed web service WAR (for
example, PropertySearchService_CodeFirst), and then select the web service sub-element of this WAR
(for example, PropertySearchService). This page of the WebLogic Console provides configuration,
security, and monitoring information about our web service. The Testing tab provides links to the WSDL
and Test Client, as shown in Figure 9-2.

Figure 9-2: WebLogic Console Web Service Testing Tab.

312

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 313

Chapter 9: Developing and Deploying Web Services

We have many ways to test our deployed web service. Perhaps the easiest way is to use the WebLogic
Test Client. To access it, point your browser at your local WebLogic Server instance using the URL
http://localhost:7001/wls_utc/. This tool allows you to enter the URL of any web service’s WSDL
to test, even if the web service isn’t running on WebLogic Server. For deployed WebLogic Server
web services like our property search service, we can simply select the Test client link, as shown in
Figure 9-2. This automatically launches the WebLogic Test Client ready to test our web service, as shown
in Figure 9-3.

Figure 9-3: WebLogic Test Client.

The WebLogic Test Client makes things easy for us by automatically generating a sample XML payload.
Simply change the sample data to reflect real property details and press the operation’s submit button to
test the service. The WebLogic Test Client result page will show the content of the original SOAP request
and the resulting SOAP response.

Another useful tool for testing web services is a free, open-source tool called SoapUI. This is a stand-
alone, Java Swing–based application, downloadable from http://www.soapui.org/. SoapUI is easy to
use and once it has been given a web service WSDL, it provides powerful tools for creating and submit-
ting sample SOAP requests. Figure 9-4 shows SoapUI being used to test our web service.

SoapUI provides some added benefits, including the ability to view the raw HTTP request and response.
It also provides other tools, such as WSI Analyzer and TCPMon. WSI Analyzer checks the WS-I Basic

313

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 314

Chapter 9: Developing and Deploying Web Services

Profile compliance of a web service. TCPMon acts as a tunnel between a web service consumer and
provider to enable you to see the raw message traffic passed over the wire.

Figure 9-4: SoapUI Web Service Test Tool.

Developing WSDL-First Web Services
When developing WSDL-first web services, you follow these basic steps.

1. Write the WSDL for the web service and the XML schemas for any complex data types that
are referenced in the WSDL’s input and output message parts.

2. Run WebLogic Server’s Web Services Description Language Compiler (WSDLC) using the
wsdlc Ant task to generate the JWS interface class and any data POJO classes. The output of
the wsdlc Ant task is a single JAR file containing all the generated artifacts.

3. Write and compile a concrete JWS class that implements the generated JWS interface class
and uses the appropriate JAX-WS annotations.

4. Run the jwsc Ant task specifying the location of the JWS class and the location of the wsdlc-
generated JAR file from step 2. As we saw before, this generates the deployable WAR file.

5. Deploy the WAR file to one or more WebLogic Server instances or clusters.

314

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 315

Chapter 9: Developing and Deploying Web Services

At this point, please locate the PropertySearchService.wsdl and PropertyInfo.xsd files contained in
Example 2 of the downloadable examples before proceeding.

PropertySearchService.wsdl contains the WSDL we created to define the interface for the property
search web service. WSDL can be a little intimidating at first glance. To understand a WSDL definition,
it’s usually best to start from the end and work backwards. At the base of our WSDL, we define a web
service called PropertySearchService containing the URL of the service endpoint. When we wrote
this WSDL, we did not know where the service would be hosted, so we included a dummy URL. At
runtime, WebLogic Server will generate a version of the WSDL containing the correct URL based on the
environment to which the web service is deployed.

The binding section of our WSDL identifies the two operations we require, the protocol the service
will use (that is, SOAP over HTTP) and the style and use of SOAP message structure to use (that is,
document and literal). We discuss style and use in the ‘‘Understanding Style and Use’’ section later in
this chapter.

In the WSDL’s portType section, we map input, output, and fault message types to the web service oper-
ations. The messages section defines the top-level data structures that can be used as inputs or outputs
for any of our web service’s operations. These message definitions reference XML schema types that the
WSDL either explicitly defines in the types section or imports from externally-defined XML schema files.
In our example, we define types for the top-level XML elements for the SOAP body payloads directly in
the WSDL and then reference imported schema types to define the complex XML data structures relating
to BigRez properties.

In PropertyInfo.xsd, we define several complex XML types to represent business data.
PropertySearchAddress and PropertySearchId provide structures that we use to pass input
data to the web service operations. PropertyInfo and PropertyInfoFault provide structures for
returning response data and error details, respectively. You may ask why define some of the XML types
in the WSDL and some in an XML schema?

Ideally, all of the XML types would be defined in an XML schema. Nevertheless, to help the SOAP
clients and servers map requests to their target operations, a wrapped convention is used whereby the top-
level element in a SOAP request body element identifies the name of the target operation (for example,
GetPropertyDetailsByAddress). Inside this wrapper is the real XML business data. From a web service
design perspective, we could have chosen not to use this wrapper element. We discuss the guidelines
about when and when not to use wrapper elements in the ‘‘Understanding Style and Use’’ section later
in this chapter.

Once we finish writing the WSDL and associated XML schemas, we need to run WebLogic Server’s
WSDL compiler to generate the JAR file containing the JWS interface class and any JAXB data POJOs.
The wsdlc Ant task–related portions of the example’s Ant build.xml file are shown here.

<taskdef name="wsdlc" classpathref="${weblogic.classpath}"
classname="weblogic.wsee.tools.anttasks.WsdlcTask"/>

<wsdlc srcWsdl="WebContent/wsdls/PropertySearchService.wsdl"
destJwsDir="tmp"
destImplDir="tmp"
packageName="com.bigrez.ws.property"
type="JAXWS"/>

315

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 316

Chapter 9: Developing and Deploying Web Services

As for the wsdlc attributes, srcWsdl specifies the location of the WSDL to compile, destJwsDir specifies
the output JAR file destination, destImplDir specifies the base directory to generate the stubbed-out Java
class to, and packageName specifies the Java package name to use for the generated Java classes.

If you explore the example build.xml file some more, you will see that the generate target that runs
the WSDL compiler is not part of the default target’s dependency chain that builds and deploys the web
service. This is intentional. By doing this, you run the generate target once to generate the initial set of
Java classes. Run the default target whenever you change the JWS class to compile, package, and deploy
the web service. You don’t need to re-run the generate target unless you change the WSDL or XML
schema.

Best Practice
Run the wsdlc Ant task in a separate target that is not part of the chain of dependencies
for the default target in the build.xml file. You don’t need to re-run wsdlc unless you
change the WSDL or XML schema. This will help speed up your development process.

It is relatively easy to write the JWS class when using a WSDL-first approach. We just need to implement
the generated interface and its declared methods, using the JAXB-generated data POJO classes. The code
snippet that follows shows the outline of the PropertySearchServiceImpl JWS class that implements
the BigRez property search web service.

@WebService(serviceName="PropertySearchService",
targetNamespace="http://www.wrox.com/professional-weblogic/PropertySearchService",
endpointInterface="com.bigrez.ws.property.PropertySearchService"

)
public class PropertySearchServiceImpl implements PropertySearchService
{

...

public PropertyInfo
getPropertyDetailsByAddress(PropertySearchAddress searchAddress)
throws PropertyInfoFaultException

{
// SAME AS CODE-FIRST EXAMPLE

}

public PropertyInfo getPropertyDetailsById(PropertySearchId searchId)
throws PropertyInfoFaultException

{
// SAME AS CODE-FIRST EXAMPLE

}

...
}

This class is practically the same as the class in the code-first example, except that this time the JWS class
implements a generated Java interface and the @WebService annotation specifies the endpointInterface
element to help the WebLogic Server tools determine that this is actually a WSDL-first implementation.
This time we did not use the @SOAPBinding annotation to specify the web service format because we
already defined this structure when we wrote the WSDL.

316

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 317

Chapter 9: Developing and Deploying Web Services

Next, we need to run the JWS compiler on our JWS class to generate the web service WAR, just as
we did in the code-first approach. Because we are using a WSDL-first approach, we must specify the
compiledWsdl attribute, which specifies the location of the wsdlc Ant task–generated JAR file. We show
the jwsc Ant task–related portions of the example build.xml file here.

<taskdef name="jwsc" classpathref="${weblogic.classpath}"
classname="weblogic.wsee.tools.anttasks.JwscTask"/>

<jwsc srcdir="src" destdir="earcontents" classpathref="${app.classpath}">
<jws compiledWsdl="PropertySearchService_wsdl.jar"

file="com/bigrez/ws/service/PropertySearchServiceImpl.java"
contextpath="PropertySearchService_WSDLFirst"
type="JAXWS"/>

</jwsc>

Once we have run JWSC, the content of the web service WAR is the same as it was for the code-first
approach. When we deploy the web service WAR to our local WebLogic Server instance listening on its
default port, the URL for the web service will be:

http://localhost:7001/PropertySearchService_WSDLFirst/PropertySearchService

The URL for the WSDL will be:

http://localhost:7001/PropertySearchService_WSDLFirst/PropertySearchService?wsdl

And we can use the same tools to test the web service.

At this point it is probably worth looking at the shape of the XML used for the SOAP request and
response. We show the SOAP request structure for the WSDL-first web service we have been discussing
here.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<wrapper:GetPropertyDetailsByAddress

xmlns:wrapper="http://www.wrox.com/professional-
weblogic/PropertySearchService">

<PropertySearchAddress
xmlns="http://www.wrox.com/professional-weblogic/PropertyInfo">

<Address1>1 High Street</Address1>
<PostalCode>BT1234</PostalCode>

</PropertySearchAddress>
</wrapper:GetPropertyDetailsByAddress>

</soapenv:Body>
</soapenv:Envelope>

The WSDL-first web service’s SOAP response looks like the one shown here.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<wrapper:GetPropertyDetailsByAddressResponse

xmlns:wrapper="http://www.wrox.com/professional-
weblogic/PropertySearchService">

317

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 318

Chapter 9: Developing and Deploying Web Services

<PropertyInfo xmlns="http://www.wrox.com/professional-weblogic/PropertyInfo">
<Id>1</Id>
<Description>A nice place</Description>
<Features>2 bedrooms</Features>
<Address1>1 High Street</Address1>
<Address2>Hillside</Address2>
<City>Sunnystate</City>
<PostalCode>BT1234</PostalCode>
<Phone>01-1322-2323</Phone>

</PropertyInfo>
</wrapper:GetPropertyDetailsByAddressResponse >

</soapenv:Body>
</soapenv:Envelope>

If you look closely at the three namespaces the request and response use, it starts to become evident why
we declare the wrapper elements in the WSDL and the inner XML content in a separate XML schema.
The SOAP message contains three namespaces referenced by different prefixes:

❑ soapenv — This namespace refers to the SOAP envelope schema defined by the SOAP specifica-
tion.

❑ wrapper — This namespace refers to the wrapper type we defined in the types section of the
WSDL.

❑ none — XML elements without prefixes use the default namespace, which refers to the business
data types we defined in our XML schema.

Using this approach helps us clearly separate the three concerns: the SOAP protocol, the wrapper type,
and the self-contained XML document payload containing the real business data. Because of this, our
XML schema is purely defining the structure of our business data; this makes it suitable for use in all
parts of our application and potentially across other applications. We define web service–specific types
like the wrapper in the WSDL because these types are specific to the web service represented by the
WSDL.

Best Practice
Define web service operation wrapper types directly in the WSDL using the WSDL’s
target namespace. Define the XML types for the web service operation request and
response data in a separate XML schema file using a different namespace. This
approach decouples the XML schema of the business data types from the web
service–specific wrapper types to make it easier to standardize business data type
schemas across your application or organization.

Developing Web Service Clients
A web service client application uses a generated Java web service stub class, also known as a proxy, to
invoke the web service. The client uses a set of generated data POJO classes to pass the request data into
and receive the response data back from the stub. The generated web service stub’s API has methods that
mirror the remote web service’s operation names, arguments, and return types. Regardless of how the
web service was implemented, the process for creating the WebLogic Server Web Services client always
uses a WSDL-first approach.

318

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 319

Chapter 9: Developing and Deploying Web Services

To implement a WebLogic Server Web Services client, we always use the same basic steps.

1. Run WebLogic Server’s clientgen Ant task against the WSDL for the web service to gener-
ate the stub and data POJO classes.

2. Write the client application using the generated stub’s exposed API and compile the client
application.

3. Run the client.

We show the clientgen Ant task–related portions of Example 3’s build.xml file here.

<taskdef name="clientgen" classpathref="${weblogic.classpath}"
classname="weblogic.wsee.tools.anttasks.ClientGenTask"/>

<clientgen wsdl="http://localhost:7001/PropertySearchService_WSDLFirst/
PropertySearchService?wsdl"

destDir="stubcode"
packageName="com.bigrez.ws.property"
classpathref="${app.classpath}"
type="JAXWS"/>

As for the clientgen task attributes, wsdl is the complete path or URL to the web service’s WSDL,
destDir is the output directory to which to write the generated class files, and packageName is the Java
package name of the generated classes.

Once we generate the stub and data POJO classes, we use the stub’s API to invoke the web service. The
standalone Java client class from Example 3 is shown in Listing 9-3.

Listing 9-3: Example 3’s PropertySearchClient.java.

public class PropertySearchClient
{

public static void main(String[] args)
{

try {
new PropertySearchClient();

}
catch (Exception e) {

e.printStackTrace();
}

}

public PropertySearchClient() throws PropertyInfoFaultException
{

// Construct request data
PropertySearchAddress searchAddress =

new PropertySearchAddress();
searchAddress.setAddress1("1 High Street");
searchAddress.setPostalCode("BT1234");

Continued

319

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 320

Chapter 9: Developing and Deploying Web Services

Listing 9-3: Example 3’s PropertySearchClient.java. (continued)

// Invoke service operation
PropertySearchService_Service service =

new PropertySearchService_Service();
PropertySearchService port =

service.getPropertySearchServiceImplPort();
PropertyInfo property =

port.getPropertyDetailsByAddress(searchAddress);

// Process response data
if (property != null) {

int id = property.getId();
String city = property.getCity();
System.out.println("Found Property: Id=" + id +

", City=" + city);
}
else {

System.out.println("No Property found");
}

}
}

In our example code, we first populate the JAXB-generated POJO class (PropertySearchAddress) with
data representing the address information for a property search. Next, we use a set of three steps to
locate and invoke the web service operation. In step 1, we obtain a handle to the class that represents
the remote web service by instantiating the generated stub via its no-args constructor. A web service can
have multiple invocation points; these invocation points are known as ports. For example, a web service
might have one port for SOAP over HTTP access and another port for SOAP over JMS access. In step 2,
we locate the actual service invocation endpoint (port) that we require. At this point, we have a proxy
object that represents the remote web service and contains methods with the same names as the remote
web service’s operations. In step 3, we invoke the appropriate method on the proxy object, passing the
property search data and receiving the property search result in a data POJO.

Once we compile the client class, we run the example just like any other ordinary Java standalone appli-
cation using the command shown here.

> java com.bigrez.ws.client.PropertySearchClient

Before running this command, we must ensure that the Java classpath contains our client application
classes, the generated property search client classes, and WebLogic Server’s Web Services client container
classes. For the web services client container classes, copy the $WL_HOME/server/lib/wseeclient.zip
file to the client machine, unzip its contents into a directory, and add the wseeclient.jar file to the Java
classpath. Note that this works because the wseeclient.jar file’s Manifest contains references to all the
other JARs, so don’t be fooled into thinking you don’t need the other JAR files.

It is worth noting that when the web service client code runs, the service stub actually downloads the
WSDL from the server. By default, the stub uses the URL you specify when you run clientgen to gen-
erate the stub. Having runtime access to the WSDL significantly reduces the amount of client code and

320

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 321

Chapter 9: Developing and Deploying Web Services

annotations that we need to write, so the JAX-WS specification authors felt this was an acceptable trade-
off. As such, web service annotations are really intended to provide additional metadata over and above
the data already contained in a web service WSDL.

The JAX-WS APIs allow you to override the default WSDL URL dynamically at runtime, as shown here.

URL wsdlURL = new URL("http://localhost:7001/PropertySearchService_WSDLFirst/" +
"PropertySearchService?wsdl");

QName serviceQName =
new QName("http://www.wiley.com/compbooks/professional-" +

"weblogic/PropertySearchService", "PropertySearchService");
PropertySearchService_Service service =

new PropertySearchService_Service(wsdlURL, serviceQName);

The URL of the WSDL can refer to a local file , by using a URL of the form file://<path_to_file>. To
construct the qualified name (QName), we specify the WSDL’s target namespace and the web service’s
name, as defined by the service element of the WSDL.

Sometimes a WSDL may be accessible at the time of web service client generation, but may no longer be
accessible when the client is run. For these situations, WebLogic Server provides a handy Ant task called
wsdlget that downloads a remote WSDL to the local file system plus all its imported XML schemas. This
task also changes the WSDL’s import references to point to the local copies of the schemas. The following
example shows how wsdlget can be used to download a copy of a remote WSDL into the current working
directory:

<wsdlget wsdl="http://remoteserver/ws/PropertySearchService?WSDL" destDir="."/>

We then just change the wsdl attribute of our clientgen Ant task to use the local file URL of the down-
loaded WSDL.

Alternatively, we can use WebLogic Server’s XML Catalog feature to override the locations from which
WebLogic Server retrieves the WSDLs and XML schemas. See Link 9-2 for more information on using
XML Catalogs.

We can even override the URL of the actual web service endpoint dynamically at runtime. The JAX-
WS API provides a special BindingProvider interface that supports performing HTTP protocol-specific
actions. We use this interface to specify the HTTP endpoint URL in the following example.

Map<String, Object> rc = ((BindingProvider) port).getRequestContext();
rc.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,

"http://localhost:7001/PropertySearchService_WSDLFirst/PropertySearchService");
PropertyInfo property = port.getPropertyDetailsByAddress(searchAddress);

Regardless of how you do it, you should minimize the number of remote calls to obtain and the number
of parses required to process a single WSDL file. A naı̈ve approach of always creating a new service stub
each time you want to invoke a web service operation will require a remote call to retrieve the WSDL,
parsing the WSDL (which may require retrieving one or more remote XML schemas), and another call to
execute the operation. A better approach would be to cache and reuse the service stub. You should also
consider making local copies of the WSDL and XML schemas.

321

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 322

Chapter 9: Developing and Deploying Web Services

Best Practice
Lookup and cache a service stub just once in your client code, rather than looking up
the service each time you want to call a web service operation. This improves perfor-
mance by reducing the need for the client code to repeatedly obtain and parse a WSDL.
This also reduces the risk of errors if the WSDL is hosted remotely and is sometimes
unavailable for access.

Of course, not all web service clients are standalone Java programs. In many cases, server-side Java EE
components need to make web services calls. When writing web service client code that will run inside
WebLogic Server, we can include a JAX-WS @WebServiceRef annotation to instruct the container to inject
the web service client stub directly into a member variable in a Java EE component class, as shown here.

@WebServiceRef
PropertySearchService_Service service;

This annotation can be used from within servlets, EJBs, and even other web services running in a
WebLogic Server.

We can override the web service’s WSDL’s URL built into the generated client stub by specifying a
wsdlLocation element for the @WebServiceRef annotation, as shown here.

@WebServiceRef(wsdlLocation="http://localhost:7001/PropertySearchService_WSDLFirst/
PropertySearchService?wsdl")
PropertySearchService_Service service;

When web service client code is running within a WebLogic Server deployed application, we don’t have
to worry about setting up the classpath to include WebLogic Server’s Web Service client JARs. This is
because all the required WebLogic Server classes are automatically available to our code, by virtue of the
server’s default classpath.

Moving Past the Basics
In the previous section, we showed you how to write basic web services using two different approaches
and how to write a web service client to call these services. Now, we show you how to use some of the
more advanced features of WebLogic Server’s Web Services container.

Using JAX-RPC
JAX-RPC 1.1 is an older Java web services standard whose name reflects its emphasis on a remote pro-
cedure call–style programming model for web services development. The specification was renamed to
JAX-WS during the move from version 1.1 to 2.0, to reflect the fact that the specification now supports
both RPC and message-centric programming models. Although JAX-WS is not a radical departure from
the previous versions of the specification, JAX-WS is not backward-compatible with JAX-RPC. Conse-
quently, WebLogic Server still provides support for the old JAX-RPC programming model to support

322

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 323

Chapter 9: Developing and Deploying Web Services

users who have existing applications using the older model that want to upgrade to the latest version of
WebLogic Server.

For the most part, the WebLogic Server provides feature parity between its JAX-RPC 1.1 implementation
and its JAX-WS 2.1 implementation. For example, both implementations support the WS-Security, SAML,
and WS-Addressing standards plus features like asynchronous messaging and callbacks. Currently, only
WebLogic Server’s JAX-RPC implementation supports the following standards and features:

WS-Trust 1.3 (clients-only) WebLogic Server–based web services clients use WS-Trust to request
security tokens from third-party security token services (STS).

WS-ReliableMessaging 1.1 Web services applications use WS-ReliableMessaging to enable a
web service consumer to reliably send messages to a web service provider with a specified quality
of service.

SOAP over JMS Web services applications use SOAP over JMS to enable a web service consumer
to send SOAP messages asynchronously to a web service provider via a WebLogic JMS Queue.

If we require any of these features, we must use WebLogic Server’s JAX-RPC implementation. Otherwise,
we should use the JAX-WS programming model because it is part of the Java EE 5 specification.

JAX-RPC development uses the same WebLogic Server Ant tasks as JAX-WS. Simply change the value
of the type attribute from JAXWS to JAXRPC. Be aware that the default value for the type attribute is
JAXRPC. The annotations and XML-Java mapping technologies JAX-RPC provides are, for the most part,
different from JAX-WS. See Link 9-3 for more information on using the JAX-RPC programming model
with WebLogic Server.

For the WebLogic Server web services–related Ant tasks, the type attribute
determines whether your web services will use the JAX-RPC or JAX-WS web
services models. If you fail to specify the type attribute, it defaults to JAXRPC.

Understanding Style and Use
SOAP defines two styles of operation. As web service developers, we need to choose one and specify this
decision in the binding section of the WSDL or in the @SOAPBinding annotation of the JWS class. The two
styles are:

❑ rpc — Historically, this style has been associated with synchronous, request/response opera-
tions. This style implies that the SOAP body structure reflects the operation name, zero or more
arguments, and a return value.

❑ document — Historically, this style has been associated with asynchronous, one-way message
passing. This style implies that the SOAP body is made up of one or more XML documents.

This categorization is somewhat arbitrary because most modern SOAP engines support the use of
document style for both the RPC and message-passing models. WebLogic Server correctly maps web
service operations to the corresponding JWS class’s methods regardless of whether we specify the rpc or
document style. The style attribute has no real effect.

323

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 324

Chapter 9: Developing and Deploying Web Services

Unfortunately, to confuse matters further, SOAP also defines a use attribute, which we must specify on
each input, output, and fault sub-element of each operation in the WSDL binding section, or in the JWS
class’s @SOAPBinding annotation. The two uses are:

❑ encoded — The SOAP body content adheres to a set of rules for serializing a graph of typed
objects. Although the individual types are based on XML schema types, the SOAP body as a
whole does not conform to an XML schema.

❑ literal — The SOAP body content conforms to one or more XML schemas.

So as a web service developer, what style and use should we adopt when building our web services?

The two styles and two uses come together as four possible style/use combinations that could be sup-
ported by SOAP implementations. WebLogic Server and the applicable industry standards support only
a subset of these combinations, as shown in Table 9-1.

Table 9-1: Support for the SOAP Style/Use Combinations

Style/Use WebLogic Server JAX-RPC 1.1 JAX-WS 2.1 WS-Basic Profile 1.1

RPC-encoded Yes (JAX-RPC
impl. Only)

Yes Optional
(deprecated)

No

RPC-literal Yes Yes Yes Yes

document-
encoded

No Optional Optional
(deprecated)

No

document-literal Yes Yes Yes Yes

As you can see, using RPC-literal or document-literal web services maximizes interoperability with other
SOAP implementations. To maximize reuse of XML schemas, prefer document-literal over RPC-literal.

Best Practice
Use document-literal–based web services to maximize SOAP interoperability and XML
schema reuse.

To confuse matters even further, there is an unofficial fifth style/use combination called document-literal-
wrapped. In the early days of web services, Microsoft-based technologies preferred to use the document
style for remote procedure call–enabling .NET components, rather than the more popular RPC style of
the time. The problem with using bare document style SOAP requests is that the SOAP body has no top-
level element that identifies the target operation name. Even though there are other possible means for
addressing the operation (which we discuss in the next section), a wrapped convention became popular
for enabling the RPC model of programming when using document-based web services.

As we discussed previously, the wrapped style names the top-level element inside the SOAP body to
match the name of the target operation, rather than using that element as the root element of the regular
business data. The SOAP standard does not mention or define the wrapped style because it is just a

324

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 325

Chapter 9: Developing and Deploying Web Services

convention. However, the JAX-WS 2.1 specification does refer to this convention and states how such
web services should be mapped to and from Java classes.

Should you use the wrapped or bare style?

Our answer is that it depends on the web services programming paradigm you want to use. When using
a synchronous RPC model, use the document-literal-wrapped convention. The top-level wrapper allows
you to pass multiple arguments without violating the WS-I Basic Profile 1.1 rule that allows only a single
top-level element within a SOAP body. When using a message-passing model, use document-literal
(bare). With this model, you generally just want to pass a business document between systems, often
asynchronously. Most times, the web services using this model have only a single operation so there
is no need for the wrapper. If for some reason a message passing–style web service has more than one
operation, you must use the wrapped convention to conform to the WS-I Basic Profile 1.1 standard.

Best Practice
There are different recommendations concerning which style of web service to adopt
depending on whether you want to use an RPC programming model or a message
passing programming model.

❑ Use the document-literal-wrapped convention when using web services for an
RPC programming model.

❑ Use the document-literal (also known as, document-literal-bare) convention
when using web services for a message passing programming model.

❑ If a message passing-style web service has more than one operation, use the
document-literal-wrapped convention to conform to the WS-I Basic Profile 1.1
standard.

Influencing which Operation to Invoke
As we have seen in the previous section, the WS-I Basic Profile requires web services with multiple
operations to have unique top-level elements inside the SOAP body. By default, WebLogic Server looks at
the top-level element name and tries to match it to an operation name when determining which operation
to invoke. However, WebLogic Server is quite versatile; if the top-level element is not unique, WebLogic
Server looks at the next level of child elements and so on, until it finds a matching operation signature in
the WSDL.

What happens for document-literal-bare web services when more than one operation has the same shape?
At build-time, WebLogic Server’s WSDL and JWS compilers justifiably produce a warning saying that
the web service has non-unique body parts and that message dispatching may fail. For such ambigu-
ous situations there needs to be another way for us to influence the operation addressing decision that
WebLogic Server’s Web Services container makes.

HTTP-based SOAP services can include an HTTP header as a hint for the operation to invoke. SOAP
1.1 uses the SOAPAction header for this purpose, but this has changed in SOAP 1.2. Unfortunately, this
mechanism is transport-specific and can legally be ignored or overruled by the web service implemen-
tation, as it is with WebLogic Server. As a consequence, we should never rely upon the values of such
transport headers to direct the behavior of the web services container.

325

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 326

Chapter 9: Developing and Deploying Web Services

WebLogic Server supports another mechanism for a client to specify the name of the operation to
invoke. This feature relies on WebLogic Server’s support for the WS-Addressing 1.0 standard. The
WS-Addressing specification defines various elements that can be used in a SOAP body or a SOAP
header. The following example shows a SOAP request that includes WS-Addressing elements in the
SOAP header.

<Envelope>
<Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
<wsa:To>....</To>
<wsa:Action>....</Action>

</Header>
<Body>
.....

</Body>
</Envelope>

Although WS-Addressing specifies other header elements that we can include, only the Action element
is mandatory when using WS-Addressing. The To element identifies the URL of the target web service
(for example, its URL) and the Action element names the target operation. The Action element value
needs to match the soapAction attribute value specified in the web service’s WSDL, as shown in the
following WSDL snippet for our property search web service.

<definitions>
...
<operation name="GetPropertyDetailsByAddress">
<soap:operation

soapAction="http://www.wrox.com/professional-
weblogic/PropertySearchService/GetPropertyDetailsByAddress"

/>
</operation>

...
<definitions>

Even though the soapAction attribute in the WSDL looks like an endpoint URL, it is really just a unique
identifier for our GetPropertyDetailsByAddress operation. For code-first–style web services, we specify
the WSDL’s soapAction attribute value using the @Action annotation on the corresponding JWS method.
To tell WebLogic Server to actively look for and use the WS-Addressing Action, the JWS class must use
the @Addressing annotation, as shown here.

@WebService
@Addressing(enabled=true, required=true)
public class PropertySearchServiceImpl implements PropertySearchService
{

...
}

By including this annotation in our JWS class, the WSDL that WebLogic Server generates for our web
service will contain a WS-Addressing element called UsingAddressing. This element advertises that the
service supports the use of WS-Addressing, as shown in the following example.

<definitions>
...
<binding name="PropertySearchServiceImplPortBinding"

type="tns:PropertySearchService">

326

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 327

Chapter 9: Developing and Deploying Web Services

<wsaw:UsingAddressing/>
...

</binding>
...

</definitions>

We do not need to change any of our code in our web service client to include the addressing headers
in the SOAP requests. This is because WebLogic Server–based clients will detect that WS-Addressing
is required, from the WSDL, and automatically include an Action header matching the soapAction for
the operation. On the server side, WebLogic Server will now base its operation routing decision for our
web service purely on the value of the Action addressing header and will ignore any operation-specific
signature that may be present in the SOAP body.

If for some reason the WSDL for a web service does not advertise a UsingAddressing element, JAX-WS
provides a feature the client applications can use to force the client container to always send an Action
WS-Addressing header regardless of what the WSDL says. To enable this feature in our SOAP client, we
use the following code:

PropertySearchService_Service service = new PropertySearchService_Service();
WebServiceFeature[] actionAddressingRequired = {new AddressingFeature(true, true)};
PropertySearchService port =

service.getPropertySearchServiceImplPort(actionAddressingRequired);

Best Practice
To enable clients to uniquely specify which operation of a web service to invoke, choose
one of the following three options:

1. Use a document-literal-wrapped style to guarantee that each operation has a
unique SOAP body shape that WebLogic Server can match with the operation.

2. Use a document-literal-bare style if the web service has only one operation
because no routing decision is required.

3. Use a WS-Addressing Action header to identify the operation if both the client
and service provider support WS-Addressing.

Creating More Dynamic Web Services
So far in this chapter, we have concentrated on implementing web services using the SEI approach where
we generate strongly-typed data POJOs and a Java implementation class that has methods matching a
web service’s operations. This SEI-based approach is essentially an RPC programming model, which is
very popular when you want to web service–enable existing applications.

What if we need to support a more dynamic and loosely-coupled approach, such as to support a message-
passing model? Imagine you need to build a system that receives complex XML messages from other
systems where the XML schemas for the messages vary from one request to another. The message header
might even contain metadata specifying the format of the message. For such situations, the use of a fixed,
strongly-typed web service interface may be difficult or even impossible.

327

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 328

Chapter 9: Developing and Deploying Web Services

JAX-WS provides two APIs to address this need: Provider and Dispatch. In the SEI-based
approach, JAX-WS uses a high-level, object-oriented abstraction for implementing services that hides the
plumbing of converting between XML and Java. The Provider API gives the service implementation
direct access to the SOAP messages, and the Dispatch API provides the equivalent functionality for the
client.

To demonstrate the use of the Provider API, Example 4 contains a simple property change web service.
Clients send messages containing the details of the property to change. For example, we may need to
update the property’s description and features fields in the database if the property has been newly
refurbished and extended. Listing 9-4 shows the Java code for the property change web service that
implements the Provider interface.

Listing 9-4: Example 4’s PropertyChangeService.java.

@WebServiceProvider(
serviceName="PropertyChangeService",
targetNamespace="http://www.wrox.com/professional-

weblogic/PropertyChangeService",
portName="PropertyChangeServiceSOAP",
wsdlLocation="wsdls/PropertyChangeService.wsdl"

)
@ServiceMode(value=Service.Mode.MESSAGE)
public class PropertyChangeService implements Provider<SOAPMessage>
{

private final static String PREFX = "prpty";
private final static String NMSPC =

"http://www.wrox.com/professional-weblogic" +
"/PropertyChangeData";

public SOAPMessage invoke(SOAPMessage request)
{

try {
// Process request
//
Iterator<SOAPElement> children =

request.getSOAPBody().getChildElements(
new QName(NMSPC, "PropertyChangeInfo"));

SOAPElement propertyChangeInfo = children.next();
String id = getChildValue(propertyChangeInfo, "Id");
System.out.println("Changing prop ‘" + id +

"’ info with values:");
System.out.println("Description: " +

getChildValue(propertyChangeInfo, "Description"));
System.out.println(" -Features: " +

getChildValue(propertyChangeInfo, "Features"));

// Generate response
//
SOAPMessage response =

MessageFactory.newInstance().createMessage();
SOAPEnvelope envelope =

response.getSOAPPart().getEnvelope();

328

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 329

Chapter 9: Developing and Deploying Web Services

Name propChangeAckElementName =
envelope.createName(
"PropertyChangeAcknowledgement" , PREFX, NMSPC);

SOAPElement propChangeAckNameElement =
response.getSOAPBody().addBodyElement(
propChangeAckElementName);

Name ackElementName =
envelope.createName("Ack", PREFX, NMSPC);

propChangeAckNameElement.addChildElement(
ackElementName).addTextNode("SUCCESS");

Name receiptNumberElementName =
envelope.createName("ReceiptNumber", PREFX, NMSPC);

propChangeAckNameElement.addChildElement(
receiptNumberElementName).addTextNode(
System.currentTimeMillis() + "-" + id);

Name commentElementName =
envelope.createName("Comment", PREFX, NMSPC);

propChangeAckNameElement.addChildElement(
commentElementName).addTextNode("Successfully " +
"processed info change for property: " + id);

return response;
}
catch (SOAPException e) {

throw new WebServiceException("Error occurred in " +
"JAX-WS Provider", e);

}
}

private String getChildValue(SOAPElement parent,
String nodeName)

{
// Function to get the child soap element
// with matching name
//
...

}
}

In the example, the service response is just an acknowledgment XML document containing a SUCCESS
flag, a comment, and a receipt number for the consumer’s future reference. For brevity, our example
code just prints out the property’s data rather than updating the property database. We include a receipt
number in our reply because our service is intended to be used by business partners who may need
to contact us at a later date, to query a problem with the update of a property. Internally our service
implementation could generate a unique receipt number for tracking purposes and store this in an audit
table along with the date and time that the update occurred and the user id of the business partner that
performed the update.

To create this class, we just implement the Provider interface and specify the type as either
javax.xml.soap.SOAPMessage or javax.xml.transform.Source. By setting the type to SOAPMessage,
we tell WebLogic Server that we want use the loosely-typed XML DOM-based API to process the request
and construct the response. This DOM-based API uses the org.w3c.dom package plus some wrapper
and helper classes from the javax.xml.soap package, both packaged with the standard JDK. This is the
same set of APIs we use for handling SOAP messages with attachments later in this chapter.

329

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 330

Chapter 9: Developing and Deploying Web Services

Our Provider class has a single invoke() method that processes all calls to the web service, regardless
of the target operation. Unlike an SEI class, we must annotate this class with @WebServiceProvider
rather than @WebService. The other interesting annotation is @ServiceMode, which is set to MESSAGE. This
tells WebLogic Server that our invoke() method wants to receive the entire SOAP envelope. A value of
PAYLOAD says to receive only the SOAP body content.

The process for building and deploying a Provider-based web service is very similar to the WSDL-first
process detailed earlier. First, we create the XML schemas and WSDL for the web service. Next, we
implement the web service using the Provider interface. Then, we run WebLogic Server’s jwsc Ant task
to generate the web service WAR. Finally, we deploy the WAR. The only difference is that we have no
need to run the WSDL compiler because we don’t need the generated interface or data POJO classes.
In fact, we can also choose to not use jwsc to create the WAR file. When we deploy a custom-built
WAR file, WebLogic Server automatically detects the presence of a JWS class and maps it to the built-
in WebServiceServlet using a servlet mapping where the name of the JWS class is part of the service’s
URL. If we want better control of the URL, we can simply add a <servlet> definition for the Provider
JWS class and the <servlet-mapping> we require to the web.xml deployment descriptor.

On the client, we don’t need to use any WebLogic Server Ant tasks at all when we use the Dispatch API
to call our web service. The class is just a normal Java class using the generic JAX-WS API. Listing 9-5
shows the example code for our service client. Again, we just use the XML W3C DOM API to construct
requests and process responses.

Listing 9-5: Example 4’s PropertyChangeClient.java.

public class PropertyChangeClient
{

private final static String WSDL_URL_SUFFIX = "?WSDL";
private final static String WSDL_NMSP =

"http://www.wrox.com/professional-weblogic" +
"/PropertyChangeService";

private final static String WSDL_SRVC_PORT =
"PropertyChangeServiceSOAP";

private final static String WSDL_SRVC_NAME =
"PropertyChangeService";

private final static String XSD_PRFX = "prpty";
private final static String XSD_NMSP =

"http://www.wrox.com/professional-weblogic" +
"/PropertyChangeData";

public PropertyChangeClient(String endpointURL)
throws SOAPException, MalformedURLException

{
// Construct request
//
SOAPMessage request =

MessageFactory.newInstance().createMessage();
SOAPEnvelope envelope =

request.getSOAPPart().getEnvelope();
Name messageRootName =

envelope.createName("PropertyChangeInfo",
XSD_PRFX, XSD_NMSP);

330

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 331

Chapter 9: Developing and Deploying Web Services

SOAPElement topElement =
request.getSOAPBody().addBodyElement(messageRootName);

topElement.addChildElement(
envelope.createName("Id", XSD_PRFX,
XSD_NMSP)).addTextNode("1");

topElement.addChildElement(envelope.createName(
"Description", XSD_PRFX, XSD_NMSP)).
addTextNode("Recently re-furbished");

// Invoke service operation
//
QName portName = new QName(WSDL_NMSP, WSDL_SRVC_PORT);
Service service =

Service.create(new URL(endpointURL + WSDL_URL_SUFFIX),
new QName(WSDL_NMSP, WSDL_SRVC_NAME));

Dispatch<SOAPMessage> dispatcher =
service.createDispatch(portName, SOAPMessage.class,

Service.Mode.MESSAGE);
SOAPMessage response = dispatcher.invoke(request);

// Process response
//
String ack =

response.getSOAPBody().getElementsByTagNameNS(XSD_NMSP,
"Ack").item(0).getFirstChild().getNodeValue();

String receiptNum =
response.getSOAPBody().getElementsByTagNameNS(XSD_NMSP,
"ReceiptNumber").item(0).getFirstChild().
getNodeValue();

String comment =
response.getSOAPBody().getElementsByTagNameNS(XSD_NMSP,
"Comment").item(0).getFirstChild().getNodeValue();

System.out.println("Change property result: " + ack +
" (Receipt=" + receiptNum +
", Comment=" + comment + ")");

}
}

To obtain a reference to the web service proxy, the client code specifies the URL of the WSDL and the
specific service’s qualified name, as defined in the WSDL. We use the proxy to create the Dispatch
object by specifying the qualified name of the port. Additionally, we specify that we want to use the
SOAPMessage W3C DOM API and MESSAGE mode.

We only need to compile the client using the Java compiler. To run the client, just make sure that the
WebLogic Server Web Services client JAR (wseeclient.jar) is on the classpath, as discussed previously.

As you can see, this approach allows you to write web service clients and implementations that are much
more dynamic. If we use javax.xml.transform.Source instead of javax.xml.soap.SOAPMessage as
the type, we can use alternative mechanisms for processing the XML data of web service requests and
responses. Example 5 has an alternate implementation of the service that uses a different XML processing
technique, as shown in Listing 9-6.

331

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 332

Chapter 9: Developing and Deploying Web Services

Listing 9-6: Example 5’s PropertyChangeService.java.

@ServiceMode(value=Service.Mode.PAYLOAD)
public class PropertyChangeService implements Provider<Source>
{

private final static String NMSPC =
"http://www.wrox.com/professional-weblogic" +
"/PropertyChangeData";

public Source invoke(Source request)
{

try {
// Process request using a W3C DOM API
//
Transformer transformer =

TransformerFactory.newInstance().newTransformer();
DOMResult dom = new DOMResult();
transformer.transform(request, dom);
Document doc =

dom.getNode().getFirstChild().getOwnerDocument();
Element topElement = doc.getDocumentElement();
String id = getChildValue(topElement, "Id");
System.out.println("Changing property ‘" + id +

"’ with values:");
System.out.println(" -Description: " +

getChildValue(topElement, "Description"));
System.out.println(" -Features: " +

getChildValue(topElement, "Features"));

// Generate response using a text stream
//
String response =

"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" +
"<PropertyChangeAcknowledgement " +
"xmlns=\"http://www.wrox.com/professional-" +
"weblogic/PropertyChangeData\">\n" +
" <Ack>SUCCESS>\Ack>\n" +
" <ReceiptNumber>" + System.currentTimeMillis() +
"-" + id + "</ReceiptNumber>\n" +
" <Comment>Successfully processed info change " +
"for property: " + id + "</Comment>\n" +
"</PropertyChangeAcknowledgement>";

return new StreamSource(new StringReader(response));
}
catch (Exception e) {

throw new WebServiceException("Error occurred in " +
"JAX-WS Provider", e);

}
}
...

}

In this example, we chose to use a W3C DOM-based API to process the request and to construct the
response we just used a text stream. Obviously, we could retrieve the actual XML text from somewhere

332

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 333

Chapter 9: Developing and Deploying Web Services

else. We set the value of the @ServiceMode annotation to PAYLOAD; this allows us to concentrate on pro-
cessing just the business data and not worry about the SOAP-specific elements.

Using the javax.xml.transform.Source interface allows us to use any XML API we want for process-
ing SOAP requests and responses, including the following standard Java APIs, which have classes that
implement Source and Result:

❑ W3C XML DOM API

❑ SAX XML Parser API

❑ StAX XML Streaming API

❑ Raw XML text stream

❑ JAXB-generated Java types

Using these low-level XML APIs, we can then go on to use richer XML processing tools like XPath and
JDOM or even XML processing languages like XSLT and XQuery. On the client side, we are also free
to use the javax.xml.transform.Source interface with the Dispatch API, as shown in the Example 5
version of PropertyChangeClient.java in the downloadable examples.

When should you use the SEI approach and when should you use the Provider/Dispatch approach to
building web service consumers and providers? Although there are no hard and fast rules, each approach
has its advantages. These advantages tend to mirror the fact that SEI is a strongly-typed, compile-time
approach whereas Provider/Dispatch is a loosely-typed, runtime-based approach that exposes you
directly to the underlying SOAP messages. The following list provides some examples of situations that
might lead you to consider using the Provider/Dispatch approach; however, even with these scenarios,
you should carefully weigh the different design alternatives to choose the best one for your situation.

Enable a Message-Passing Model RPC-based models can lead to tight coupling between ser-
vice implementations and clients that are resistant to change. However, using loosely-typed inter-
faces that accept any and all XML messages tends to increase the complexity of the application,
which may lead to less robust implementations. Do you really need a single service implementa-
tion that accepts multiple XML message types? Are there other designs (for example, one operation
per message type) that allow you to handle multiple message types without losing the benefit
of a strongly-typed interface? Choose a design that meets your known requirements rather than
designing a solution to the general problem that you may never need to solve. Focus on defining
the appropriate WSDL interface for a service versus one that only reflects your currently planned
implementation of it.

Act as an Intermediary A web service may only be acting as a messaging intermediary, taking
some action on a small portion of the message before passing it on. Enforcing strongly-typed inter-
faces and message validation on the intermediary makes your intermediary less flexible and may
force you to change it every time the end-service changes. On the other hand, blindly passing along
invalid messages to the backend puts additional burden on your system. Choose a design that pro-
vides the right balance for your intermediaries and the services they perform.

Support Other XML Processing Tools When using an SEI-based approach, there is one and only
one way to operate on data. If your service requires access to only part of a message, having the
option to use a SAX parser or just an XPath-based Java API may significantly reduce complexity of
your XML processing code, especially for large messages. Also, if languages like XQuery or XSLT
offer you a better abstraction and a quicker development model, then these can be plugged in to
your service implementation for processing XML requests and responses.

333

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 334

Chapter 9: Developing and Deploying Web Services

Allow Performance Optimization Marshalling between XML and Java types can have a major
negative performance impact, especially for high-volume services that work with large XML
payloads. For your critical web services, you want to have the capability to use a leaner and faster
mechanism for XML processing, such as XML streaming parsers and SAX parsers where your
application encounters real bottlenecks. However, be careful to choose a design that supports
adding optimizations without adding extra complexity or requiring significant rework. Only
optimize actual bottlenecks that significantly impact your application in real-world stress testing
or production environments.

Best Practice
Choose the right application design to meet your known requirements. By default,
use the SEI approach to web services application development to simplify the
programming model and resulting application code. Using the Provider/Dispatch
approach gives you more flexibility in choosing your web services programming
model to address specific scenarios, but can lead to an overly complex design.

Using Web Service Handlers
Web services, like most types of components, tend to encapsulate and expose business functions or
capabilities. However, there are invariably other non-functional concerns that we need to apply to some
or all of our web services. These concerns are often pieces of re-usable system logic that are orthogonal
to the application logic contained within individual web services. For example, applications often require
support for auditing, reporting, custom security schemes, and alerting. Ideally, we would like to write
such system-level logic once and then apply it to multiple services, as needed.

In the Java SE world, Aspect Oriented Programming (AOP), and technologies like AspectJ and Spring
that support it, provides the mechanisms to apply such cross-cutting logic to multiple components. AOP
allows you to inject logic around existing components without requiring changes to the components. In
the Java EE world, we use an interceptor model to register code to execute around existing components.
Each of the Java EE technologies calls these pieces of code by a different name, but they all work in
a similar fashion. The servlet specification calls these pieces of code filters, the EJB specification calls
them interceptors, and the web services specifications call them handlers. Unlike servlet filters and EJB
interceptors, web service handlers also support client-side registration and use.

JAX-WS handlers allow us to apply reusable logic before and after the invocation of a web service, and
even short-circuit the actual invocation, if that is appropriate. The JAX-WS specification defines two
categories of handlers:

Logical Handler A logical handler provides access to only the message context properties and
message payload. It is protocol-agnostic and cannot affect the protocol-specific portions of the mes-
sage. Logical handlers implement the java.xml.ws.handler.LogicalHandler interface.

Protocol Handler A protocol handler provides access to the entire message, including the
protocol-specific elements of the message like the SOAP envelope, header, and body for the SOAP
protocol. Protocol handlers implement any interface that derives from javax.xml.ws.Handler
except javax.xml.ws.handler.LogicalHandler.

334

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 335

Chapter 9: Developing and Deploying Web Services

A handler is just a Java class that implements an appropriate handler interface and a small set of life
cycle methods. The web services container invokes the handleMessage() method before and after a web
service invocation. Figure 9-5 shows the relationship between handlers, the web service client, and web
service provider.

Logical
Handlers

Logical
Handlers

Web Services Client Container Web Services Container

SOAP
Handlers

SOAP
Handlers

WS
Client
Code

WS
Impl
Code

Figure 9-5: Web Services Handlers Framework.

To use handlers in our applications, we define handler chains to collect together a set of related handlers
to be run one after the other, before and after a web service invocation. We define a chain of handlers in
an XML file, which is then included in the deployable web services WAR. This approach allows each web
service implementation class to share the same handler chain XML file using a @HandlerChain annotation.

Example 6 demonstrates the use of a protocol handler to enforce a custom security mechanism for clients
who wish to access the web service. We apply this handler to the same WSDL-first property search
service that we implemented earlier in this chapter. Service clients will need to provide a secret key that
only trusted clients and we know. Our handler looks for the presence of a custom SOAP header element
called MagicKey with a secret value of 012345 and allows normal request processing to occur only if
the key is present and valid. Otherwise, the handler throws an exception to abort the handler chain and
return a fault to the client without ever invoking the actual web service. Listing 9-7 shows our protocol
handler code.

Listing 9-7: Example 6’s CheckMagicHeaderKeySOAPHandler.java.

public class CheckMagicHeaderKeySOAPHandler
implements SOAPHandler<SOAPMessageContext>

{
private final static String NMSPC =

"http://www.wrox.com/professional-weblogic/MagicKey";
private final static String MAGIC_KEY_HEADER_NAME = "MagicKey";
private final static String MAGIC_KEY_HEADER_CORRECT_VALUE =

"012345";

public boolean handleMessage(SOAPMessageContext context)
{

try {

Continued

335

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 336

Chapter 9: Developing and Deploying Web Services

Listing 9-7: Example 6’s CheckMagicHeaderKeySOAPHandler.java. (continued)

boolean isOutboundDirection =
((Boolean)context.get(
MessageContext.MESSAGE_OUTBOUND_PROPERTY)).
booleanValue();

if (!isOutboundDirection) {
NodeList headers =

context.getMessage().getSOAPHeader().
getElementsByTagNameNS(NMSPC,
MAGIC_KEY_HEADER_NAME);

String value = null;

if (headers != null && headers.getLength() > 0) {
Node node = headers.item(0);

if (node != null) {
value =

node.getFirstChild().getNodeValue();
}

}

if ((value == null) ||
(!value.equals(
MAGIC_KEY_HEADER_CORRECT_VALUE))) {
throw new ProtocolException("Mandatory SOAP " +

"header ‘" + MAGIC_KEY_HEADER_NAME +
"’ not specified with correct value");

}
}

}
catch (SOAPException e) {

throw new ProtocolException(e);
}
return true;

}

// Some other lifecycle methods including handleFault(),
// getHeaders(), and close()
//
...

}

Because logical handlers only provide access to the message payload, the handleMessage() method
always receives the message as a javax.xml.transform.Source data type. In our protocol handler
example, the handleMessage() method receives the messages as a javax.xml.ws.handler.soap.
SOAPMessageContext data type. This type provides full access to the SOAP message using a W3C
DOM-based API.

At runtime, the web services container invokes the same handleMessage() method both before invoking
the service and after the service invocation returns. On the way in, this allows a handler to inspect and
modify the SOAP request before the container invokes the web service, or even abort the invocation
altogether. On the way out, this allows a handler to inspect and modify the SOAP response returned

336

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 337

Chapter 9: Developing and Deploying Web Services

by the web service invocation before the container sends it back to the client. In our example, we use
the MessageContext object to ensure that we only run security header checking code on the inbound
request. By returning true, we tell the container to proceed with the normal invocation procedure that
executes the rest of the handler chain and the actual web service. If any of the handlers or the web service
implementation throw an exception or generate a SOAP fault, the container invokes the handleFault()
method of each previously invoked handler, giving these handlers the opportunity to perform custom
error logging or to transform the SOAP fault into a more user-friendly format.

Example 6 uses a handler-chain.xml file to define the handler chain that includes our handler, as shown
here.

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
<handler-chain>
<handler>

<handler-class>
com.bigrez.ws.service.CheckMagicHeaderKeySOAPHandler

</handler-class>
</handler>

</handler-chain>
</handler-chains>

Our JWS class refers to the handler-chain.xml file that includes our handler using the @HandlerChain
annotation shown here.

@WebService
@HandlerChain(file="handler-chain.xml")
public class PropertySearchServiceImpl implements PropertySearchService
{

...
}

The @HandlerChain annotation supports both absolute and relative paths to the handler-chain.xml file.
Relative paths are relative to the location of the JWS class, which is in the same directory in this case. We
then generate and package the web service in exactly the same way as we have done before.

Listing 9-8 shows the client-side protocol handler that injects the secret key into the SOAP request header.

Listing 9-8: Example 6’s InjectMagicHeaderKeySOAPHandler.java.

public class InjectMagicHeaderKeySOAPHandler
implements SOAPHandler<SOAPMessageContext>

{
private final static String NMSPC =

"http://www.wrox.com/professional-weblogic/MagicKey";
private final static String MAGIC_KEY_HEADER_NAME = "MagicKey";
private final static String MAGIC_KEY_HEADER_CORRECT_VALUE =

"012345";

public boolean handleMessage(SOAPMessageContext context)
{

Continued

337

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 338

Chapter 9: Developing and Deploying Web Services

Listing 9-8: Example 6’s InjectMagicHeaderKeySOAPHandler.java. (continued)

try {
boolean isOutboundDirection =

((Boolean)context.get(MessageContext.
MESSAGE_OUTBOUND_PROPERTY)).booleanValue();

if (isOutboundDirection) {
SOAPEnvelope envelope =

context.getMessage().getSOAPPart().
getEnvelope();

SOAPHeaderElement newHeader =
envelope.addHeader().addHeaderElement(
new QName(NMSPC, MAGIC_KEY_HEADER_NAME));

newHeader.setValue(MAGIC_KEY_HEADER_CORRECT_VALUE);
}

}
catch (SOAPException e) {

throw new ProtocolException(e);
}
return true;

}

// Some other lifecycle methods including handleFault(),
// getHeaders(), and close()
//
...

}

Once we compile our client-side handler class, the only thing left to do is to alter our code to use the
JAX-WS javax.xml.ws.Binding API to associate the handler with the service client, as shown here.

Binding binding = ((BindingProvider)port).getBinding();
List<Handler> handlerList = binding.getHandlerChain();
handlerList.add(new InjectMagicHeaderKeySOAPHandler());
binding.setHandlerChain(handlerList);

Our example handler is effectively implementing its own custom security mechanism to protect the web
service. Later in the chapter we discuss how to use more standards-based security mechanisms to protect
web services.

Using SOAP Attachments
SOAP attachments provide a way to attach any type of data to a SOAP message. This is particularly
useful when you need to pass a binary file, such as JPEG images or PDF document to a web service. The
SOAP Messages with Attachments specification (see http://www.w3.org/TR/SOAP-attachments) defines
how to pass attachments with SOAP messages. Attachments are not passed within the SOAP envelope,
but are passed in a separate part of the HTTP POST request or response. The HTTP Content-Type header
is set to Multipart/Related rather than just text/xml, as is the case with normal SOAP messages.
In the HTTP body, a special piece of text called a MIME boundary divider separates the actual SOAP
envelope from the contents of the attachment(s). If the attachment has a binary format, its content is base
64 encoded before being placed into the HTTP body.

338

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 339

Chapter 9: Developing and Deploying Web Services

Fortunately, JAX-WS hides and encapsulates the complex details of handling multi-part HTTP messages
and base 64 encoding. To create a web service that receives an attachment, we just need to create two pro-
tocol handlers, one to add the attachment on the client-side and another to extract it on the server-side.
Example 7 uses the same property change WSDL-first web service to receive updated data about a par-
ticular property. In this example, we enhance the web service to accept one or more attached documents
relating to the property. For example, the caller might include a JPEG picture of the refurbished hotel.

For simplicity, our handler persists the image file to disk. Obviously, more realistic examples
might use a different storage mechanism, like a database BLOB field. Listing 9-9 is an excerpt from
AttachmentPersisterSOAPHandler.java that shows the server-side protocol handler code we use.

Listing 9-9: Example 7’s AttachmentPersisterSOAPHandler.java.

private final static String FILE_LIST_KEY = "AttachedFilePathList";
...

public boolean handleMessage(SOAPMessageContext context)
{

try {
boolean isOutboundDirection =

((Boolean)context.get(MessageContext.
MESSAGE_OUTBOUND_PROPERTY)).booleanValue();

if (!isOutboundDirection) {
Iterator<AttachmentPart> attachments =

context.getMessage().getAttachments();
List<String> filePathList = new ArrayList<String>();

while (attachments.hasNext()) {
AttachmentPart attachment = attachments.next();
File tempFile =

File.createTempFile(attachment.getContentId(),
".tmp");

OutputStream out =
new BufferedOutputStream(new FileOutputStream(tempFile));

out.write(attachment.getRawContentBytes());
out.close();
System.out.println("Saved attached file to: " +

tempFile.getAbsolutePath());
filePathList.add(tempFile.getAbsolutePath());

}

context.put(FILE_LIST_KEY, filePathList);
context.setScope(FILE_LIST_KEY, Scope.APPLICATION);
context.getMessage().removeAllAttachments();

}
}
catch (Exception e) {

throw new ProtocolException(e);
}
return true;

}

339

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 340

Chapter 9: Developing and Deploying Web Services

The W3C DOM-based API includes a getAttachments() method that returns the list of files attached
to the request. For the inbound direction, we remove all the attachments from the request and
save their binary content to temporary files. The container passes the handleMessage() method a
SOAPMessageContext object that we use to store the list of file names we will look up in the actual web
service implementation. This works because we set the context scope to APPLICATION.

Listing 9-10 shows an excerpt from PropertyChangeServiceImpl.java that highlights the attachment-
handling code in our web service implementation. We access the message context property containing
the list of temporary file names and, for simplicity, just print the path and size of each file to standard
out.

Listing 9-10: Example 7’s PropertyChangeServiceImpl.java.

@Resource
private WebServiceContext context;
private final static String FILE_LIST_KEY = "AttachedFilePathList";

...
List<String> filePathList =
(List<String>)context.getMessageContext().get(FILE_LIST_KEY);

for (String path : filePathList) {
File file = new File(path);
System.out.println("Using file attachment saved at ‘" +

file.getAbsolutePath() + "’, size=" +
file.length());

}
...

The handler chain and web service implementation share the message context. We use resource injection
to get a reference to the message context by defining a member variable of type WebServiceContext and
annotating it with @Resource. This message context object also provides access to HTTP protocol-specific
request headers and the name and roles of the user who invoked the service, if any.

On the client side, we need to write a protocol handler to add the attachment to the outbound message.
Listing 9-11 is an excerpt from AddAttachmentSOAPHandler.java that shows how the handleMessage()
method uses the W3C DOM-based API to add the image’s binary content to the request as an attachment.

Listing 9-11: Example 7’s AddAttachmentSOAPHandler.java.

public boolean handleMessage(SOAPMessageContext context)
{

try {
boolean isOutboundDirection =

((Boolean)context.get(MessageContext.
MESSAGE_OUTBOUND_PROPERTY)).booleanValue();

if (isOutboundDirection) {
AttachmentPart attachment =

context.getMessage().createAttachmentPart();
File file = new File("./hotel_picture.png");

340

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 341

Chapter 9: Developing and Deploying Web Services

attachment.setRawContent(new BufferedInputStream(
new FileInputStream(file)), "image/png");

attachment.setContentId(file.getName());
context.getMessage().addAttachmentPart(attachment);
System.out.println("Handler added attached file ‘" +

file.getCanonicalPath() +
"’, size=" + file.length());

}
}
catch (Exception e) {

throw new ProtocolException(e);
}
return true;

}

The API we use to access the SOAP message’s content and its attachments was originally defined in
Sun’s SOAP with Attachments API for Java (SAAJ) specification. Today, many other parts of the JAX-WS
specification use this API and it is part of Java SE 6. As a result, it’s now pretty uncommon to refer to the
ability to access attachments using the term SAAJ.

Sometimes, as developers we may be tempted to use the SOAP Message with Attachments approach as a
workaround when really we would like the binary documents to actually be part of the SOAP body pay-
load and be defined in a WSDL or schema as part of the XML structure. However, we may resort to using
attachments to reduce the performance cost of encoding binary documents inside XML and to avoid the
performance penalty of transmitting these expanded documents. WebLogic Server’s Web Services con-
tainer provides support for another web services standard called Message Transmission Optimization
Mechanism (MTOM), which addresses these types of problems. MTOM defines a method for optimizing
the transmission of XML data of type base64Binary and hexBinary in SOAP messages. Unlike attach-
ments, the structure of the XML (also known as the XML infoset) within the SOAP messages stays the
same. MTOM just optimizes the transmission of any binary data that we have in our messages. When
MTOM is enabled, this binary data gets sent as a binary attachment saving time and space. If the trans-
port protocol is HTTP, MIME attachments are used to carry that data while at the same time allowing
both the consumer and the provider direct access to the XML data in the SOAP message without having
to be aware that any MIME artifacts have been used. For larger binary data, at runtime WebLogic uses the
XML-binary Optimized Packaging (XOP) optimization for transmitting this data. XOP is a mechanism
that relies on compression for efficient transmission.

To use MTOM in our web services, annotate any base64Binary types we have defined in our WSDL
or schema with a special attribute identifying the MIME type of the element, as shown in the following
example.

<element name="image" type="base64Binary"
xmime:expectedContentTypes="image/png"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"/>

Then annotate our web service implementation class with @javax.xml.ws.soap.MTOM to tell WebLogic
Server to use the MTOM/XOP optimization. In the service client code, we must tell the client container to
use the MTOM feature, at the point in the consumer where we get a handle on the service stub, as shown
in the following code excerpt.

import javax.xml.ws.soap.MTOMFeature;
....
PropertySearchService port =

service.getPropertySearchServiceImplPort(new MTOMFeature());

341

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 342

Chapter 9: Developing and Deploying Web Services

Implementing Stateful Web Services
It is widely acknowledged as a best practice that web services are stateless. Ideally, each new SOAP
request contains all required data, including any context information that relates to previous interactions.
This helps a distributed system to maintain a loose coupling between service providers and service
consumers. It is also easier to scale a system to support a large number of concurrent requests if the
system does not need to maintain user state between requests.

WebLogic Server provides a mechanism that allows us to maintain session state between web service
requests. For HTTP-based SOAP services, our web service implementation code runs in the context of
WebLogic Server’s Web Application container. The JAX-WS WebServiceContext object provides access
to protocol-specific objects like HttpServletRequest and HttpSession. As a result, we can access and
store state in the HttpSession in the same way a servlet does.

Listing 9-12 shows an excerpt of Example 8’s PropertySearchServiceImpl.java that uses the
HttpSession to maintain a counter that tracks how many times a specific client calls the service.

Listing 9-12: Example 8’s PropertySearchServiceImpl.java.

@Resource
private WebServiceContext context;

...

HttpServletRequest servletRequest =
(HttpServletRequest)context.getMessageContext().
get(MessageContext.SERVLET_REQUEST);

HttpSession session = servletRequest.getSession(true);
Integer count = (Integer)session.getAttribute("CalledCount");

if (count == null) {
count = 0;

}

session.setAttribute("CalledCount", ++count);
System.out.println(count);

WebLogic Server uses an HTTP cookie to track the HTTP session between each of our consumers and
our provider. By calling getSession(true), we tell the web container to create a session, if one is not
present. WebLogic Server adds a Set-Cookie HTTP header to the HTTP response whenever a request
has an associated session. This cookie contains the session ID that uniquely identifies the specific user
session, as shown here.

Set-Cookie: JSESSIONID=cCdnJKLDn0t2TLS2b1GHhcLr!90514; path=/

On the client-side, we need to tell our client that it is participating in a stateful interaction. When the
client receives the Set-Cookie header, it must attach this cookie to all subsequent requests to enable the
web service to associate it with the same HTTP session. By default, WebLogic Server Web Services clients
ignore the Set-Cookie header, which prevents stateful interaction. Using the JAX-WS API to enable
a special SESSION_MAINTAIN_PROPERTY property will force the WebLogic Server Web Services client
container to accept and pass the Cookie header to the web service. Listing 9-13 contains an excerpt from
PropertySearchClient.java that demonstrates how to set this property to support stateful interaction.

342

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 343

Chapter 9: Developing and Deploying Web Services

Listing 9-13: Example 8’s PropertySearchClient.java.

PropertySearchService_Service service =
new PropertySearchService_Service();

PropertySearchService port =
service.getPropertySearchServiceImplPort();

Map<String, Object> rc =
((BindingProvider)port).getRequestContext();

rc.put(BindingProvider.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);
PropertyInfo property = null;
property = port.getPropertyDetailsByAddress(searchAddress);
property = port.getPropertyDetailsByAddress(searchAddress);
property = port.getPropertyDetailsByAddress(searchAddress);

Once the web service client stub receives the server’s Set-Cookie header in response to the first call to
getPropertyDetailsByAddress(), the stub transparently adds the session cookie to all subsequent calls
to the same web service. We show an example of the Set-Cookie HTTP header that the client sets here.

Cookie: JSESSIONID=cCdnJKLDn0t2TLS2b1GHhcLr!90514

On the server side, the three property searches by the same client causes the HTTP session tracking code
to increment the counter three times.

Because these stateful web services use normal HTTP sessions and session tracking, any SOAP clients
that support HTTP cookies can use the stateful web service that we have hosted on WebLogic Server. If
the SOAP client container does not directly support HTTP cookies, the client may still work provided the
client has access to HTTP request and response headers. If this access is available, it should be possible
for the client application to retrieve the Set-Cookie header from each SOAP response and to then add
the Cookie header to the next SOAP request. Always get the Set-Cookie header from the last response
to use with the next request because WebLogic Server supports HTTP session replication and failover. If
failover occurs, the session ID for a particular session will change. Using the old session ID after a failover
happens will cause you to lose your state.

It is worth noting that the WS-I Basic Profile mentions that SOAP over HTTP implementations can sup-
port the use of HTTP cookies, but it is not mandated.

Implementing Asynchronous Web Services
Not all web service requirements map neatly onto the typical synchronous request and response pattern.
There are other types of usage patterns that we may require that are much more asynchronous in nature.
WebLogic Server supports several of these asynchronous patterns. See Example 9 for working samples
of these patterns.

Calling Web Services Asynchronously
Typical web service clients call a web service and block waiting for the response. Sometimes, it is use-
ful to allow the client to do other work while waiting for the response. WebLogic Server–generated
client stubs not only provide an invoke() method (for example, getPropertyDetailsById(id)) but
also provide two invokeAsync() methods (for example, getPropertyDetailsById Async(id) and
getPropertyDetailsById Async(id, handler)). The first returns an object reference that we poll to
determine when the response returns and extract it. The second uses a callback mechanism that invokes

343

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 344

Chapter 9: Developing and Deploying Web Services

our specified callback method when the SOAP response comes back. With both methods, the web service
on the server side still acts in a synchronous manner and is unaware that the client is using its operations
in an asynchronous fashion.

The stub’s invokeAsync() methods are not generated by default. To generate these, we add a binding
element to our clientgen Ant task, as shown in this example.

<clientgen
wsdl="http://localhost:7001/PropertySearchService_WSDLFirst/

PropertySearchService?wsdl"
destDir="stubcode"
packageName="com.bigrez.ws.property"
classpathref="${app.classpath}"
type="JAXWS">

<binding file="jaxws-binding.xml"/>
</clientgen>

The content of the binding XML file tells WebLogic Server’s clientgen Ant task that our service supports
the asynchronous model, as shown here.

<bindings wsdlLocation="PropertySearchService.wsdl">
<bindings node="wsdl:definitions">
<package name="com.bigrez.ws.property"/>
<enableAsyncMapping>true</enableAsyncMapping>

</bindings>
</bindings>

When using the dynamic Dispatch interface, rather than a generated stub, the two asynchronous invo-
cation methods are provided by default, named invokeAsync().

Creating One-Way Web Services
JAX-WS provides a @OneWay annotation to mark a web service method in the JWS class as being a one-
way operation. This tells the container that the client does not need to wait for a response and that if
the client expects an empty response the container can return an empty response immediately without
waiting for the web service to finish processing the request. In practice, WebLogic Server returns an
HTTP 202 Accepted status to the client as soon as the request stream has been consumed. This allows the
client to fairly quickly continue processing its other work but the caller will block until the response is
received. We can further help the client by using one of the client-side invokeAsync() methods to invoke
the one-way operations to enable the application to fully achieve one-way, asynchronous messaging.

Returning Multiple Asynchronous Responses
When a client calls a web service, the web service may not need to send a response back for some requests.
For others, it may need to send back multiple responses at different times, such as when implementing a
subscribe-notify usage pattern. To implement such a pattern, we use a one-way web service operation to
initiate the interaction. Optionally, the client code can also use one of the invokeAsync() methods to call
the web service to prevent blocking to wait on the HTTP 202 Accepted response.

If and when our web service needs to send one or more responses back to the client, it needs to know
the web service endpoint to call back to the originating client application. To determine the URL of this

344

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 345

Chapter 9: Developing and Deploying Web Services

location, the original SOAP request must supply its specific callback endpoint URL. Typically we use
WebLogic Server’s WS-Addressing support to pass this callback URL.

The best way for the client to provide its callback URL is to actually pass the callback URL as part of
the normal SOAP body payload data. To support this mechanism, WS-Addressing defines a schema
type called an Endpoint Reference (EPR) to use in WSDL and schemas for a web service. WebLogic
Server understands how to convert between this EPR XML type and a special JAX-WS data type called
W3CEndpointReference. As a result, our web service operations will receive the correct callback URL in
a special Java type parameter passed to the operations.

Listing 9-14 shows the outline of an example SEI implementation for a web service that can be invoked by
a client to register for callback events, whenever the details for a given property changes. This service uses
the EPR-typed argument as an operation parameter in addition to a normal data parameter. The service
can then use the URL it receives, for invoking the callback service. This example code is hard-coded to
just send two updates about the property with a short sleep between the two callback notifications.

Listing 9-14: Example 9’s PropertyUpdateRegister.java Notifier Service.

@WebService
public class PropertyUpdateRegister
{

public boolean registerInterest(int propId,
W3CEndpointReference callbackReference)

{
PropertyUpdateReceiver_Service service =

new PropertyUpdateReceiver_Service();
PropertyUpdateReceiver port =

service.getPort(callbackReference, PropertyUpdateReceiver.class);
port.receiveUpdate(propId, "Closed for re-furbishment");
try {

Thread.sleep(200);
}
catch (InterruptedException e) {
}
port.receiveUpdate(propId, "Now fully furninshed");
return true;

}
}

In order for this to work, the two parties (that is, the subscriber client and the notifier service) need to
agree on a common shape for the callback web service. This is the service that the subscriber will imple-
ment and the notifier will invoke each time a property’s details change. This can be achieved by agreeing
on an abstract WSDL to define the shape of the callback web service. The abstract WSDL contains a
dummy endpoint URL, because the actual URL will be provided dynamically at runtime.

In addition to hosting a callback web service, the client application also needs to construct an EPR to
represent the endpoint URL of its callback service. Listing 9-15 shows an example of how our sub-
scribing client application generates an EPR Java type from a URL and then passes this to the notifier
service.

345

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 346

Chapter 9: Developing and Deploying Web Services

Listing 9-15: Example 9’s PropertySubscribeClient.java Subcriber Client.

// Get ref to local ‘callback’ web service for receiving replies
QName callbackPortName =

new Qname("MyCallbackNmspc", "PropertyUpdateReceiverPort");
Service callbackService =

Service.create(new URL("http://localhost:7001/MyCallBackSrvc"),
new QName("MyCallbackNmspc", "MyCallBackSrvc"));

Dispatch<Source> callbackDispatcher =
callbackService.createDispatch(callbackPortName, Source.class,

Service.Mode.PAYLOAD);
W3CEndpointReference callbackEndpointRef =

callbackDispatcher.getEndpointReference(
W3CEndpointReference.class);

// Call notifier service with address of callback service
PropertyUpdateRegister_Service service =

new PropertyUpdateRegister_Service();
PropertyUpdateRegister port =

service.getPropertyUpdateRegisterPort();
port.registerInterest(1, callbackEndpointRef);

Customizing Mappings between Java and XML
JAX-WS relies on the JAXB specification to map between XML schema types and Java types. Even
though JAX-WS supplements JAXB by defining how certain WSDL-specific artifacts map to and from
Java, it still uses the JAXB data-binding rules even for these cases.

JAXB provides default XML to Java mapping rules for practically all XML schema types. For mapping
Java to XML, JAXB has default mapping rules for a large set of built-in Java types. It also supports many
custom types, especially if the custom types follow a JavaBean-style approach by supplying a no-args
constructor, property getters and setters, and strongly-typed arrays or collection classes for child objects.

In practice, it is very rare to have a problem when converting XML schemas to Java when relying on the
default mapping rules. For Java to XML, following the JavaBean-style approach will minimize possible
problems in generating the XML schemas.

Best Practice
When using a code-first approach, data POJOs should be seen as lightweight data con-
tainers that do not contain behavior or business logic. Following this advice will make
it easy to adopt a JavaBeans-style implementation approach to help avoid potential
Java-to-XML mapping issues.

If we do have problems or want to override the mapping behavior, we can use JAXB customization
declarations in one of the following two ways:

Customizing Java-to-XML Mappings Define JAXB annotations like @XmlElement and @XmlType
in the data POJOs and the service implementation class to influence the names and other aspects of
the XML elements and complex types in the generated XML schemas and WSDL.

346

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 347

Chapter 9: Developing and Deploying Web Services

Customizing XML-to-Java Mappings Embed JAXB binding declarations directly inside the WSDL
and schema files. The WSDL declarations control features such as the wrapper style and the gener-
ated method parameter names for operations. The XML schema declarations control the generated
structure and content of the JAXB generated classes for the data POJOs. Alternatively, an external
JAXB binding declarations file can specify these features and then be associated with the generated
web service by adding a <binding> child element to WebLogic Server’s wsdlc and clientgen Ant
tasks.

We show how we can use the JAXB @XmlElement annotation to customize the name of the description
XML element, which will be generated for the PropertyInfo data POJO. The resulting XML element in
SOAP responses will now be named FullDescription instead of description.

@XmlAccessorType(XmlAccessType.FIELD)
public class PropertyInfo
{

private int id;
@XmlElement(name = "FullDescription")
private String description;
private String features;

...
// All the other property members variables
// plus all the property getters and setters
...

}

We also needed to add the annotation @XmlAccessorType for this class to ensure that every non-static,
non-transient field in the Java class is automatically bound to XML by the JAXB compiler. When no JAXB
annotations are defined in the class, this is the default behavior.

The following XML fragment shows how we can add a declaration to the PostalCode element of the XML
schema for the web service to change what is generated in the PropertyInfo data POJO class. Here we
add a JAXB property annotation to instruct the JAXB compiler to generate a data POJO with a property
called zipCode instead of postalCode plus the associated getZipCode() and setZipCode() accessor
methods.

<element name="PostalCode" type="tns:PostalCode">
<annotation>
<appinfo>

<jaxb:property name="ZipCode"/>
</appinfo>

</annotation>
</element>

JAXB also provides additional control for marshalling and un-marshalling of awkward Java classes
or XML fragments. We create JAXB adapter classes to dictate exactly how to convert a specific section of
XML content to a Java class and vice versa. This is useful if, for example, we have a Java class with-
out a no-args constructor and we cannot change the source code. Our adapter class must implement
javax.xml.bind.annotation.adapters.XmlAdapter and provide a method called marshal() to convert
a Java type into an XML representation and a method called unmarshal() to convert from XML back to
Java.

347

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 348

Chapter 9: Developing and Deploying Web Services

Using Web Services Security
WebLogic Server provides a wealth of security-related features and capabilities to help secure web
services and their clients. These features include various authentication mechanisms, declarative and
programmatic access control, message confidentiality, message integrity, auditing, and identity propa-
gation. WebLogic Server’s Web Services container integrates directly with WebLogic Server’s Security
Service. This means that web services leverage the WebLogic Server domain’s security providers. We
discuss WebLogic Server’s Security Service in detail in Chapter 11.

The two primary mechanisms to secure web services are:

Transport-Level Security Transport-level security refers to securing the connection between
a client and a web service, which relies heavily on the underlying transport protocol’s stan-
dard security mechanisms. For example, SOAP can use HTTPS instead of HTTP to secure the
underlying network connection with SSL. SSL provides both confidentiality and integrity.
HTTP and HTTPS provide support for HTTP basic authentication that gives you simple
username/password-based authentication. By configuring two-way SSL, WebLogic Server also
supports client certificate-based authentication.

Message-Level Security Message-level security refers to securing some or all of the message con-
tent, which relies on the WS-Security specification. WS-Security provides support for encrypting
and/or signing part or all of a message. It also provides authentication using token-based cre-
dentials. In addition to WS-Security, WebLogic Server also supports the WS-SecureConversation
standard to enable a secure session to be established between two trusted parties to facilitate the
exchange of multiple messages in a stateful and secure manner.

The main benefit of transport-level security is that it relies on very mature and widely adopted standards
and protocols that virtually every web services container supports. Message-level security standards are
maturing but not yet as widely and uniformly adopted by web service technologies; this often leads to
interoperability problems.

Message-level security provides many more mix-and-match security options than transport-level security
and enables encrypting and signing only parts of a message. This is advantageous in more complex web
service environments where there may be one or more web service intermediaries, like an Enterprise
Service Bus (ESB), between web service clients and providers. For example, a client might encrypt and
sign sensitive personal information within the message using the service provider’s public key. Because
decrypting the information requires the provider’s private key, the client knows that its sensitive data is
safe regardless of what intermediaries exist or what they do with the message. Whether or not a client is
encrypting part of a message, a client might want to ensure some part of the SOAP message body is not
modified along the way to the web service provider. WS-Security provides the client with a means to sign
a portion of the message, leaving other parts unsigned so that intermediaries are free to modify them.

When using a transport-level security mechanism like SSL, intermediaries typically must terminate the
SSL connection, which forces the decryption of the data at it enters the intermediary. Even if the interme-
diary forwards the message over SSL to the provider, neither the client sending the message nor the web
service provider receiving it knows what happened to the data along the way. An intermediary might
modify the data or log the message, potentially exposing credit card numbers or other personal informa-
tion. As you can see, transport-level security is not sufficient for ensuring end-to-end data security when
there are intermediaries in the path of the web service flow.

348

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 349

Chapter 9: Developing and Deploying Web Services

Finally, message-level security provides potential performance benefits as well. By only encrypting the
sensitive information but not the entire SOAP envelope, an intermediary can pass messages through
without decrypting and re-encrypting the message. Intermediaries are free to use and modify parts of
the message to perform their task, such as routing a message to different providers based on location
data in the message or adding a security token in a SOAP header.

WebLogic Server supports combining transport- and message-level security to protect a web service. For
example, we may want to use one-way SSL to provide confidentiality and integrity but use a WS-Security
password digest authentication token to authenticate.

Defining Security Policies
With the introduction of the WS-Security standards for implementing message-level security, there
needs to be a way for us to define what type of security policies we want to apply to our web ser-
vices. As a result, two related standards were introduced at the same time as WS-Security to enable
us to define our WS-Security-related policy rules in an XML format. These standards are WS-Policy and
WS-SecurityPolicy.

WS-Policy enables web services to express their constraints and requirements in XML that conforms
to the WS-Policy schema. WS-SecurityPolicy is an extension of WS-Policy that defines a set of security
policy assertions for describing web service messages security. WebLogic Server takes WS-Policy and
WS-SecurityPolicy a step further by not just using it to define message-level security policies, but also to
define the security policies when using transport-level security.

To define how we want to secure our web service’s operations, we include WS-Policy declarations either
within our WSDL or in a separate XML file, which is referenced by our WSDL. These WSDL WS-Policy
declarations are used in two ways. First, it tells WebLogic Server’s Security Service how to enforce pro-
tection of our web service. Second, it tells potential clients exactly how they should invoke our web
service with the relevant security elements. Using WS-Policy in our WSDL gives us a declarative security
enforcement mechanism rather than a programmatic one. Even with a code-first approach, little extra
coding is required. All we need to do is add a security policy annotation to our JWS class’s public meth-
ods to define how WebLogic Server should secure these operations. An example of this policy annotation
is shown here.

@Policy(uri="../policies/MyPolicy.xml")

The @Policy annotation’s uri attribute specifies the path of the WS-SecurityPolicy file. As with other
annotations that reference files, the path is relative to the location of the JWS class. WebLogic Server’s
Web Services container will automatically include the policy in the generated WSDL.

The WS-Policy specification is extremely flexible; but it is also verbose and therefore hard to get right.
Fortunately, there is a common set of use cases for web services security and as a result WebLogic
Server provides a large set of predefined, prepackaged policy files. These prepackaged policy files reflect
many of the common use cases and therefore, their interoperability with other web service vendors has
been tested. For the full list of predefined policy files, see Link 9-4. To reference one of these WebLogic
Server–provided policy files, we prefix the @Policy annotation’s uri attribute value with policy:, as
shown here.

@Policy(uri="policy:Wssp1.2-Wss1.1-X509-EncryptRequest-SignResponse.xml")

349

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 350

Chapter 9: Developing and Deploying Web Services

Best Practice
Whenever possible, use the WebLogic Server prepackaged policy files. You can avoid
errors and take advantage of WebLogic Server optimizations by using these predefined
policies. In addition, these prepackaged policy files tend to reflect common use cases
that have been tested with other web service vendors for interoperability.

WebLogic Server also allows us to associate one or more security policy files with a web service after
it is deployed. Using the WebLogic Console, navigate to the web service deployment’s WS-Policy
Configuration tab to associate a WS-Policy file with the web service. Note that this only works for
web services that do not already have compile-time WS-Policy file associations.

Transport-level Security
To authenticate a client using HTTP basic authentication, we must base 64 encode the username and
password before transmission. The following example SOAP request HTTP header shows an encoded
username and password in a header called Authorization.

POST /PropertySearchService/PropertySearchService HTTP/1.1
Authorization: Basic d2VibG9naWM6d2VibG9naWM=
SOAPAction:"http://www.wrox.com/professional-weblogic/PropertySearchService
/GetByAddress"
Content-Type: text/xml;charset="utf-8"
Host: 127.0.0.1:7001
Content-Length: 464

Example 10 demonstrates how to provide a username and password to a web service client, an excerpt
of which is shown here.

PropertySearchService_Service service = new PropertySearchService_Service();
PropertySearchService port = service.getPropertySearchServiceImplPort();
Map<String, Object> rc = ((BindingProvider)port).getRequestContext();
rc.put(BindingProvider.USERNAME_PROPERTY, "weblogic");
rc.put(BindingProvider.PASSWORD_PROPERTY, "weblogic1");
PropertyInfo property = port.getPropertyDetailsByAddress(searchAddress);

The JAX-WS BindingProvider class contains username and password properties that we set to specify
the user’s credentials. The underlying web service stub takes care of base 64 encoding these credentials
and including them in the HTTP headers of the SOAP request.

On the server-side, we just need to add an access control rule to the web service that limits access to a
particular set of users or roles. We don’t need to make any server-side code changes.

We can use SSL (SOAP/HTTPS) to provide a secure transport for web services. For one-way SSL, we
need to make the following changes to our HTTP basic authentication example:

1. Configure the WebLogic Server domain to support SSL, listening on an appropriate port (for
example, 7002).

350

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 351

Chapter 9: Developing and Deploying Web Services

2. Add a @weblogic.jws.Policy annotation to the service implementation class to specify that
both one-way SSL and HTTP basic authentication are required. When deployed, WebLogic
Server checks that there is an available HTTPS channel. Whenever WebLogic Server receives
a request for the WSDL, it will set the protocol, address, and port of the WSDL’s endpoint
URL to https and the listen address and port of the HTTPS channel. The additional policy
file annotation that we need to add to the service implementation class is shown here.

@Policy(uri="policy:Wssp1.2-2007-Https-BasicAuth.xml")
public class PropertySearchService
{

...
}

3. When running the Java web service client application, include a system property in the
JVM start-up command line to specify the path of a trust keystore. This trust keystore must
include a Certificate Authority certificate, which must match the signer of the certificate that
the server will present. An example of the JVM system properties to reference WebLogic
Server’s Demo Trust store is shown here.

-Djavax.net.ssl.trustStore=/oracle/middleware/wlserver_10.3/server/lib/DemoTrust.jks
-Djavax.net.ssl.trustStorePassword=DemoTrustKeyStorePassPhrase

Chapter 11 describes in greater detail the primary tasks involved in configuring WebLogic Server SSL
with the appropriate private keys and X.509 certificates on both the server and the client.

WebLogic Server also provides a pre-built policy file to enforce the use of two-way SSL using a client
presented certificate for authentication, rather than using HTTP basic authentication. To enable this, we
need to make the following changes to our previous example:

1. Further configure the WebLogic Server domain’s SSL settings. Set the Two Way Client Cert
Behavior field to the value Client Certs Requested And Enforced.

2. For the domain’s security realm, configure the DefaultIdentityAsserter provider to sup-
port certificate-based identity assertion, by adding X.509 as an active type and setting the
Default User Name Mapper Attribute Type field to the value CN. We will use the CN part of
a certificate to match to a WebLogic Server username.

3. Change the @weblogic.jws.Policy specified in our JWS class to use a different predefined
policy file:

@Policy(uri="policy:Wssp1.2-2007-Https-ClientCertReq.xml")

4. In the web.xml deployment descriptor for the web service, set the value of the
<auth-method> to CLIENT-CERT to tell the web container to use certificate-based
authentication.

5. Create the service client’s identity keystore containing its private key and X.509 certificate.
Make sure that the CN for the certificate includes the WebLogic Server username. Chapter 11
describes this process in detail. For this example, we use WebLogic Server’s CertGen and
ImportPrivateKey utilities; this means that the client’s X.509 certificate will be signed by
WebLogic Server’s Demo Certificate Authority.

351

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 352

Chapter 9: Developing and Deploying Web Services

6. Add the client certificate’s CA certificate to the server’s trust store, if needed. Because we use
the demo CA and the demo trust keystore on the server, we can skip this step.

7. When running the service client Java application, include the following system properties in
the JVM start-up command line to specify the path of the demo trust keystore, the password
for the demo trust store, the path for our new identity keystore, and the password for the
identity keystore, as shown here.

-Djavax.net.ssl.trustStore=/oracle/middleware/wlserver_10.3/server/lib/DemoTrust.jks
-Djavax.net.ssl.trustStorePassword=DemoTrustKeyStorePassPhrase
-Djavax.net.ssl.keyStore=/home/myuser/ClientIdentity.jks
-Djavax.net.ssl.keyStorePassword=mypassword

The Java SE SSL package used for client-side SSL support does not provide Java system properties to
specify the client identity store’s private key passphrase or key pair alias that the client should use as its
identity. This lack of Java system properties effectively requires that the passphrase for private key be
the same as the password for the keystore that contains the key for Java SE-based 2-way SSL web service
clients. It also means that the client keystore can include only one private key and X.509 certificate pair to
enable the Java runtime to locate the required key pair.

Message-level Security
WS-Security covers three main security capabilities, which we can use in isolation or in combination:

1. Authentication

2. Confidentiality

3. Integrity

WebLogic Server Web Services container supports three different authentication token types: Username,
X.509, and SAML. The username token can be in one of two formats. The first format places both the
username and password in clear text in the SOAP header. The second replaces the clear text password
with a password digest, which is a cryptographic hash generated by combining the password, a nonce (a
randomly generated number used once), and a timestamp. On receiving a password digest, WebLogic
Server determines whether the password digest is correct for the given nonce and timestamp. WebLogic
Server also remembers the nonces that it receives to prevent a password digest from being used more
than once. This helps to prevent replay attacks.

We will now look at a simple example that uses WS-Security to authenticate with a username and pass-
word. Example 11 uses our code-first property search web service and adds username token-based
WS-Security authentication. This example is similar to the HTTP basic authentication example from
Example 10, except in this case we pass the credentials in the SOAP header instead of the HTTP header.
Doing this removes the dependencies on the HTTP protocol thus enabling its use with other SOAP trans-
port protocols. The following example SOAP request shows how the client request passes the Username
and Password elements in the SOAP header.

<Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">i
<Header>
<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-wssecurity-secext-1.0.xsd">

352

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 353

Chapter 9: Developing and Deploying Web Services

<wsse:UsernameToken>
<wsse:Username>weblogic</wsse:Username>
<wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-

wss-username-token-profile-1.0#PasswordText">weblogic1</wsse:Password>
</wsse:UsernameToken>

</wsse:Security>
...

</Header>
<Body>
...

</Body>
</Envelope>

In our JWS class that implements the web service we just add a reference to our WS-Security policy file
using the @Policy annotation, as shown here.

@WebMethod
@Policy(uri="UsernameTokenPolicy.xml", direction=Policy.Direction.inbound)
public PropertyInfo getPropertyDetailsByAddress(PropertySearchAddress searchAddress)
{

...
}

The annotation also defines the direction to which we want to apply the policy file, in this case for SOAP
requests only. WebLogic Server does not provide a predefined policy file that uses a username token.
This is because it can introduce a security risk as the password is transmitted in clear-text and is not
supported by some other common web services technologies like .NET. Nevertheless, it is a requirement
that is sometimes needed and serves as a good example to show how we can create our own custom
policy file, as shown in Listing 9-16.

Listing 9-16: Example 11’s Custom Username Token WS-Policy file.

<wsp:Policy xmlns:wsp="http://www.w3.org/ns/ws-policy"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702">
<sp:SupportingTokens>
<wsp:Policy>

<sp:UsernameToken
sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702/IncludeToken/AlwaysToRecipient"/>
</wsp:Policy>

</sp:SupportingTokens>
</wsp:Policy>

Now, we use the jwsc Ant task to generate the deployable web service WAR. When we access the WSDL
for the deployed web service, we see that the generated WSDL contains the policy-related XML elements
inline. Our WSDL also contains the policy statement <wsp:UsingPolicy Required="true"/> to indicate
to potential service clients that the use of the WS-Security policy is mandatory.

On the client-side, we need to add code to specify the WS-Security-related username and password,
as shown here. Note that we have to use the WebLogic Server–specific weblogic.xml.crypto.wss.

353

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 354

Chapter 9: Developing and Deploying Web Services

provider.CredentialProvider and weblogic.wsee.security.unt.ClientUNTCredentialProvider
classes because JAX-WS does not provide a standard way to set these credentials.

import weblogic.wsse.security.unt.ClientUNTCredentialProvider;
import weblogic.xml.crypto.wss.provider.CredentialProvider;
...
PropertySearchService port = service.getPropertySearchServicePort();
List<CredentialProvider> credProviders = new ArrayList<CredentialProvider>();
CredentialProvider cp =

new ClientUNTCredentialProvider("weblogic".getBytes(),
"weblogic".getBytes());

credProviders.add(cp);
Map<String, Object> rc = ((BindingProvider)port).getRequestContext();
rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);
PropertyInfo property = port.getPropertyDetailsByAddress(searchAddress);

Next, let’s look at a more secure WS-Security example that uses a predefined WebLogic Server security
policy to enforce that the SOAP body of our request and response is signed and encrypted and define
that the service consumer and provider should provide certificates to each other, for authentication.
Example 12 uses the same code-first property search web service. In this example we declare a @Policy
annotation on the web service as a whole, as shown here. We reference the WebLogic Server–provided
Wssp1.2-2007-Wss1.1-X509-Basic256.xml policy file that requires mutual authentication between the
service consumer and provider using X.509 certificates.

@WebService
@Policy(uri="policy:Wssp1.2-2007-Wss1.1-X509-Basic256.xml")
public class PropertySearchService
{

@WebMethod
@Policies({

@Policy(uri="policy:Wssp1.2-2007-SignBody.xml",
direction=Policy.Direction.both),

@Policy(uri="policy:Wssp1.2-2007-EncryptBody.xml",
direction=Policy.Direction.both)

})
public PropertyInfo getPropertyByAddress(PropertySearchAddress searchAddress)

throws PropertyInfoFaultException
{

...
}

}

WebLogic Server also provides some pre-built protection assertion policies that identify which
part of a message’s content to protect. These policies only work in conjunction with an X.509 token
policy. We use two @Policy annotations for each operation: Wssp1.2-2007-SignBody.xml and
Wssp1.2-2007-EncryptBody.xml. These policies indicate that we want to encrypt and sign the whole
SOAP body for both the request and response.

Before we can deploy this web service and create the client, we must do the following things:

1. Configure the WebLogic Server domain to support SSL, listening on an appropriate port (for
example, 7002).

354

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 355

Chapter 9: Developing and Deploying Web Services

2. Configure the security realm’s DefaultIdentityAsserter provider to support certificate-
based identity assertion by adding X.509 as an active type and setting the Default User Name
Mapper Attribute Type field to the value CN. We will use the CN part of a certificate to match
to a WebLogic Server username.

3. Create two identity keystores containing the private key and X.509 certificate, one for the
server and one for the client.

4. Create or locate two trust keystores, one for the server and one for the client, containing the
other’s CA certificate. For our example, we will use the demo trust keystore.

Because Chapter 11 covers obtaining, installing, and using X.509 certificates with WebLogic Server and
Java clients, we will not discuss the details here. Please refer to the README.txt file with Example 12
for details about the steps you need to perform to generate and configure the public and private keys,
associated X.509 certificates, and keystores for this example. To simplify the setup, the common name
(cn) for the X.509 certificate we will use is set to weblogic so that the X.509 identity asserter can map
the certificate to the WebLogic Server user named weblogic that already exists in the WebLogic Server
domain’s embedded LDAP directory.

On the client-side, for our standalone Java application, we must add additional Java code, using
WebLogic Server–specific APIs, to declare what keys and certificates to use when invoking the secured
web service, as shown in Listing 9-17.

Listing 9-17: Example 12’s Web Service Client Certificate Handling Code.

private final static String KEYSTORE_TYPE = "JKS";
private final static String CLIENT_KEYSTORE_PATH =

"./ClientIdentity.jks";
private final static String CLIENT_KEYSTORE_PASSWD =

"ClientStorePass";
private final static String CLIENT_KEY_ALIAS = "clientcert";
private final static String CLIENT_KEY_PASSWD = "ClientKeyPass";
private final static String SERVERCERT_KEY_ALIAS = "servercert";
private final static String TRUST_KEYSTORE_PATH =

"/opt/middleware/wlserver_10.3/server/lib/DemoTrust.jks";
private final static String TRUST_KEYSTORE_PASSWD =

"DemoTrustKeyStorePassPhrase";
private final static String RSA_AUTH_TYPE = "RSA";

...

// Get web service stub handle
//
PropertySearchService_Service service =

new PropertySearchService_Service();
PropertySearchService port =

service.getPropertySearchServicePort();
Map<String, Object> rc =

((BindingProvider)port).getRequestContext();

// Load the server certificate from local keystore
//

Continued

355

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 356

Chapter 9: Developing and Deploying Web Services

Listing 9-17: Example 12’s Web Service Client Certificate Handling Code. (continued)

KeyStore keyStore = KeyStore.getInstance(KEYSTORE_TYPE);
keyStore.load(new FileInputStream(new File(CLIENT_KEYSTORE_PATH)),

CLIENT_KEYSTORE_PASSWD.toCharArray());
X509Certificate serverCert = (X509Certificate)

keyStore.getCertificate(SERVERCERT_KEY_ALIAS);
serverCert.checkValidity();

// Set-up credential provider using client key and server cert
//
List<CredentialProvider> credProviders =

new ArrayList<CredentialProvider>();
CredentialProvider bstCP = new ClientBSTCredentialProvider(

CLIENT_KEYSTORE_PATH, CLIENT_KEYSTORE_PASSWD, CLIENT_KEY_ALIAS,
CLIENT_KEY_PASSWD, KEYSTORE_TYPE, serverCert);

credProviders.add(bstCP);
rc.put(WSSecurityContext.CREDENTIAL_PROVIDER_LIST, credProviders);

// Create Trust Manager to check certs against Trust Keystore
//
KeyStore trustStore = KeyStore.getInstance(KEYSTORE_TYPE);
trustStore.load(new FileInputStream(new File(

TRUST_KEYSTORE_PATH)), TRUST_KEYSTORE_PASSWD.toCharArray());
TrustManagerFactory tmf = TrustManagerFactory.getInstance(

TrustManagerFactory.getDefaultAlgorithm());
tmf.init(trustStore);
final X509TrustManager tm =

(X509TrustManager)tmf.getTrustManagers()[0];
rc.put(WSSecurityContext.TRUST_MANAGER, new TrustManager() {

public boolean certificateCallback(X509Certificate[] chain,
int validateErr)

{
try {

tm.checkServerTrusted(chain, RSA_AUTH_TYPE);
}
catch (CertificateException e) {

return false;
}
return true;

}
});

// Invoke web service
//
PropertyInfo property =

port.getPropertyDetailsByAddress(searchAddress);

...

Our code loads and validates the server certificate from the local client keystore, which it uses to
encrypt the SOAP request’s body and validate the server’s signed response. We use WebLogic Server’s
CredentialProvider class to create our Binary Security Token (BST) provider based on the client’s

356

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 357

Chapter 9: Developing and Deploying Web Services

private key and certificate from the client’s keystore (ClientIdentity.jks). The provider uses the
client’s private key to sign the request and decrypt the response. The client’s certificate will also
automatically be transmitted in the SOAP request header so that the server can decide if it trusts the
client, use it to verify the request’s signature, and encrypt the response. Table 9-2 shows which keys are
used by the client and server for each action.

Table 9-2: Message Encryption and Signing Public/Private Key Usage

Action Key Used by Client Key Used by Server

Client sends encrypted
message to the server

Server’s public key used to
encrypt

Server’s private key used to
decrypt

Client signs message to send
to the server

Client’s private key used to sign Client’s public key used to verify
signature

Server returns encrypted
response to the client

Client’s private key used to
decrypt

Client’s public key used to
encrypt

Server signs response
message to return to the client

Server’s public key used to
verify signature

Server’s private key used to sign

We create a TrustManager class to provide a callback method that allows us to check the client and
server certificates that we receive, using our client’s demo trust keystore, to assert that we trust the X.509
certificates.

If we run our web service consumer inside of WebLogic Server, instead of using WebLogic Server’s client
container, we do not need to add any of the security-related code in Listing 9-17. Instead, we simply
configure a WebLogic Server PKI Credential Mapper to perform these actions for us. WebLogic Server
Credential Mappers are covered in detail in Chapter 11. By configuring the PKI Credential Mapper, when
the web service consumer attempts to call the remote web service, WebLogic Server’s Web Services con-
tainer transparently asks the WebLogic Server Security Service for the relevant private key and certificate
associated with the endpoint of the web service being invoked. If they exist, the web services container
automatically uses these credentials to fulfill the required security policy.

To enable credential mapping for the web service consumer running in WebLogic, we must do the fol-
lowing things:

1. Import the service provider’s certificate into the consumer’s keystore using the Java keytool
utility.

2. Create a new PKICredentialMapper and configure the provider settings to reference the con-
sumer’s keystore.

3. Add a new PKI Security Credential Mapping referencing the consumer’s private key in the
keystore.

4. Add a new PKI Security Credential Mapping referencing the service provider’s certificate
that we just imported into the keystore.

Figure 9-6 shows the WebLogic Console being used to define the PKI credential mappings for our client
key pair and server certificate.

357

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 358

Chapter 9: Developing and Deploying Web Services

Figure 9-6: PKI Credential Mappings Configuration.

As you can see, you get a lot of benefit from running your web service consumer application inside
WebLogic Server. WebLogic Server’s Security Service does a lot of the security-related heavy-lifting for
you and helps you avoid polluting your code with what really should be configuration settings.

Web Service Security Configuration
As we have seen, we can implement many common web service security use cases using WebLogic
Server’s default security configuration, private key, and certificate. This is because WebLogic Server has
sensible defaults. However, certain security-related use cases require additional information to allow
WebLogic Server to determine exactly how it should fulfill the web services’ security policies. Some
examples of these use cases that require additional information are:

❑ Using a password digest in SOAP messages

❑ Specifying a different key pair used to sign SOAP messages

❑ Specify a different key pair used to encrypt SOAP messages

We specify these optional web service–related security settings at the domain-level by creating a new
Web Service Security Configuration. We can create a Web Service Security Configurations using
the WebLogic Console, WLST, or JMX. Once we create this new configuration, we associate it with

358

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 359

Chapter 9: Developing and Deploying Web Services

our web services using the @weblogic.jws.security.WssConfiguration annotation in our service
provider implementation class. Alternatively, if we want the server to use a custom configuration as
its default for all deployed web services, we simply create a security configuration with the name
default_wss.

For our encrypted, signed, and mutual-certificate authenticated web service from Example 12, what if
we needed to use a different server private key and certificate rather than using the server’s default
identity private key and certificate? To achieve this, we would create a new Web Services Security
Configuration and apply it to our web service, or set it as the default for all web services. Rather than
manually configuring this using the WebLogic Console, we can use a WLST script that ships as part of
the standard set of WebLogic Server example projects. The WebLogic Server installation provides an
online WLST script called configWss.py that performs the following actions:

❑ Creates the Web Services Security Configuration object called default_wss, if not already
present

❑ Creates a new x.509 credential provider in default_wss

❑ In the new x.509 credential provider, defines a custom keystore for XML encryption and for XML
digital signatures (in this case, both will use the ServerIdentity.jks file that we created)

We can run this WLST script with the following command-line arguments:

% java weblogic.WLST
$WL_HOME/samples/server/examples/src/examples/webservices/wss1.1/co
nfigWss.py weblogic weblogic1 localhost 7001
$DOMAIN_HOME/ServerIdentity.jks ServerStorePass servercert
ServerKeyPass

After restarting the server to allow the changes to take effect, the next time we run our protected web
service it will use the key and certificate from the web service–specific custom identity keystore rather
than the one associated with the server’s SSL configuration.

Adding Web Services to bigrez.com
We finish this chapter by creating a new example BigRez property search web service that integrates
with the bigrez.com application by using the PropertyServices EJB from Chapter 6. We package the web
service in its own web service WAR file and bundle it into the existing BigRez EAR. We use a WSDL-first
approach to build the BigRez property search service. The WSDL and XML schema are almost identical
to the ones that we have used throughout this chapter with only two minor differences. First, the unique
property ID is a string in bigrez.com, rather than an integer. Second, the operation to find a property by
address returns a list of matched properties rather than just one property.

The process we use for generating the Java SEI interface and the data POJOs is exactly the same as the
WSDL-first approach described throughout this chapter. The main difference this time is in the actual
code we use to implement the web service. We use the PropertyServices stateless session bean, which
contains the core business logic. This EJB uses JPA to query the database to find the matching properties.
We also use an @EJB annotation in our JWS class to have WebLogic Server automatically inject an instance
of this EJB for us. Listing 9-18 shows our new JWS class.

359

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 360

Chapter 9: Developing and Deploying Web Services

Listing 9-18: bigrez.com PropertySearchServiceImpl.java.

@WebService(
serviceName="PropertySearchService",
targetNamespace="http://www.wrox.com/professional-weblogic/

PropertySearchService",
endpointInterface="com.bigrez.ws.property.PropertySearch

Service"
)
public class PropertySearchServiceImpl

implements PropertySearchService
{

@EJB
private PropertyServices propertyServices;

public PropertiesInfo
getPropertyDetailsByInfo(PropertySearch Info searchInfo)

{
PropertiesInfo propertiesInfo = new PropertiesInfo();
List<PropertyInfo> propertyInfoList =

propertiesInfo.getPropertyInfo();

for (Property property :
propertyServices.findByCityAndState(
searchInfo.getCity(), searchInfo.getState())) {

propertyInfoList.add(
convertPropertyToPropertyInfo(property));

}
return propertiesInfo;

}

public PropertiesInfo
getPropertyDetailsById(PropertySearchId searchId)

{
PropertiesInfo propertiesInfo = new PropertiesInfo();
List<PropertyInfo> propertyInfoList =

propertiesInfo.getPropertyInfo();

try {
Property property =

propertyServices.findPropertyByExternalIdentity(
searchId.getId());

propertyInfoList.add(
convertPropertyToPropertyInfo(property));

}
catch (Exception e) {

/* OK - no property to add */
}
return propertiesInfo;

}

private static PropertyInfo
convertPropertyToPropertyInfo(Property property)

360

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 361

Chapter 9: Developing and Deploying Web Services

{
PropertyInfo propertyInfo = new PropertyInfo();
propertyInfo.setId(property.getExternalIdentity());
propertyInfo.setDescription(property.getDescription());
propertyInfo.setFeatures(property.getFeatures());
propertyInfo.setAddress1(

property.getAddress().getAddress1());
propertyInfo.setAddress2(

property.getAddress().getAddress2());
propertyInfo.setCity(property.getAddress().getCity());
propertyInfo.setState(

property.getAddress().getStateCode());
propertyInfo.setPostalCode(

property.getAddress().getPostalCode());
propertyInfo.setPhone(property.getPhone());
return propertyInfo;

}
}

As you can see, we intentionally make the web service a very thin façade to promote the reuse of the
existing business logic components that we have in our application. The main work we do directly in
the web service code is copying data from the EJB’s JPA entity objects into our web service–generated
data POJOs. You might wonder why we chose to do this. After all, the JPA entities are just POJOs so why
not combine the two data models into a single set of objects? The answer is that we do this to reduce
coupling between our JPA objects that represent our relational model and our web service’s data objects
that we expose to other applications. Using the JPA entities in the web service interface would make
it more difficult to change the web service interface or the relational model because a change to either
would likely affect the other.

Best Practice
When combining a web service with other components that have their own model for
representing structured data in Java, be wary of using the same data model to define the
web service’s external interface. Exposing your internal data model via a web service
interface will make your application resistant to change. The web service’s interface
would be far too tightly coupled to the internal data model and vice versa. Whenever
the internal model changes, the impact on the rest of your code would be much greater
than it otherwise should be.

By the same token, we could add the @WebService and other JAX-WS annotations directly to the EJB
to create the web service directly. Again, doing this will increase the coupling between your business
logic components and your web service interface. We recommend making your web services delegate all
business logic to the other components in the application.

Chapter Review
We have covered a lot of ground in this chapter. We started by looking at how WebLogic Server supports
web services. We looked at examples for building WebLogic Server–based web services and clients. Next,
we looked at some of the more advanced features of WebLogic Server’s Web Services container. Finally,
we showed how we could easily add a web service to integrate with the bigrez.com application.

361

Patrick c09.tex V3 - 09/18/2009 12:18pm Page 362

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 363

Using WebLogic JMS

The Java Message Service (JMS) specification defines a standard set of interfaces for accessing mes-
saging systems. WebLogic Server provides an enterprise-class messaging system that completely
supports the JMS APIs. In addition, WebLogic Server goes the extra mile to make it easy to use other
JMS-accessible messaging systems transparently from your Java EE applications. In this chapter, we
begin by giving you a brief review of some key JMS concepts. Next, we jump into a detailed discus-
sion of how the WebLogic JMS provider works. Then, we spend some time talking about WebLogic
JMS design considerations. We follow that with a brief discussion of WebLogic JMS programming.
Finally, we finish up this chapter with a discussion on integrating external JMS providers with
WebLogic Server.

Like the rest of this book, this chapter is not intended as an introduction to either JMS or WebLogic
Server’s JMS implementation. If you are unfamiliar with the basics of JMS, we suggest that you
study the book Java Message Service, Second Edition by Mark Richards, Richard Monson-Haefel
and David A. Chappell (O’Reilly, 2009) for a complete treatment of JMS. For more information
on WebLogic JMS, please refer to the WebLogic Server JMS documentation at Link 10-1, as listed in
the book’s online Appendix at http://www.wrox.com.

JMS Key Concepts
In this section, we give you a brief review of key JMS concepts. We begin by discussing the messag-
ing models that JMS supports. We spend the rest of this section reviewing the JMS API, which will
be important for our discussions in the following sections.

Understanding the Messaging Models
JMS supports two distinct messaging models: point-to-point and publish-and-subscribe. With point-to-
point messaging, the message producer, also known as the sender, creates a message and sends it to a
destination known as a queue. Messages sent to queues can be persistent or non-persistent. Persistent
messages sent to a queue will survive server shutdowns and failures. When a message arrives at a

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 364

Chapter 10: Using WebLogic JMS

queue, the JMS provider places the message in the queue in the order in which it was received. Each
message is held in the queue until one of the following events occurs:

❑ A message consumer successfully processes the message.

❑ The message time-to-live expires.

❑ If the message is non-persistent, the server on which the queue resides shuts down or fails.

❑ The queue is deleted.

Message consumers, also known as receivers, process messages placed in a queue. Each message will
be processed by a single receiver. By default, JMS delivers messages in first-in-first-out (FIFO) order.
If multiple receivers are concurrently processing messages from a single queue, the JMS provider
makes sure that each message goes to only one receiver.

With the publish-and-subscribe model, the message producer creates a message and sends it to a
destination known as a topic. Messages sent to topics can be persistent or non-persistent. Messages
sent, or published, to a topic are delivered only to the active consumers, also known as subscribers,
which have registered their interest, or subscribed, to messages sent to the topic. Subscriptions can
be either durable or nondurable. When a consumer subscribes to the topic, that subscriber will receive
messages sent only during the lifetime of that subscription. A nondurable subscription will never
last longer than the subscriber’s JMS connection. In contrast, a durable subscriber can disconnect.
Once the subscriber reconnects, it will receive all messages published since it disconnected: Note
that message persistence may affect the availability of previously published messages in the event
of server failures, depending on the JMS provider.

The JMS provider will save a message until one of the following events occurs:

❑ All subscribers successfully process the message. A nondurable subscription ends when
the subscriber disconnects. A durable subscription ends when the subscriber calls unsub-
scribe() or specifies a new selector.

❑ The message time-to-live expires.

❑ If the message is non-persistent, the server on which the topic resides shuts down or fails.

❑ The topic is deleted.

Reviewing the JMS API
In this section, we briefly review the primary objects associated with the JMS 1.1 APIs. We expect
that most readers are already familiar with the older, domain-specific JMS APIs so we will focus
on the newer, domain-independent versions of the APIs. This review is intended to make it eas-
ier for you to differentiate between what the JMS specification provides and what WebLogic JMS
provides. As we hope will become clear, JMS is just an interface to messaging systems that defines
some of the expected behavior of the underlying messaging provider. The JMS specification stops
well short of defining everything you need to build enterprise-class messaging applications using
Java EE.

364

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 365

Chapter 10: Using WebLogic JMS

Connection Factories
In JMS, you use a connection factory to create connections. Applications look up connection
factories in JNDI. You can think of connection factories as a set of templates used by an admin-
istrator to define common attributes about connections. Connection factories implement the
javax.jms.ConnectionFactory interface and provide methods to create connections. JMS also
provides an XA version of the connection factory for use in distributed transactions. To get a
connection factory, an application uses code similar to the following:

InitialContext ctx = new InitialContext(contextProperties);
ConnectionFactory connectionFactory =

(ConnectionFactory)ctx.lookup("MyConnectionFactory");

Applications can also use annotations to have the connection factory reference injected by the con-
tainer rather than using JNDI lookups, as shown here.

@Resource(mappedName="MyConnectionFactory")
ConnectionFactory connectionFactory;

Connections
A JMS connection conceptually represents a physical connection to the underlying messaging sys-
tem. Each JMS application will require a JMS connection in order to communicate with the JMS
provider. For multithreaded applications, the specification guarantees JMS connections to be thread-
safe and does not provide any specification-related reason to require more than one JMS connection
to a particular JMS provider. Of course, you may find reasons for needing multiple JMS connec-
tions when working with a specific provider.

A JMS connection implements the javax.jms. Connection interface. Applications may use the
connection object to authenticate themselves to the provider, to create sessions, to obtain meta-
data about the provider, and to register for callbacks when JMS detects there is a problem with the
connection. To create a connection, just invoke the appropriate method on the connection factory.

Connection connection = connectionFactory.createConnection();

Destinations
Destinations represent the intermediate location that producers and consumers use to exchange
messages. JMS applications typically look up a destination from JNDI and use it to create a pro-
ducer or consumer tied to that destination. JMS also provides methods on the session objects for
obtaining references to existing destinations using a provider-specific naming syntax. Like JMS con-
nections, destinations are thread-safe. Destinations come in two primary flavors: javax.jms.Queue
and javax.jms.Topic. The JMS 1.1 APIs use the domain-independent javax.jms.Destination
interface to refer to destinations of either type. To get a destination, an application uses code similar
to this:

InitialContext ctx = new InitialContext(contextProperties);
Destination destination = (Destination)ctx.lookup("MyQueue");

As an alternative to JNDI lookups, applications can use resource injection.

365

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 366

Chapter 10: Using WebLogic JMS

@Resource(mappedName="MyQueue")
Destination myQueue;

JMS also provides a mechanism for creating temporary destinations that are specific to the JMS con-
nection on which they are created. These temporary destinations are often used to specify a response
destination in the JMSReplyTo message header to tell the receiver where to send the response to that
particular message.

Sessions
Sessions exist to allow coordination of message delivery between the application and the JMS
provider. Sessions represent a single-threaded context for producing and consuming messages and
are not thread-safe. If an application wants to share a session across multiple threads, it is the appli-
cation’s responsibility to synchronize access to the session. Applications use sessions as factories
for creating different types of objects: message producers and consumers, temporary destinations,
references to existing destinations, and messages. In addition, sessions provide a mechanism for
defining transaction boundaries, serializing the consumption of messages, and limiting the scope of
message acknowledgment. Sessions implement the javax.jms.Session interface. An XA version
of the session interface also exists.

When a JMS message consumer finishes processing a message or set of messages, it needs to notify
the JMS provider that it may delete the message(s). JMS provides two mutually exclusive ways to
do this: message acknowledgment and transacted sessions. Message acknowledgment simply involves
sending the JMS provider a message that tells it the messages are no longer needed. JMS sessions
offer three distinct acknowledgment modes that can be used with nontransacted sessions. The mes-
sage acknowledgment modes are as follows:

AUTO_ACKNOWLEDGE Messages are automatically acknowledged by the underlying provider after
the consumption of each message. Although this is the easiest form of message acknowledgment,
it is generally the most inefficient because it acknowledges only a single message at a time. With
AUTO_ACKNOWLEDGE mode, there is a small window during which it is possible for the last message
received, but not yet acknowledged, to be redelivered in the event of a failure.

DUPS_OK_ACKNOWLEDGE This is similar to AUTO_ACKNOWLEDGE mode except that the underlying
provider can acknowledge the messages in a lazy fashion, making it more efficient. As the name
indicates, this lazy acknowledgment can result in the application receiving sets of duplicate
messages. Typically, duplicate messages are the result of a client or server failure where the JMS
provider redelivers messages that the application has already processed but not yet acknowl-
edged. This is generally the most efficient form of acknowledgment because it minimizes the
work done by the session to eliminate duplicate messages and allows the provider to optimize
acknowledgments. This mode exposes the application to the possibility of receiving sets of
duplicate messages.

CLIENT_ACKNOWLEDGE Messages are acknowledged only when the client explicitly calls the
acknowledge() method on a message. Calling acknowledge() acknowledges all consumed
messages on the current session, not just the message on which it is invoked. The efficiency of
this mode and the application’s exposure to duplicate messages depend on the application’s
acknowledgment strategy. We talk more about acknowledgment strategies later.

Transacted sessions allow you to define units of work that allow the processing of groups of mes-
sages together and apply only to messages sent or received in the scope of the JMS session. In

366

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 367

Chapter 10: Using WebLogic JMS

contrast, transacted sessions do not include any other external resources such as EJBs, databases
accessed via JDBC, or enterprise information systems accessed through J2EE Connector Architec-
ture adapters. Message acknowledgment is handled automatically when transacted sessions either
commit or roll back their units of work.

When creating sessions, applications must specify the transaction and message acknowledgment
modes. The transaction mode defines whether you want to use a transacted session; message
acknowledgment mode defines which of the acknowledgment modes you want to use for nontrans-
acted sessions. To create a nontransacted session that uses AUTO_ACKNOWLEDGE mode, an application
would use code similar to this:

Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

JMS also supports the use of XA transactions with providers that implement the XA versions of
the JMS objects. Many large enterprise applications that use JMS will also use XA transactions. As
is the case with transacted sessions, message acknowledgment is handled automatically at trans-
action commit or rollback. When using XA transactions, make sure to create the session with the
transacted argument (the first argument) set to false and any message acknowledgment mode you
like because the message acknowledgment mode will be ignored when a transaction context is
present. If a transaction context is not present, WebLogic JMS processes the message nontransac-
tionally according to the session’s acknowledgment mode. Note that this is a gray area in the JMS
specification so other JMS providers may behave differently.

Message Producers and Consumers
Message producers allow an application to send a message to a destination. Like sessions, mes-
sage producers are not thread-safe. Producers also have characteristics that affect messages
sent through them. These characteristics include things such as whether to use persistent
delivery, the priority of the message, and the message’s time-to-live. Message producers imple-
ment the javax.jms.MessageProducer interface. The code to create a message producer looks
like this:

MessageProducer messageProducer = session.createProducer(destination);

Message consumers implement the javax.jms.MessageConsumer interface. Like sessions and
producers, consumers are not thread-safe. Message consumers provide the context by which an
application can receive messages from a particular destination. By specifying a message selec-
tor, consumers can limit the messages they receive to only the subset of messages in which they
have an interest. Message consumers can receive messages synchronously by explicitly calling
the consumer’s receive() method or asynchronously by registering a callback object that imple-
ments the javax.jms.MessageListener interface using the consumer’s setMessageListener()
method:

MessageConsumer messageConsumer = session.createConsumer(destination);
messageConsumer.setMessageListener(new MyMessageListener());
connection.start();

Notice that we are calling the connection’s start() method to tell the connection we are ready to
start receiving messages. JMS requires that you explicitly start a connection before any messages
can be received.

367

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 368

Chapter 10: Using WebLogic JMS

Tip to Remember
When creating a consumer, don’t forget to call the start() method on the JMS
connection. Your consumer will not start receiving messages until after your
application calls the start() method.

Durable Subscribers
A topic’s message consumers are usually called subscribers. When subscribing to a topic, you can
create either a durable or nondurable subscription. Nondurable subscriptions are valid only from
the time that you create them until the time you either unsubscribe or otherwise disconnect from
the messaging system. This means that any failure that disconnects the application will automati-
cally terminate the subscription. When you resubscribe, any messages sent between the time that
you were disconnected and you resubscribed will not be delivered — even if the message’s deliv-
ery mode is persistent. In many situations, this is the desired behavior; if it is not, you need to
use a durable subscription. Note that JMS creates nondurable subscriptions by default unless you
explicitly invoke one of the createDurableSubscriber() methods on the session object.

With durable subscriptions, the subscriber provides a unique identifier to identify the subscription.
Once the subscription is accepted, the messaging system will try to deliver all messages it receives
to the durable subscriber. If the subscriber disconnects without unsubscribing, the JMS provider
will buffer all of the messages the subscriber has not seen until the subscriber returns. If the delivery
mode is non-persistent, the messages are buffered in memory and thus subject to message loss
during failures.

Asynchronous Consumers and Transactions
JMS supports asynchronous message consumers. These asynchronous message consumers can use
transacted sessions to define JMS-only units of work. They cannot, however, generally support
JTA transactions that include the asynchronous delivery of the message. The reasons for this are
somewhat complex. When registering an asynchronous MessageListener, JMS does not provide a
mechanism to tell the JMS provider to start a JTA transaction before delivering the message. Because
the JMS provider does not start the transaction before it delivers the message, the only other way
that we could include the message delivery in the JTA transaction would be if JMS supported a
callback mechanism to tell it that a previously delivered, but unacknowledged message should be
considered part of a JTA transaction.

The story gets worse when you consider the EJB specification’s requirements for supporting JTA
transactional delivery of messages to message-driven beans. Two primary strategies exist for
addressing this issue. The first strategy is for the JMS provider to provide a nonstandard API
that can be used to associate a previously delivered, but unacknowledged message with a JTA
transaction. Although this works fine for applications that use the same vendor for both the EJB
and JMS providers, it clearly does not work when mixing vendors unless the vendors can agree on
the nonstandard API and semantics. The other strategy is to simulate asynchronous delivery using
synchronous delivery under the covers. As you will see later, WebLogic Server supports both of
these strategies to make it possible to integrate Java EE applications with any JMS provider that
supports XA transactions.

368

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 369

Chapter 10: Using WebLogic JMS

Message Selectors
Sometimes a consumer is interested in only a subset of the messages delivered to a destination. JMS
provides a standard filtering facility for message consumers, known as message selectors. Message
selectors use a syntax similar to an SQL WHERE clause to create expressions that JMS will evalu-
ate against message headers or properties. You can specify a selector when you create a message
consumer:

MessageConsumer messageConsumer =
session.createConsumer(destination, "JMSPriority > 5");

messageConsumer.setMessageListener(new MyMessageListener());
connection.start();

This selector ensures that messages will be delivered to this consumer only if the value of the
JMSPriority header is greater than 5.

Message selectors are static. You cannot change them without first closing the current consumer
and creating a new one. Changing a durable subscription’s selector ends the subscription; all uncon-
sumed messages for that subscription are deleted and the subscription is recreated, as required by
the JMS specification.

As you can imagine, the use of selectors adds overhead to message delivery that will affect the
performance and scalability of the application. When designing a JMS application, consider splitting
a destination into multiple destinations to eliminate the need for message selectors. We discuss
message selector design and performance implications in more detail later.

Messages
Messages form the foundation of any JMS application. Applications use messages to carry data
associated with a particular event. As shown in Figure 10-1, JMS divides messages into three logical
parts: headers, properties, and the body.

Message headers specify certain characteristics of a message potentially of interest to applications.
For most JMS headers, the JMS provider is responsible for setting the values of these characteris-
tics. JMSReplyTo and JMSCorrelationID are two notable exceptions often used by applications to
implement a request/reply pattern of message exchange.

JMSDestination
JMSDeliveryMode

JMSExpiration
JMSPriority

JMSMessageID
JMSTimestamp

JMSCorrelationID
JMSReplyTo

JMSType
JMSRedelivered

Application-Defined Properties

Message Headers

Contents

Message Properties

Message Body

Figure 10-1: The anatomy of a JMS message.

369

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 370

Chapter 10: Using WebLogic JMS

Message properties allow applications to define additional characteristics about a message. The JMS
specification reserves all property names that begin with JMSX. Typically, message properties are
most useful for applications that need to apply message selectors to application-specific data.

The message body contains the payload of the message. The type of information a message contains
depends on the type of message the application chooses to use. JMS defines five different types of
message objects, all of which derive from javax.jms.Message:

TextMessage Applications use this message type to send simple text strings or more complex,
text-based data structures like XML messages.

BytesMessage Applications use this message type to send a raw array of bytes. Typically, you
would use this to retain an application’s native data format.

ObjectMessage Applications use this message type to send a serialized Java object.

StreamMessage Applications use this message type to send an ordered stream of Java
primitive types or the object versions of these primitive types, such as java.lang.Integer or
java.lang.Double.

MapMessage Applications use this message type to send an unordered set of name-value pairs.
All names must be unique, and the values must be Java primitive types or the object versions of
these primitive types.

To create a message and send it to a destination, use code like that shown here:

TextMessage message = session.createTextMessage("message body");
messageProducer.send(message);

The WebLogic JMS Provider
In this section, we take a detailed look at the WebLogic JMS provider implementation. As you will see,
WebLogic JMS not only provides a messaging system that fully implements the JMS specification but
also provides other configuration and programming options that go well beyond what JMS defines to
provide enterprise-class messaging features. We do not attempt to provide comprehensive coverage of
WebLogic JMS, but instead focus our discussions on the details that are most important for designing
and building robust messaging applications with WebLogic JMS. For more comprehensive coverage of
JMS, we refer you to the WebLogic JMS documentation at Link 10-1.

Understanding WebLogic JMS Servers
WebLogic JMS introduces the concept of a JMS server. A JMS server is a management entity and container
for JMS destination-related resources that reside on a single WebLogic Server instance. A WebLogic
Server instance can host zero or more JMS servers and can serve as a migration target for zero or more
JMS servers. All destination names must be unique across every JMS server in a WebLogic Server
instance. If you are deploying a JMS server into a clustered server, the destination names must be unique
across every JMS server deployed to any member of the cluster.

When you are using WebLogic clustering, a JMS server represents the unit of migration when failing
over a set of destinations from one WebLogic Server instance to another. By associating destinations with

370

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 371

Chapter 10: Using WebLogic JMS

a JMS server, WebLogic JMS makes it easier to migrate a set of destinations from one WebLogic Server
instance to another. We talk more about JMS server migration in the next section.

Clustering WebLogic JMS
WebLogic JMS clustering is built on top of the basic WebLogic Server clustering mechanisms. It provides
a JMS application with the features you would expect from a clustered messaging infrastructure. In this
section, we take a closer look at WebLogic JMS clustering, which includes discussions on the following
features of clustering:

❑ Location transparency provides the application with a uniform view of the messaging system by
hiding the physical locations of JMS objects.

❑ Connection routing, load balancing, and failover provide the application with a single, logical con-
nection into the messaging system.

❑ Distributed destinations provide a single, logical destination distributed across multiple servers in
the cluster to support both load balancing and high availability.

❑ Automatic migration for JMS servers provides the ability to restart failed destinations automati-
cally, without human interaction in the event of server failure or maintenance outage.

Location Transparency
WebLogic JMS registers managed objects such as connection factories and destinations in JNDI.
Because WebLogic Server provides JNDI replication across a cluster, an application can simply look up
the objects by their JNDI name, regardless of which servers in the cluster are hosting the objects. For
example, applications can access a JMS destination without knowing which WebLogic Server instance
hosts the JMS server that holds the destination. In the same way, you can create a JMS connection and
session without having to worry about what servers are in the cluster or where the destinations you are
using reside.

Connection Routing, Load Balancing, and Failover
When deployed to a cluster, WebLogic JMS connection factories provide transparent access to all JMS
servers in the cluster. This means that any JMS connection you create using one of these factories will
have access to every JMS destination across the cluster. How this works depends on where the application
is located in relation to the WebLogic Server cluster.

For client applications not running in a WebLogic Server instance, WebLogic JMS defaults to using a
simple round-robin algorithm to distribute connection requests across all running servers in the cluster
on which the connection factory is deployed. The algorithm’s state, however, is tied to each client’s
copy of the connection factory. The overall load distribution will be relatively uniform because the load-
balancing algorithm is initialized by randomly selecting the initial server. Connection factories provide
failover by routing requests to create a new connection around failed servers.

Once the client creates a connection, WebLogic JMS routes all JMS operations over that same connection
to the appropriate WebLogic Server instance in the cluster. This enables WebLogic JMS clusters to sup-
port a large number of concurrent clients but does expose the client to failures if the server to which it is
connected fails. Another interesting failure scenario occurs when the JMS connection is still operational
but the WebLogic Server instance on which a particular JMS destination resides fails. For example, the
client’s JMS connection is talking with server1, but it is asynchronously consuming messages from a

371

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 372

Chapter 10: Using WebLogic JMS

destination on server2. If the client is asynchronously consuming messages using one of the failed desti-
nations, you need some way to notify the client application that the MessageConsumer is no longer valid.
Though the JMS specification does not indicate how to handle this type of problem, WebLogic Server
calls the standard onException() message on the connection’s exception listener.

WebLogic JMS has the ability to attempt to failover message producers and consumers to another server
instance in the cluster when failures occur. This capability is enabled by default for message producers
but disabled by default for message consumers. This functionality can be controlled programmatically
via the WLConnection.setReconnectPolicy() method or administratively via settings on the WebLogic
JMS connection factories. See Link 10-2 for more information about automatic JMS client failover.

When using this functionality, the WebLogic JMS code tries to refresh the connection, session, and mes-
sage producer/consumer objects without intervention by the application code. In a number of situations
the implicit refresh may not work or is not completely transparent to the client. Any exception listener
registered for the connection will be invoked — even if the reconnection/refresh is successful. There is no
real way for the exception listener to determine whether the reconnect/refresh worked. That means you
have two choices. First, you might decide that you can live with the limitations of the reconnect/refresh
feature and rely on this without an exception listener. Second, you might decide that you need an excep-
tion listener to handle the situation more robustly. With an exception listener, you end up recreating the
JMS objects anyway so you should disable the implicit reconnect/refresh feature.

In our opinion, the exception listener approach is more robust and generally a better approach because it
can handle all situations. As such, we recommend not relying on this implicit reconnect/refresh mecha-
nism and implementing your own exception listeners to re-establish your JMS connectivity.

Best Practice
WebLogic JMS applications should not rely on the automatic failover of message
producers and consumers. Though convenient, they do not handle every situation
transparently. Use exception listeners to detect the failures and use the ConnectionFac-
tory and Destination objects previously looked up from JNDI to re-establish your JMS
connectivity.

To detect JMS failures, clients must use the standard JMS mechanism to register an object that
implements that javax.jms.ExceptionListener interface with the connection by calling the
setExceptionListener() method. To recover, you will need to use the connection factory to create a
new connection and any other objects that were associated with the failed connection object.

For server-side applications, WebLogic JMS avoids extra network traffic by processing connection
requests locally wherever possible. If the connection factory is not deployed locally, the server-side
application will connect to one of the servers where the connection factory exists. In most applications, it
is very desirable to distribute the load across all servers in a cluster. There are multiple ways to achieve
this. In almost all situations, it is best to distribute the load as it enters the cluster and keep all processing
of a particular message within the local server to which the message was delivered. Therefore, we
recommend deploying your applications and JMS resources homogeneously across the cluster. Because
any particular destination must reside on only one server in the cluster, we need to use distributed
destinations to accomplish this homogenous distribution.

372

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 373

Chapter 10: Using WebLogic JMS

Best Practice
For JMS server-side applications accessing destinations within the same cluster, deploy
your connection factories to all servers in the cluster. Likewise, deploy your connection
factories to all servers in the cluster for remotely connected JMS applications accessing
a cluster with a distributed destination with members in every cluster member.

For remotely connected JMS applications that use only a subset of the cluster for hosting
JMS destinations, deploy the connection factories on the WebLogic Server instances
where the JMS servers reside.

Following these rules will help eliminate unnecessary routing of JMS requests through
servers with no JMS server deployed.

Distributed Destinations
Distributed destinations give WebLogic JMS the ability to make JMS destinations highly available and
load balanced. To create a distributed destination, simply map multiple member JMS destinations to a
single, logical, distributed JMS destination. JMS applications use distributed destinations just like any
other JMS destination. How WebLogic JMS routes application requests to the underlying member JMS
destinations depends on many different factors, such as where the application resides (in a remote client
or in a server), what the application is doing (sending messages or receiving messages), what type of
destination is used (queue or topic), and how many consumers there are.

WebLogic JMS can load balance message producers to a distributed destination on a request-by-request
basis. This means that, all other things being equal, the messages produced by a single client can be
evenly distributed across the member destinations of the distributed destination. For message consumers,
WebLogic JMS load balances them at creation time, thereby pinning each consumer to a member desti-
nation. WebLogic JMS also looks at several other factors when load balancing producers and consumers,
such as the number of consumers for a member destination, the location of the member destinations, the
availability of a persistent store (if the message delivery mode is persistent), and the current transaction
context. Any of these other factors can cause WebLogic JMS to alter its default load balancing policy for a
particular message or destination. We spend the rest of this section explaining how WebLogic JMS routes
application requests that use distributed destinations.

In general, we highly recommend that you deploy distributed destinations homogeneously across the
cluster using similar configurations for each participating JMS server and its associated destinations.
WebLogic Server 9.0 introduced Uniform Distributed Destinations to simplify the configuration of homoge-
nously deployed distributed destinations. Therefore, we focus on describing the behavior of distributed
destinations when deployed in homogenous configurations. For more complete information, please refer
to the WebLogic Server documentation at Link 10-3.

Best Practice
When you are deploying distributed destinations, always use uniform distributed des-
tinations and similar settings for every JMS server in the cluster.

373

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 374

Chapter 10: Using WebLogic JMS

Server1

WebLogic Server Cluster

Queue1 Consumers

m1

Server2

Queue2DistributedQueue

DistributedQueue
Message
Producer

Consumers

m2

Server3

Queue3 Consumers

m3

m2m1, m2, m3

m3

m1

Figure 10-2: Sending messages to a distributed queue.

Producing Messages to a Distributed Queue
Figure 10-2 illustrates the producer’s perspective of distributed queue operation using the common load-
balancing configuration. There are three WebLogic Server instances running in a cluster, each hosting
a member destination (Queue1, Queue2, and Queue3) of the distributed queue, DistributedQueue. Each
message sent by the producer is load balanced across the member destinations. Because this is a point-
to-point messaging model, only one consumer will receive each message.

When a producer sends messages to a distributed queue, WebLogic JMS first determines how to load
balance the send() requests. You can control this with the connection factory’s Load Balancing Enabled
checkbox, which is enabled by default, and the distributed destination’s Load Balancing Policy, which
is round-robin by default. If load balancing is enabled, WebLogic JMS load balances each queue producer
on every send() call using the algorithm specified by the load balancing policy. If it is disabled, WebLogic
JMS load balances only each producer’s first call to send(); all subsequent messages from a particular
producer will be sent to the same member destination.

WebLogic JMS uses several other heuristics that override the default load balancing behavior; the heuris-
tics are applied in this order:

❑ Persistent store availability means that WebLogic JMS will prefer destinations whose underlying
JMS server does not explicitly disable its Store Enabled attribute.

❑ Transaction affinity means that WebLogic JMS will try to send all messages associated with a
particular transaction context to the same JMS server to minimize the number of JMS servers

374

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 375

Chapter 10: Using WebLogic JMS

involved in the transaction. Note that at the time of writing the transaction affinity heuristic only
applies to transacted session transactions and not to global XA transactions.

❑ Server affinity means that WebLogic JMS will try to use a destination in the local process.
WebLogic JMS will use member destinations in the WebLogic Server instance in which the
producer/consumer is running or to which the producer/consumer’s JMS connection is
connected. Although this is the default behavior, you can disable this behavior by deselecting
the connection factory’s Server Affinity Enabled checkbox.

❑ Zero consumer queues means that WebLogic JMS will do its best to avoid sending messages to
member queues with zero consumers, unless all member queues have zero consumers. Because
of the transient nature of some message consumers, it is still possible for messages to end up on
queues with zero consumers.

Figure 10-2 portrays a conceptual view of how a distributed queue works. In reality, all routing to a
member queue occurs inside a WebLogic Server process. Each producer has a JMS connection attached
to one WebLogic Server in the cluster. By default, server affinity causes WebLogic JMS to attempt to send
the messages from a particular producer to a member destination on the server to which the producer’s
JMS connection is attached. The message may be routed to a different destination if server affinity is
disabled, there is no local member destination, or one of the other heuristics takes precedence.

Tip to Remember
By default, server affinity causes message producers sending messages to a distributed
queue always to send to the member queue in the JMS server to which the producer is
connected. To enable a producer to load balance messages across member destinations,
disable server affinity on the connection factory the producer is using. Of course, this
load balancing will still be subject to other heuristics that might skew the distribution
of messages.

Another important feature of distributed queues is message forwarding. The zero consumer queues
heuristic will try to prevent routing point-to-point messages to a member destination with no consumers
if there are other member destinations with consumers. It is still possible, though, for messages to end up
on a queue with no consumers if, for example, a consumer exits after the message is sent but before it is
received. WebLogic JMS provides a forwarding mechanism by which messages can be forwarded from a
member queue with no consumers to a member queue with consumers after a specified amount of time.
The distributed queue’s Forward Delay attribute controls the number of seconds WebLogic JMS will wait
before trying to forward the messages. By default, the value is set to −1, which means that forwarding
is disabled. Setting a Forward Delay is incompatible with strictly ordered message processing, including
the Unit-of-Order feature discussed later.

Setting a Forward Delay is incompatible with strictly ordered message processing,
including the Unit-of-Order feature.

Consuming Messages from a Distributed Queue
When an application creates a message consumer for a distributed queue, WebLogic JMS associates
the consumer with one of the member destinations of the distributed queue. From that point on, the

375

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 376

Chapter 10: Using WebLogic JMS

Server1

WebLogic Server Cluster

Queue1

Server2

Queue2DistributedQueue

DistributedQueue
Message
Producer

DistributedQueue
Message

Consumer

Server3

Queue3

m2 m2

DistributedQueue
Message

Consumer
m3

DistributedQueue
Message

Consumer
m1

m1, m2, m3

m3

m1

Figure 10-3: Consuming messages from a distributed queue.

consumer is pinned to that member destination. Figure 10-3 illustrates the operation of a distributed
queue from the consumer’s perspective. In this figure, the three DistributedQueue consumers have each
been associated with one of the member destinations. Each consumer will be eligible to receive only
messages routed to his or her respective member destinations.

When consumers are created, WebLogic JMS associates the consumer with a member destination by load
balancing the consumers across the available member destinations. Although this load balancing is done
only once for each consumer, the mechanisms used are very similar to those used for load balancing mes-
sages sent to a distributed queue. All other things being equal, WebLogic JMS will use the distributed
destination’s load balancing policy to distribute the consumers across all member destinations. Just as
before, WebLogic JMS uses heuristic optimizations that will override the default load balancing mecha-
nism. If server affinity is enabled, WebLogic JMS will try to associate the consumer with a local member
destination, as described previously. WebLogic JMS will also try to associate new consumers with mem-
ber destinations that currently have zero consumers, unless server affinity prevents this.

When a WebLogic Server hosting a member of a distributed queue fails, all unconsumed persistent
messages remain on the failed server’s queue. These messages will not be available until either the
WebLogic Server instance is restarted or the JMS server containing the member queue is migrated to
another WebLogic Server instance. We talk more about JMS server migration later in this section. If the
messages are non-persistent, all of the unconsumed messages will be lost.

WebLogic JMS distributed queue consumers are essentially the same as nondistributed queue consumers
once the association between the consumer and the member destination has been established. If the
WebLogic Server hosting the member queue fails, WebLogic JMS throws a javax.jms.JMSException
to all synchronous consumers. For asynchronous consumers, the connection’s ExceptionListener is
notified and the application will have to recreate the JMS connection and all of its associated objects
(sessions, consumers, producers, and so on).

376

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 377

Chapter 10: Using WebLogic JMS

Server1

WebLogic Server Cluster

Topic1 Consumers

Server2

Topic2DistributedTopic

DistributedTopic
Message
Producer

Consumers

Server3

Topic3 Consumers

m1, m2, m3 m1, m2, m3 m1, m2, m3
m1, m2, m3

m1,
m2,

m3

m1, m2, m3

m1, m2, m3

m1, m2, m3
m1, m2, m3

m1, m2, m3

m1, m2, m3
m1, m2, m3

m1, m2, m3

Figure 10-4: Publishing messages to a distributed topic.

Producing Messages to a Distributed Topic
Figure 10-4 illustrates the conceptual operation of a distributed topic from the producer’s perspective.
As in the previous example, there are three WebLogic Server instances running in a cluster, each hosting
a member destination (Topic1, Topic2, and Topic3) of the distributed topic, DistributedTopic. When
a producer sends messages to a distributed topic, WebLogic JMS sends a copy of the message to every
available member topic that has at least one consumer. Because all member topics in Figure 10-4 have at
least one consumer, every message is sent to the three member topics. If the three consumers attached to
Topic3 were to unsubscribe from DistributedTopic, any future messages would be sent only to Topic1
and Topic2 until a new consumer was assigned to Topic3.

In reality, a distributed topic producer always sends each message to a single member topic. The member
topic then forwards the message to all other member topics. If you publish messages directly to the
member topic, WebLogic JMS will still replicate the messages to every member of the distributed topic,
just as it would if you had published the messages to the distributed topic itself. This means that any
topic associated with a distributed topic will distribute messages just as the distributed topic does. It is
important to note that distributed topic producers maintain an affinity to a member topic after they send
their first message. This affinity overrides any load balancing settings on the connection factory. They
will, however, failover to another member topic in the event of failure. When this happens, the producer
pins itself to the new member for future messages.

As we discuss later in the ‘‘Persistent Stores’’ section, persistent messages sent to a nondistributed topic
are not actually persisted unless there are one or more durable subscribers. For distributed topic mem-
bers, the message is always persisted before forwarding on to other member topics.

377

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 378

Chapter 10: Using WebLogic JMS

When a message arrives at a topic, the topic will do one of three things for each of its subscribers:

❑ If the message was originally sent before the subscription was created, WebLogic JMS will not
deliver the message to the subscriber.

❑ If the subscriber is currently connected and the subscription existed when the message was orig-
inally sent, WebLogic JMS will deliver the message to the subscriber.

❑ If the durable subscriber is not currently connected but their subscription existed when the mes-
sage was originally sent, WebLogic JMS will buffer the message waiting on the subscriber to
reconnect so that it can deliver the message.

Topics that are members of a distributed topic perform additional actions.

❑ If the message came directly from a message producer (as opposed to being forwarded from
another distributed topic member), the member topic will forward the message to all other dis-
tributed topic members.

❑ If any of the distributed topic members are down, WebLogic JMS will buffer the message until
one of three things happens: it delivers the message to all member topics, the message expires,
or the remaining member topics are removed from the distributed topic. This buffering happens
for both persistent and non-persistent messages.

As you can imagine, this buffering is not always desirable. One way to prevent the unbounded accumu-
lation of these buffered messages is to set message expiration times. At the time of writing, this is really
the best option for limiting the accumulation of these buffered messages. We expect the functionality of
distributed topics may change by the time you read this book so please check the WebLogic JMS docu-
mentation for more information. We talk more about durable subscribers and message persistence later.

Consuming Messages from a Distributed Topic
Distributed topic consumers are similar to distributed queue consumers; WebLogic JMS associates them
with a member destination at the time they are created. WebLogic JMS uses the same load balancing
mechanisms and optimization heuristics for distributed topic consumers that it uses for distributed queue
consumers. The same error-handling mechanisms that we discussed for distributed queue consumers
also apply to distributed topic consumers. Two important differences exist in how consumers work with
distributed topics that we need to mention.

First, any durable subscriptions must be made directly with a distributed topic’s member destina-
tions. WebLogic JMS does not currently support creating a durable subscription on a distributed topic
directly. This is unfortunate because although it does not prevent you from building an application that
leverages distributed topics with durable subscribers, it does make it more difficult. In most cases, the
subscriber must look up one of the member topics directly. The WebLogic Server documentation lists
two approaches that applications can use to handle this situation:

1. Give each member topic a unique JNDI Name and have the durable subscribers use those
JNDI names to look up the member topic explicitly. Note that the JNDI Name attribute binds
the member topic into JNDI and WebLogic Server replicates that binding across the cluster.

378

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 379

Chapter 10: Using WebLogic JMS

2. Give each member topic the same Local JNDI Name so that the durable subscribers use the
same JNDI name to look up the member topic and will always get the one on the local server
to which they are connected. Note that the Local JNDI Name attribute allows you to specify a
JNDI name that is not replicated across the cluster.

Both of these approaches have serious drawbacks for remote subscribers. For example, the first approach
makes it easy for durable subscribers to reconnect to the appropriate member topic but requires sub-
scribers to understand the current topology of the cluster and invent their own mechanisms to ensure
load balancing and server affinity. The second approach tries to hide the cluster topology but at the
expense of making it easy for the consumer to reconnect to their existing durable subscription. That is,
because the durable subscription is associated with the member topic and each member topic has the
same JNDI name, the subscriber has to invent its own mechanisms to reconnect to the same cluster mem-
ber to find the durable subscription. You might decide to solve this problem by using one JMS connection
factory per member topic. However, this causes exactly the same problems and options. At the end of
the day, you end up needing to build load balancing and failover machinery into the application. We feel
that this makes remote durable subscribers on distributed topics (in their current form) too complex and
recommend that you avoid their use.

Fortunately, things are much better if the durable subscribers are server-side components deployed in
the same cluster. In fact, WebLogic Server’s MDB container actually allows an MDB to specify the JNDI
name of a local distributed topic when creating a durable subscription. The container simply determines
the correct member topic for the local managed server and creates the durable subscription against it.

The second important difference is that message-driven bean (MDB) deployments are treated as a single
consumer per member topic. This means that regardless of how many MDB instances are in the pool
on each server, messages will be sent to a single MDB instance for each member topic. If you stop to
think about it, this is desirable because the whole idea of deploying an MDB is to create one virtual
consumer per deployment. You probably do not want each message sent to the topic to be processed
by multiple MDB instances in the same server. Where this becomes less clear is when you think about
deploying an MDB to a cluster using a distributed destination. In some cases, you might actually want
each message processed in each server; in others, it might be desirable to process each message once
across the entire cluster. Currently, WebLogic JMS supports only sending each message to all servers
hosting the MDB.

Related to this, it is important to note that WebLogic JMS requires all durable subscribers connected to
a cluster to have a unique client identifier. This client identifier is what uniquely identifies the durable
subscription. To make it easier to deploy MDB durable subscribers, WebLogic Server’s MDB container
supports a <generate-unique-jms-clientid> element in weblogic-ejb-jar.xml that tells the server
to generate unique durable subscriber client identifiers automatically for each MDB deployment. This
capability, when combined with the ability to use the distributed topic as the target destination for the
MDB, makes it easy to deploy an MDB that acts as if it were a durable subscriber to a distributed topic.

As you can see, at the time of writing there are a number of significant limitations resulting from the lack
of support for durable subscriptions directly on distributed topics in WebLogic Server 10.3.1 and earlier.
While this is a limitation that we expect will be addressed in an upcoming release, at the time of writing
the only reasonable way to use durable subscriptions in combination with distributed topics is to use
MDB durable subscribers where the MDB is deployed to the same cluster as the distributed topic.

379

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 380

Chapter 10: Using WebLogic JMS

Best Practice
At the time of writing, WebLogic Server does not support durable subscriptions directly
on distributed topics. You must create the durable subscription directly on the member
topic. Until this situation changes the only effective way to emulate a durable sub-
scription on a distributed topic is to use an MDB deployed to the same cluster as the
distributed topic.

We expect that the capabilities and options surrounding distributed topics will be changing in an upcom-
ing version of WebLogic Server — possibly by the time you are reading this book. Please consult the
WebLogic Server documentation at Link 10-4.

Automatic Failover for JMS Servers
It’s important that a JMS server is running so that its queues and topics are always available. WebLogic
Server provides two mechanisms to support the automatic failover for a JMS server: whole server migra-
tion and service migration. With whole server migration, the WebLogic Server instance is restarted on
another machine. Service migration provides the ability to migrate specific services from one WebLogic
Server instance to another in the same cluster.

WebLogic JMS supports service migration, which simplifies the migration of a JMS server from one
instance of WebLogic Server to another instance of WebLogic Server in the same cluster, if properly
configured.

Migrating a JMS server from one WebLogic Server instance to another is simple provided that the target
server has access to all of the JMS server’s resources used by the source server. If a persistent store is
involved, the persistent store will need to be available on the target server. If the source server failed
with transactions in flight, you will also need to migrate the JTA service, and its associated transac-
tion log files, so that these in-flight transactions can be recovered. You can find a complete discussion
of the configuration and use of the WebLogic Server service migration and whole server migration in
Chapter 12.

Best Practice
If you need to be able to move a JMS destination to another server to handle failover,
always use automatic whole server migration or automatic service migration rather
than trying to do it yourself.

WebLogic JMS Clients
External clients connect to a remote WebLogic Server over TCP/IP network connections which are auto-
matically established using standard JNDI and JMS APIs.

WebLogic JMS supports several options for external clients including three Java clients as well as a C
client and a .NET client. All clients support transacted session-style transactions. Only the Java clients

380

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 381

Chapter 10: Using WebLogic JMS

support the JTA transaction API; the .NET and C clients do not. The Java clients also support an optional
client Store-and-Forward (client SAF) feature that will automatically store messages in a local file before
forwarding them on to the remote JMS server. This feature allows clients to send messages even when
disconnected and have those messages forwarded to the target destination once a connection is re-
established. See the ‘‘Understanding the Store-and-Forward Service’’ section later in this chapter for
more information about SAF.

The five different types of clients are briefly described in the following list.

Java Install Client The Java Install Client is a client that uses the $WL_HOME/server/lib/
weblogic.jar file located within a full WebLogic Server installation. This distinction is important
because weblogic.jar was split up into modules as of WebLogic Server 10, and the jar file itself is
no longer sufficient to run a remote client application (that is, copying the weblogic.jar file from
a WebLogic Server 10.x installation to another machine to run the client does not work anymore).
This client uses the T3 protocol, which may be secured with SSL or tunneled over HTTP (specified
by t3, t3s, http, or https in a URL). It does not support the IIOP protocol when calling into JMS
APIs.

Java Full Client The Java Full Client is the WebLogic Server 10.x replacement for the older copy
the weblogic.jar file clients. It is equivalent to the Java Install Client except that it uses a stand-
alone wlfullclient.jar file that you build using the WebLogic JarBuilder utility (see Link 10-5).
Once you generate the wlfullclient.jar file, you can copy it around and use it exactly like you
used to use weblogic.jar in earlier releases.

Java Thin Client The Java Thin Client uses several small jars that contain different pieces of
functionality that you can mix and match depending on what functionality your client application
uses. The primary jar file required for all thin clients is wlclient.jar. For a JMS client, you
also need wljmsclient.jar, and optionally wlsafclient.jar if using client SAF. This client
supports SSL, HTTP tunneling, and the IIOP protocol. If a thin client application URL specifies
the T3 protocol, the thin client will automatically convert it to the IIOP protocol. The thin client is
considerably less performant and scalable than the full or install clients and, therefore, is generally
not recommended in any server-to-server scenarios. We recommend only using the thin client
with real clients where the small jar size is an absolute requirement (for example, with a Java
applet).

C Client The WebLogic JMS C client is a C API that works on top of one of three Java clients.
The client process must embed a Java client library and JVM in order for the C client to work. As
with using the thin client, the C client should not be used with the thin client in a server-to-server
scenario.

.NET Client The WebLogic JMS .NET client is a fully managed .NET runtime library and
application programming interface (API) that closely resembles the standard JMS API. It
allows programmers to create simple native .NET C# client applications that can directly
communicate with WebLogic JMS. The .NET client consists of a standalone dynamic link library
(modules/com.bea.weblogic.jms.dotnetclient_1.1.0.0/WebLogic.Messaging.dll) that has
no dependencies on a JVM or any WebLogic Server Java client library. It currently supports the T3
protocol and has a number of limitations (see Link 10-6 for more information).

Before we move one to discuss WebLogic JMS configuration, we should briefly discuss the JNDI URL
formats supported by WebLogic JMS clients, and WebLogic Server clients in general.

381

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 382

Chapter 10: Using WebLogic JMS

WebLogic Server Client URLs
Applications that are not running within a WebLogic Server instance must specify a PROVIDER_URL
when creating their JNDI InitialContext objects in order to connect to a server or a cluster. If a URL
resolves to multiple addresses, WebLogic Server clients will randomly select an address in the list
to start with and then automatically try each address in turn until one succeeds. The URL syntax is
as follows:

[t3|t3s|http|https|iiop|iiops]://address[,address]...
where: address = hostlist : portlist

hostlist = hostname [,hostname]...
portlist = portrange [+portrange]...
portrange = port [-port]

Use port-port to indicate a port range, and + to separate multiple port ranges. For example, a sim-
ple address is typically something like t3://hostA:7001; the address t3://hostA,hostB:7001-7002 is
equivalent to the following addresses.

t3://hostA,hostB:7001+7002
t3://hostA:7001-7002,hostB:7001-7002
t3://hostA:7001+7002,hostB:7001+7002
t3://hostA:7001,hostA:7002,hostB:7001,hostB:7002

Tip to Remember
If your application is running inside a WebLogic Server instance or cluster, do not
specify a URL when creating the JNDI InitialContext. Creating an InitialContext
without specifying a URL implicitly returns the JNDI context for the local server or
cluster.

While this URL list notation is convenient, you may want to consider other schemes for production
environments. You can replace the list of hostnames with a single hostname that resolves to the list of
IP addresses for your cluster. This technique is known as DNS round-robin. One potential problem with
DNS round-robin is DNS lookup caching, which can occur in the JVM or in a DNS server. If you update
your DNS entry to account for a server that is down or a new server that was added, it could take a long
time before your WebLogic Server–based application is able to see this change if you don’t ensure that
DNS lookup caches for your clients are short-lived.

For Java clients, you can control the JVM caching using the Java system property networkaddress.
cache.ttl (see Link 10-7 for more information). Remember, DNS lookups are generally expensive so
reducing the effectiveness of the JVM’s cache can have negative performance implications for applica-
tions that do frequent DNS lookups.

For DNS servers, the situation is more complex. If all your clients (for example, your web service plug-
ins) use the same DNS server that holds your cluster’s DNS entry, changes to the entry will generally
be immediate. However, if your clients use other DNS servers, caching will likely be an issue since DNS
servers communicate with other DNS servers to resolve addresses. These DNS server to DNS server
lookups are almost always cached for extended periods of time to improve performance. Changes to

382

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 383

Chapter 10: Using WebLogic JMS

DNS entries can take days to propagate across a set of DNS servers. Even if you control all of the DNS
servers involved, you typically won’t be able to tune the caches time-to-live down or risk slowing your
DNS servers (and therefore, all your network-based applications that do DNS lookups) to a crawl. In
these situations, you’ll need to look at more sophisticated solutions involving a hardware load balancer
rather than DNS round-robin.

When using a hardware load balancer with RMI-based applications, you must ensure that the load bal-
ancer is only used to resolve the initial hostname to an IP address.

Best Practice
For production systems, consider using DNS round robin or a hardware load balancer
(for initial hostname resolution only) rather than using the PROVIDER_URL list notation.

Configuring WebLogic JMS
Now that you understand the high-level overview of WebLogic JMS clustering, let’s take a more detailed
look at the many different configuration options that can affect your JMS applications. We cover only a
subset of the functionality, and we recommend that you consult the WebLogic JMS documentation for
more information.

JMS Modules
A JMS module is a configuration container for other JMS resources, such as destinations and connection
factories. JMS modules come in two flavors: system modules and application modules. Application
modules can be packaged or standalone. WebLogic JMS administrators create system modules using
the WebLogic Console. These modules are visible and accessible to all applications deployed on the
server/cluster. WebLogic JMS developers create application modules and package them together with
their application. Application modules are typically visible only to the application in which they are
defined, though they can also be made visible to all applications. The idea of an application that packages
its JMS artifacts internally so that it is easy to move between environments is appealing. Nevertheless,
you should consider the following points before choosing to use application modules.

❑ Application module configuration is not manageable via JMX (for example, the WebLogic Con-
sole).

❑ Non-default targeting of application modules significantly complicates deployment.

❑ Undeploying the application destroys the JMS destination, discarding any undelivered mes-
sages.

❑ Application modules only support a subset of JMS resources.

In our opinion, these negative points about application modules outweigh their promised benefit of
providing self-contained JMS resources to an application. We have not found a need for application
modules in a real production system. As such, all of our discussion of JMS modules throughout the rest
of the book focuses on system modules.

383

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 384

Chapter 10: Using WebLogic JMS

Best Practice
We recommend avoiding the use of JMS application modules and only using JMS
system modules due to the ability to manage system modules through JMX and all the
standard WebLogic Server management tools.

JMS modules can contain connection factories, destinations, distributed destinations, quotas, destination
sort keys, and some other integration-related artifacts that we discuss later. JMS modules are targeted
to zero or more WebLogic Server instances or clusters. If you remember from our earlier discussion,
physical destinations can only be deployed to a single JMS server. So how is it that JMS modules can be
targeted to WebLogic Server instances or clusters if they contain nondistributed destinations?

JMS modules also contain subdeployments. Subdeployments allow a subset of a module’s resources to be
selectively targeted. Here are some rules of thumb to help you use modules and subdeployments in their
recommended way.

❑ Define one JMS module per homogenous deployment target set: a cluster, a set of WebLogic
Servers within a single cluster, or a single WebLogic Server instance. Target the module to that
target set.

❑ Define one subdeployment per JMS module and target it to the set of JMS servers running on the
WebLogic Server instances targeted by the JMS module.

❑ Target all destination resources to the subdeployment. If the subdeployment targets more than
one JMS server in a cluster, you will have to use distributed destinations and the Advanced
Targeting button to assign them to the subdeployment.

❑ Target connection factories to the module (not to the subdeployment) by accepting the default
targeting option. The default targeting option implicitly sets the connection factory targets based
on the module’s target.

By following these guidelines, each module will equate to a single deployment target set. Destinations
will end up on exactly the desired JMS servers and the connection factories will be targeted to all of the
servers.

Using JMS modules and subdeployments, it is possible to create a single module that contains all
WebLogic JMS resources for deployment. However, best practice suggests that every JMS module should
correspond to a single deployment target set (for example, a cluster or a WebLogic Server instance).
Likewise, we suggest that each subdeployment be targeted to the JMS servers running on the WebLogic
Server instances targeted by the module.

Best Practice
We recommend defining one JMS module per homogenous deployment target set and
configuring one subdeployment per JMS module. Target the subdeployment to JMS
servers that are hosted among the target set’s managed servers. Target destinations to
the subdeployment but connection factories to the module’s default target set.

384

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 385

Chapter 10: Using WebLogic JMS

Connection Factories
A JMS connection factory can be thought of as a template defining common connection attributes. Once
you create connection factories using the WebLogic Console, the connection factories are bound into
JNDI when WebLogic Server starts up. Each connection factory can be deployed on multiple WebLogic
Server instances or clusters through its associated JMS module. An application accesses JMS by looking
up a connection factory and using the connection factory to create a connection. Once the connection is
established, all predefined connection factory attributes are applied to the connection.

Let’s look at a few of the more important connection factory attributes. A complete discussion of indi-
vidual attributes is outside the scope of this chapter, and you should consult the WebLogic JMS docu-
mentation if you’re interested. Using the WebLogic Console, navigate to the Services ➪ Messaging ➪

JMS Modules folder in the left-hand navigation bar and create a new JMS module and connection fac-
tory. The following list explains some of the more important settings on the connection factory’s various
configuration tabs.

Default Message Delivery Attributes These settings include Priority, Time to Live, Time to
Deliver, Delivery Mode, Redelivery Delay, and Compression Threshold. Values set here are used
for messages for which these attributes are not explicitly set in the application or not overridden by
other configuration parameters.

Maximum Messages per Session This parameter is not a true message quota, as the name might
lead you to believe. For a normal JMS session, this value indicates the maximum numbers of out-
standing messages (that is, messages that have not yet been processed by the consumer’s business
logic) that a consumer is willing to buffer locally. This buffer is also known as the message pipeline
and exists on both local and remote JMS consumers.

WebLogic JMS tries to keep the consumer’s pipeline full. It will deliver batches of messages to
speed up processing and amortize the cost of coordinating message delivery across multiple
messages. If a consumer falls behind to the point where it has too many outstanding messages,
WebLogic JMS will leave the messages in the destination until the client starts to catch up. If the
session is a WebLogic JMS multicast session, the server will not buffer the overflowed messages
and will instead discard them based on the policy specified by the Overrun Policy attribute.

By default, WebLogic JMS sets this value to 10 messages. There are several situations where you
might want to change the value:

❑ Applications that pass very large messages should typically reduce the value to 1 to control
the number of messages in the client application’s memory, keep the server from running into
maximum T3 message sizes, and allow better parallelization of message processing (assum-
ing that processing these very large messages takes time).

❑ Applications where the messages are very time sensitive should reduce the value to 1 so that
messages don’t get stuck in a slow client’s buffer.

❑ Applications that need strict ordered processing and aren’t using the Unit-of-Order feature
must set the value to 1. Setting it to anything else will cause messages to get out of order if
message processing fails and the message goes back to the destination for redelivery.

❑ Applications that want to maximize throughput for small messages (for example, a few kilo-
bytes or less) should increase the value to allow the server to push more messages to a single
consumer in a single batch.

385

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 386

Chapter 10: Using WebLogic JMS

Client Reconnect Attributes The Reconnect Policy determines whether or not message produc-
ers and consumers attempt to automatically reconnect when they are unexpectedly disconnected.
Reconnect Blocking Time specifies the maximum amount of time in milliseconds that a JMS call
will block the calling thread while attempting to reconnect. Total Reconnect Time defines the
maximum amount of time in milliseconds that asynchronous consumers will try to reconnect. As
discussed previously, the default reconnect policy is Producers but we recommend handling all
reconnect attempts in your JMS client code using exception listeners and disabling client reconnect
by setting Reconnect Policy to None.

XA Connection Factory Enabled All WebLogic JMS applications that wish to send or receive JMS
messages as part of global JTA transactions must enable XA connection factory support. Applica-
tions that use WebLogic JMS connection factories that have not explicitly enabled this property will
not participate in JTA transactions.

Load Balancing Enabled This setting indicates whether to load balance the messages sent to a
distributed destination on a per-call basis. If checked (the default), associated producers’ messages
are load balanced across the member destinations on every call to MessageProducer.send(). Oth-
erwise, the load balancing occurs only on the first invocation, and all future invocations will go to
the same member destination, unless a failure occurs. This attribute has no effect on the consumers
and applies only to pinned producers created through this connection factory. A pinned producer
sets its destination when it is created and cannot change it afterward.

Server Affinity Enabled This checkbox controls how WebLogic JMS load balances consumers or
producers running inside a WebLogic Server instance across a distributed destination. If enabled,
WebLogic JMS prefers to associate consumers and producers with member destinations located
in the same server process. If disabled, WebLogic JMS load balances them across all member
destinations in the distributed destination just as it would if the consumers and producers were
running in a remote client process.

Best Practice
Most applications should use the default values for Server Affinity Enabled and Load
Balancing Enabled, which are true for both settings.

WebLogic JMS defines two connection factories, weblogic.jms.ConnectionFactory and weblogic.
jms.XAConnectionFactory, which are enabled by default. You can disable them by deselecting the
Enable Default Connection Factories checkbox in the server’s Services Configuration tab of the
WebLogic Console. Because the default connection factory settings cannot be changed, we recommend
that you always define application-specific connection factories. When choosing JNDI names for user-
defined connection factories (or, for that matter, anything else), avoid using JNDI names in the javax.*
and weblogic.* namespaces.

Best Practice
Always define application-specific JMS connection factories and disable the default JMS
connection factories. Avoid using JNDI names in the javax.* or weblogic.* name-
spaces.

386

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 387

Chapter 10: Using WebLogic JMS

Templates
Templates provide an efficient way to define multiple destinations with similar attribute settings. By
predefining a template, you can very quickly create a set of destinations with similar characteristics.
Changing a value in a template changes the behavior for all destinations using that template. Each des-
tination can override any template-defined attribute by setting the value for the attribute explicitly on
the destination itself. Using JMS templates is completely optional for applications that use predefined
destinations. Any application wishing to use temporary destinations, though, is required to assign a
Temporary Template to the WebLogic JMS server(s) involved.

Best Practice
Use JMS templates to create and maintain multiple destinations with similar character-
istics. JMS servers that support temporary destinations must tell the JMS server which
template to use when creating temporary destinations.

Destination Keys
By default, WebLogic JMS destinations use first-in-first-out (FIFO) ordering. Simply put, the next mes-
sage to be processed by a consumer will be the message that has been waiting in the destination the
longest. WebLogic JMS also gives you the ability to use message headers or property values to sort mes-
sages in either ascending or descending order. To do this, you need to define one or more destination keys
and associate these keys with a JMS destination, either directly or through the use of a template. Any des-
tination can have zero or more destination keys that control the ordering of messages in the destination.
By creating a descending order destination key on the JMSMessageID message header, we can configure a
destination to use last-in-first-out (LIFO) ordering. By creating a destination key on the JMSPriority mes-
sage header, we can configure a destination to use priority ordering where WebLogic JMS will process
the highest priority messages first and use FIFO ordering for messages with the same priority.

It is important to note that using sorting orders other than FIFO or LIFO increases the overhead of
sending a message. WebLogic JMS will have to scan some portion of the messages in a destination to
determine where to place the incoming message. Though this is not a big deal for destinations with a
small backlog of messages, it can be a huge performance penalty for destinations containing a large back-
log of messages. Therefore, we recommend avoiding sorted destinations unless the price of not sorting
the destination (for example, in increased application complexity) is higher than the cost of the potential
performance degradation.

In most cases, the default FIFO sort order works best and will always give the best performance. You
can change the sorting order to LIFO using the JMSMessageID without any significant performance
penalty. Sorting destinations by any other property can cause significant performance degradation on
the producer or the consumer. The amount of performance degradation will depend on the number of
undelivered messages stored in the destination at any point in time.

Best Practice
FIFO or LIFO sort orders provide the best performance. Any other sorting order can
cause significant performance degradation that will be proportional to the number of
undelivered messages stored in the destination.

387

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 388

Chapter 10: Using WebLogic JMS

Time-to-Deliver Extension
WebLogic JMS provides a time-to-deliver extension, which allows sending messages that will not be deliv-
ered until some time in the future. This extension can be a very useful feature for implementing certain
types of application functionality. To use it, simply set the producer’s time to deliver before sending the
message, as shown here. This will cause the producer to set the WebLogic JMS–specific JMSDeliveryTime
header when the message is sent. Note that you must cast the standard JMS producer to a WebLogic
JMS–specific type in order to use this extension:

// Send the message one minute from now...
long timeToDeliver = 60 * 1000;
weblogic.jms.extensions.WLMessageProducer producer =

(WLMessageProducer)queueSender;
producer.setTimeToDeliver(timeToDeliver);
queueSender.send(message);

One important point to note: The JMS provider sets most JMS message header fields. This means that
regardless of what values are set using the JMS Message interface, the JMS producer will overwrite
them. We mention this here because the weblogic.jms.extensions.WLMessage interface provides a
setJMSDeliveryTime() method. Trying to use this mechanism to set the JMSDeliveryTime header will
have no effect because the message producer will overwrite this header field value when it sends the
message.

WebLogic JMS also allows you to administratively delay all messages for a particular destination. Using
the destination’s Overrides Configuration tab, the Time-to-Deliver Override attribute supports
delaying all messages either by the same number of seconds or to be delivered at the same time each
hour or day (for example, at 6:00 PM each day).

The setJMSDeliveryTime() method in the weblogic.jms.extensions.WLMessage
interface is like most of the other setter methods on the javax.jms.Message inter-
face. Setting a value on WLMessage has no effect because the producer overwrites it
when a message is sent. Use the setTimeToDeliver() method on the
weblogic.jms.extensions.WLMessageProducer interface instead.

Persistent Stores
WebLogic Server provides a high performance persistent storage system for all services that require
persistence. The WebLogic Persistent Store supports both file- and database-based persistent stores. Each
WebLogic Server instance has a default file-based store it uses to store the server’s JTA transaction log.
The server can use the default store for other purposes, such as storing JMS persistent messages, though
doing so limits your ability to use JMS service migration. See Chapter 12 for a more complete discussion
of the automatic failover using whole server migration or service migration.

When WebLogic JMS determines that a message should be persistent, it uses the Persistent Store asso-
ciated with the destination’s JMS server to store the entire message. By default, WebLogic JMS keeps

388

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 389

Chapter 10: Using WebLogic JMS

all messages in memory for faster access — even persistent messages that it has already written to sec-
ondary storage. If the backlog of messages is small, this can significantly improve performance without
consuming significant amounts of memory. Of course, as the backlog of messages gets larger, the memory
demands can cause the JVM to run out of memory.

As you will see in the ‘‘Delivery Overrides, Destination Quotas, and Flow Control’’ section, you can use
quotas, thresholds, and paging to help control the amount of memory consumed.

Configuring Persistent Stores
WebLogic Server supports two types of persistent stores for saving JMS messages: JDBC and file-based
persistent stores. The choice of a particular store type has no effect on the application code. As their name
suggests, JDBC persistent stores save messages in database tables, whereas the file stores save messages
in files. To use a persistent store, create a persistent store and assign it to a WebLogic Server instance.
Each JMS server should have its own backing JDBC or file store, though it is possible for multiple JMS
servers on the same server instance to use the same persistent store. If a JMS server does not have a
configured persistent store, it will use its host WebLogic Server instance’s default store. To use service
migration to migrate a JMS server with an associated persistent store, you must create a custom persistent
store rather than using the host’s default store. In addition, the persistent store must be accessible via the
same path on the target WebLogic Server. The path is either the JDBC data source name or the directory
where the file resides.

JDBC-based stores may share the same physical database schema, but each must have its own uniquely
named table. The JDBC store uses one table whose base name is WLStore. By using the Prefix Name
parameter, you can prepend values to these base names to create unique names per store. By knowing the
table naming syntax for your database, you can force the tables to be in different schemas; for example,
specifying a Prefix Name of bigrez.JMS_Store1_ will cause the JDBC store to create a table in the bigrez
schema with the name JMS_Store1_WLStore. Failure to specify unique table names for multiple stores
sharing the same database can result in message corruption or loss. JDBC-based stores will normally
detect and prevent attempts by more than one store to use the same backing table; however, you should
not rely on this check.

Multiple WebLogic Server instances cannot share the same persistent store. For
JDBC-based stores, you must specify a unique Prefix Name value for every store
that uses the same database schema. Failure to do so can result in message
corruption or message loss.

In the case of file stores, multiple WebLogic Server instances can share the same directory. WebLogic
Server will automatically create unique names of the form <FileStoreName>######.DAT, where ######
is a unique number. WebLogic Server will prevent you from creating two file stores with the same name
within a single domain, which prevents you from accidentally having two WebLogic Server instances
trying to share the same file store. However, there is no enforcement across domains; therefore, you need
to make sure that you don’t create a situation where two different servers in two different domains are
using the same file store directory and file store name. Now, let’s compare and contrast the two types of
stores.

389

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 390

Chapter 10: Using WebLogic JMS

File stores generally perform better than JDBC stores. By default, writing to a file store is a synchronous
operation. WebLogic Server provides three Synchronous Write Policy settings for controlling how
messages (and all other persistent data) are written to the store:

❑ Direct-Write is the default policy as of WebLogic Server 9.0. It forces all message create and
delete requests to safe storage (which might be a disk or a battery backed cache on some high-end
storage devices) on each physical write, thereby eliminating the need for a separate flush opera-
tion at the end of the transaction. In general, Direct-Write is faster than Cache-Flush and uses
a native file I/O library called wlfileio2 (for example, libwlfileio2.so on Linux); however,
this policy’s reliability and performance depend on operating system and hardware support of
on-disk caches.

❑ Cache-Flush was the default setting prior to WebLogic Server version 9.0. It forces all message
create and delete requests to be flushed from the operating system cache to disk before the com-
pletion of a transaction, or a JMS operation in the nontransactional case. The Cache-Flush policy
is reliable and scales well as the number of simultaneous users increases but is almost always
slower than Direct-Write.

❑ Disabled allows for maximum performance, but because messages may remain in operating
system caches, it exposes the application to possible message loss or duplicate messages in the
event of a failure.

Before WebLogic Server version 9.0, the Direct-Write policy’s performance and scalability were sig-
nificantly reduced without the use of an on-disk cache. The use of an on-disk cache can expose the
application to message loss or duplication in the event of a power failure unless the on-disk cache is reli-
able. Many high-end storage devices that offer on-disk caches also provide a battery backup to prevent
the loss of data during a power failure.

To add to the complexity of the Direct-Write setting, Windows provides an OS option to enable write
caching on the disk; this is enabled by default on most consumer-grade installations (for example, laptops
and desktops). The problem is that some versions of Windows do not send the correct synchronization
commands to tell the disk to synchronize the cache (for more information, please refer to Link 10-8). You
can disable write caching with most disk drives using the Windows Device Manager entry for the disk in
question; the Write Cache Enabled checkbox is located on the Disk Properties tab.

Direct-Write writes through to safe storage, which might be an on-disk cache.
Remember, using on-disk caches without battery backup can cause data loss or
corruption should a power failure occur.

One final word of caution: Some third-party JMS providers set their default write policy to the equiv-
alent of WebLogic Server’s Disabled policy, which allows the operating system to buffer all file writes
without flushing them to disk. Though this is great for performance, it can cause data loss and cor-
ruption in the event of a power failure. Before you try to compare performance numbers for persistent
messages with WebLogic JMS, make sure you understand the write policy configuration for each JMS
provider.

390

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 391

Chapter 10: Using WebLogic JMS

Some third-party JMS providers default to the equivalent of WebLogic Server’s
Disabled policy, so make sure you check before trying to compare performance
numbers with those of WebLogic JMS.

Because file stores are often collocated with the JMS server, writing to a file store may generate less
network traffic. File store availability, however, is subject to hardware failures so it is often desirable
to place file stores on shared disks or storage area networks (SANs). Be particularly wary if you are
considering using NFS to host file stores. NFS historically has provided no support for synchronous
writes, and also suffered from file locking issues. Some NFS implementations have matured in recent
years, you should check that yours guarantees that a write operation will not return until the data is
safely stored on disk. Because of these issues, JDBC stores may provide an easier solution for addressing
the failover issues because the database typically resides on a separate machine from the application
servers.

Best Practice
File store availability is subject to hardware failure. In situations where you need to
failover, you must put the file stores on some sort of shared disk. Do not use NFS as a
means to share file stores.

WebLogic Server never attempts to reduce the size of a file store. The file store grows as needed to hold all
unconsumed messages up to the quota limits configured for the JMS server or its individual destinations.
Although the entire file store can be reused to store new messages, the amount of disk space that the
store consumes will never shrink even when the file store has no messages in it. Starting in WebLogic
Server 9.2, WLST supports the compactstore command to compact a file store, but this only works
when the WebLogic Server that hosts the store is shut down. For more information on persistent store
administration, see the WebLogic Server documentation at Link 10-9.

WebLogic Server will never shrink the size of a file store, though it will reclaim the
space inside the file for future use. Set quotas on the JMS server to limit the
maximum size of the store. Use the WLST compactstore command should you feel
the need to reduce the size of the store.

Finally, a file store can be thought of as a database. For JMS applications that process large numbers of
persistent messages, you should configure disk access just as you would when setting up high perfor-
mance database servers. Isolate file stores on separate disks. When using multiple file stores, you may
need to put each store on a separate disk, or even disk controller. Using advanced, on-disk caching tech-
nology can provide large performance improvements without sacrificing the integrity of the message
store. If the messages are important enough to store to disk, they are probably too important to lose due
to hardware failure. Consider using a SAN, a multiported disk, or disk mirroring technology to make the
file store highly available to allow for JMS service or whole server migration.

391

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 392

Chapter 10: Using WebLogic JMS

Understanding When Messages Are Persisted
On the surface, message persistence seems straightforward, and for point-to-point messaging it is. Point-
to-point message producers can specify a message’s delivery mode, which determines whether the
message is persistent. For WebLogic JMS, the producer’s desired delivery mode can be overridden by
several JMS configuration options. In the end, the message will either be persistent or non-persistent
based on the application’s request and the WebLogic JMS configuration. The section on overrides, quo-
tas, and flow control provides more information on how to control message delivery characteristics such
as persistence.

For publish-and-subscribe messaging, the message’s delivery mode and WebLogic JMS configuration do
affect the decision of whether or not to persist a message, but WebLogic JMS also considers the number
and type of subscribers to the topic. If a nondistributed topic has one or more durable subscribers, mes-
sages that are sent with a persistent delivery mode will always be stored in the persistent store and will
be retained until all of the durable subscribers have received a copy of the message, even in the event of
a server failure and restart. If the delivery mode for the message is non-persistent, WebLogic JMS retains
the messages by buffering them in memory (or paging them out to the paging directory, if needed). If
there are no durable subscribers currently subscribed to a nondistributed topic, WebLogic JMS will not
persist a message, regardless of whether the producer set a persistent delivery mode on the message,
because there is no need to recover the messages in the event of a server failure. In the event of a server
failure and recovery, the JMS specification requires only that durable subscribers that existed before the
time that the persistent message was originally produced actually receive the message.

The durable subscription itself is persisted to ensure that it survives server restarts or system crashes,
as required by the JMS specification. Because of this, WebLogic JMS requires that a persistent store be
configured on any WebLogic JMS server that hosts topics that will have durable subscribers, even if
all of the messages are non-persistent. By default, WebLogic Server will use the default persistent store
if you do not explicitly associate a persistent store with the JMS server. WebLogic JMS will throw a
javax.jms.JMSException if an application attempts to create durable subscribers on a topic that is hosted
by a WebLogic JMS server with its Store Enabled attribute set to false.

Delivery Overrides, Quotas, and Flow Control
As we discussed previously, you can override default delivery attributes for messages either program-
matically in the application or administratively using the WebLogic Console. In this section we take a
look at how to use delivery overrides. We then examine different WebLogic JMS throttling features such
as quotas, paging, and flow control.

Overriding Message Delivery Characteristics
Message delivery attributes include Priority, Time to Live, Time To Deliver, Delivery Mode,
Redelivery Delay, and Compression Threshold. As you saw earlier, default values for these can
be set in the connection factory; however, the application can override these values by setting them
explicitly in the code. In addition, the WebLogic JMS destination configuration can override both the
connection factory and the application-specified values. You can specify destination configuration
overrides either directly in the destination’s settings or indirectly in the destination’s template settings.
Any settings in the destination override the setting in the destination’s template.

Let’s look at an example to make sure that you understand how this works. In our example, we list
the different ways to configure the Delivery Mode for a message being sent to a particular destina-
tion in ascending order of precedence. Each subsequent method will override all of the previously

392

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 393

Chapter 10: Using WebLogic JMS

mentioned methods so that the last one that is applicable will define the actual Delivery Mode for the
message.

1. The connection factory specifies the Default Delivery Mode, which defaults to persistent.

2. The application may override the Delivery Mode by explicitly setting it in the application
code prior to sending the message. For example,

queueSender.setDeliveryMode(deliveryMode);
queueSender.send(message);

where deliveryMode can be set to one of the following constants:

javax.jms.DeliveryMode.PERSISTENT
javax.jms.DeliveryMode.NON_PERSISTENT

3. The destination optionally can have a template that can override the Delivery Mode by set-
ting it to Persistent, Non-Persistent, or No-Delivery, where No-Delivery is the default
and simply means that the template does not override the values specified by the application
or the connection factory.

4. The destination can override the Delivery Mode by setting it to Persistent,
Non-Persistent, or No-Delivery, where No-Delivery is the default and simply
means that the destination does not override the values specified by the template, the
application, or the connection factory.

5. The JMS server can implicitly override a Delivery Mode value of Persistent by
explicitly disabling Store Enabled and enabling Allow Persistent Downgrade. This
combination will force all messages delivered to destinations associated with the
JMS server to be non-persistent. If the JMS server has not been configured with this
combination of options, this simply implies that the JMS server is not overriding the
Delivery Mode.

If an application invokes the setJMSDeliveryMode(deliveryMode) or
setJMSPriority(priority) methods from the javax.jms.Message interface,
WebLogic JMS will override these values, because the JMS specification designates
that these methods are strictly for use by JMS providers. You must set the delivery
mode or priority using the appropriate producer method calls for them to take
effect.

Understanding Quotas
WebLogic JMS provides mechanisms for establishing quotas on individual JMS destinations, on a set of
destinations, or on the entire JMS server. These quotas control the maximum amount of data that can
be stored, either in a persistent store or in memory. Without quotas in place, producers can continue to
produce messages until their messages consume all available space in the persistent store or all available
memory in the JMS server.

393

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 394

Chapter 10: Using WebLogic JMS

WebLogic JMS quotas are JMS module-level artifacts. The Bytes Maximum and Messages Maximum
attributes specify the quota’s maximum number of bytes and messages, respectively. By default, quotas
are not shared; each destination that uses the quota can hold the maximum number of bytes or messages
the quota defines. Quotas are also sharable. This means that all destinations compete for the allowed
number of bytes or messages. It is important to note that the scope of a shared quota is a single JMS
server — shared quotas are never shared across JMS server boundaries.

WebLogic JMS also supports setting a quota directly on the JMS server itself. As of WebLogic 9.0,
this JMS server-level quota applies only to destinations that aren’t using a named quota. For example,
JMSServer-1 contains three queues, Queue1, Queue2, and Queue3, and defines a JMS server-level quota of
50 megabytes. Queue1 is using a named quota whose message maximum attribute is set to 25 megabytes.
This effectively sets a private quota of 25 megabytes on Queue1 and a shared quota of 50 megabytes on
Queue2 and Queue3 for a maximum possible memory footprint for JMSServer-1 of 75 megabytes.

The scope of a shared quota is a single JMS server. JMS server–level quotas apply
only to destinations not using named quotas.

When the quota is reached, WebLogic Server JMS producers will wait for a limited time until space
becomes available up to the user-defined timeout period. If the quota condition does not subside before
the timeout period, producers get a javax.jms.ResourceAllocationException. It is up to the applica-
tion how to handle this condition.

The connection factory’s Send Timeout attribute controls the maximum number of milliseconds a pro-
ducer will block when waiting for space. By default, it is set to 10 milliseconds. You can disable blocking
sends by setting this value to 0. An application may choose to override this setting by changing the value
on the producer:

weblogic.jms.extensions.WLMessageProducer producer =
(WLMessageProducer)queueSender;

producer.setSendTimeout(sendTimeoutMillis);
queueSender.send(message);

You should be very careful about using blocking sends with message producers running inside a
WebLogic Server instance. These will cause the server’s execute threads to block during quota conditions
and could bring the entire server to a grinding halt and possibly deadlock the server for the amount of
blocking time. In most cases, application message producers running inside the server should either
disable blocking sends or set their values very small to prevent thread starvation. Also, be careful about
retrying sends indefinitely inside the server for similar reasons.

Blocking sends are a convenient way to shield applications from temporary quota
limits. Care needs to be taken, though, when the producers are running inside a
WebLogic Server so as not to completely block execute threads that are needed to
consume messages and clear the quota limit condition. To disable blocking sends,
set the Send Timeout to 0.

394

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 395

Chapter 10: Using WebLogic JMS

The Blocking Send Policy attribute of the JMS server defines the expected behavior when multiple
senders are competing for space on the same JMS server. The valid values are as follows:

FIFO This value indicates that all send requests are to be processed in the order in which they
were received. When the quota condition subsides, requests for space are considered in the order
in which they were made.

Preemptive This value indicates that any send operation can preempt other blocking send oper-
ations if space is available. That is, if there is sufficient space for the current request, that space is
used even if there are other requests waiting for space. This can result in the starvation of larger
requests. If sufficient space is not available for the request, the request is queued up behind other
existing requests.

Best Practice
Always configure quotas to prevent the server from consuming all available space
while storing unconsumed messages. A good rule of thumb is to assume that each
message will consume 512 bytes — even if the message has been paged out.

Understanding Message Paging
A WebLogic JMS server will automatically move in-memory messages out of the server’s memory to
secondary storage to prevent trying to hold too many messages in memory; this is known as paging.
When a message that has been paged out of memory is needed, the server moves it back into memory.
This paging behavior is completely transparent to the JMS application. Of course, reading and writing
messages to disk will have a significant performance impact, but this is much better than filling up all of
the server’s available memory.

WebLogic JMS keeps all messages in memory for faster access — even persistent messages. This can
cause problems as the number and size of the persistent messages in the destination grow. Fortunately,
WebLogic JMS automatically pages messages out of memory when its message buffer fills up. The JMS
server determines the size of its message buffer using the Message Buffer Size attribute if it is set to a
nonnegative number of bytes. By default, the Message Buffer Size is set to –1, which means that the JMS
server will automatically determine the size of its message buffer. When automatically determining the
message buffer size, the JMS server sets the message buffer size to either one-third of the maximum heap
size or 512 megabytes, whichever is smaller.

Tip to Remember
Paging is important for both persistent and non-persistent messages.

A JMS server uses its Paging Directory to store paged messages. By default, every JMS server uses
$DOMAIN_HOME/servers/<server-name>/tmp as the paging directory. Of course, you probably want to
configure the paging directory explicitly so that you can control the location of the store, which might be
on a RAID disk array to increase performance for high-volume systems.

395

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 396

Chapter 10: Using WebLogic JMS

For persistent messages stored in a file store, WebLogic JMS actually does not use the paging directory
to page messages larger than 64 kilobytes because they already exist locally in the persistent store. For
smaller messages, it writes the messages to the paging store to improve the performance when it needs
to page in the messages. One important thing to note is that even though the paging process writes non-
persistent and persistent messages to the paging directory as needed, these messages will not survive
server restarts or system crashes. Because of this, there is no need to worry about high availability of a
paging directory.

Paging is an important preventive mechanism. Most non-persistent messaging applications, however,
choose to use non-persistent messages for speed. Because paging will significantly reduce the perfor-
mance of your messaging application, you should tune your application configuration to try to prevent
paging from ever occurring. Remember, a healthy messaging system requires consumers to keep up with
producers over time.

Best Practice
Paging should be a last line of defense because of its impact on performance. Always
design and tune your JMS application to avoid paging during normal peaks in message
load.

Understanding Flow Control
WebLogic JMS flow control can slow down the rate at which message producers are sending messages
in an attempt to allow consumers to catch up before quota limits are reached. Once it starts controlling
the flow of messages to a particular JMS server or destination, it will continue to do so until the number
of unconsumed bytes or messages drops below the configured lower threshold. At that point, WebLogic
JMS will tell the producers to start increasing their flow of messages gradually until message rates are no
longer being throttled.

Flow control configuration involves settings on the producer’s connection factory and on either the JMS
server or a destination. By default, WebLogic JMS enables flow control on all connection factories but
effectively disables it from ever occurring through the default thresholds on JMS servers, templates, and
destinations.

To configure thresholds, use the Thresholds & Quotas Configuration tab of the JMS server, JMS tem-
plate, or JMS destination. Like quotas, thresholds can be set in terms of the number of bytes or the number
of messages. Bytes Threshold High and Messages Threshold High specify the upper threshold that
WebLogic JMS uses to determine when to start flow control. When the number of bytes or messages
exceeds the upper threshold, WebLogic JMS will log a warning message and start limiting the producers’
message flows for any producers using connection factories with flow control enabled.

Bytes Threshold Low and Message Threshold Low specify the lower threshold that WebLogic JMS
uses to determine when to stop flow control. When the number of bytes or messages drops below
the lower threshold, WebLogic JMS logs a message and disarms any flow control that was occurring
and instructs all of the flow-controlled producers to begin increasing their message flow rates
gradually.

The attributes that control the tuning of the flow control algorithm are set via a producer’s connection
factory. When you create a connection factory, flow control is enabled by default and the flow control

396

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 397

Chapter 10: Using WebLogic JMS

tuning parameters are given some default values, as shown in Figure 10-5. Of course, you can change the
default values as necessary. Let’s spend some time looking at the flow control algorithm and how these
tuning parameters affect its behavior.

Figure 10-5: Configuring the flow control parameters.

WebLogic JMS engages the flow control algorithm when an upper threshold is reached. At that
point, WebLogic JMS will limit the flow rate of all producers by setting their maximum allowable flow
rate to that specified by their connection factory’s Flow Maximum parameter. Unless the lower threshold
is reached first, WebLogic JMS will continue to slow down producers over time until all producers are
at their minimum flow rate, as specified by the connection factory’s Flow Minimum parameter. The rate
at which WebLogic JMS slows down producers is controlled by the Flow Interval and Flow Steps
parameters. Flow Interval defines the time interval over which a producer is slowed from its maximum
rate to its minimum rate. Flow Steps is the number of incremental steps WebLogic JMS uses in the
slow-down process. It reduces the flow rate more rapidly in earlier steps, so the server reacts quickly to
a breach of the maximum threshold.

Once the maximum allowable flow rate reaches the Flow Minimum value, WebLogic JMS will maintain
the producers’ flow rates until the JMS server or destination backlog reaches the lower threshold. At that
point, WebLogic JMS will linearly increase the producers’ maximum allowable flow rates Flow Steps
times over the Flow Interval period, with the final step disengaging flow control completely.

As with paging, flow control should be used as a preventive measure. Flow control is no substitute for
proper application design and tuning so that consumers can keep up with producers. Under the covers,

397

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 398

Chapter 10: Using WebLogic JMS

flow control causes the producer’s sending thread to sleep for a period of time. This has two implications.
First, flow control only works for message producers that send multiple messages. Second, you should
think carefully before using flow control on producers running inside the WebLogic Server because flow
control effectively slows down the sending thread. We discuss this more in the next section, where we go
into more detail about how to design JMS applications properly with WebLogic Server.

Best Practice
Use flow control as a preventive measure for producers that run outside the WebLogic
Server process. Be careful using flow control inside the server because it will cause
server threads to slow down.

WebLogic JMS Application Design
The previous section looked at the different throttling mechanisms WebLogic JMS provides to help offset
temporary spikes in message production. In general, you need to design your messaging applications so
that the consumers can keep up with the producers over long periods of time. If messaging applications
tend to produce more messages than they can consume, eventually the application will fall so far behind
that it runs into physical resource constraints such as running out of memory or disk space. In this section,
we discuss some design considerations for messaging applications.

Choosing a Destination Type
When designing a JMS application, a commonly asked question is whether to use queues or topics. Trying
to think in terms of destination type often leads to confusion. Instead, you should think about what type
of messaging your application requires. In general, point-to-point style messaging should use queues,
whereas publish-and-subscribe style messaging should use topics. Of course, there is no hard and fast
rule, and it is possible to use either type of destination with most applications if you are willing to do
enough work. When using queues, some things to remember are:

❑ Each message will be processed by one consumer.

❑ Messages will remain on the queue until they are consumed or expire.

❑ Persistent messages are always persisted.

❑ Using message selectors becomes expensive as the number of messages in the queue gets large.

When using topics, some things to remember are:

❑ Each message can be processed by every consumer.

❑ Unless you are using durable subscriptions, messages will be processed only if at least one con-
sumer is listening at the time the message is sent.

❑ Persistent messages are persisted only when durable subscriptions exist.

❑ Using message selectors with topics becomes expensive as the number of consumers gets large.

❑ Unlike queues, which can divide their messages across multiple parallel consumers, a single
topic subscription usually has a single active consumer. An exception is WebLogic Server MDBs

398

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 399

Chapter 10: Using WebLogic JMS

that subscribe to a WebLogic JMS topic but don’t use container-managed transactions. In this
case, an MDB will multiplex a single topic subscription over multiple instances within a server,
and so process the messages in parallel. This is a useful feature; it is not possible to arrange such
parallel processing of messages for a single subscription using the standard JMS API.

Best Practice
Choose your destination type based on the type of messaging. Point-to-point messaging
implies queues, and publish-and-subscribe messaging implies topics.

Locating Destinations
In WebLogic JMS, a destination physically resides on a single server. JMS provides two ways for an
application to obtain a reference to a destination. First, you can explicitly look up the destination using
the JNDI API and cast it to the appropriate destination type, Queue or Topic, or implicitly have the
container inject the reference using an annotation.

Second, you can use the Session.createQueue(destinationName) or Session.createTopic
(destinationName) methods to locate an existing queue or topic. Note that these methods are really
misnamed since they will not create new destinations, only return a reference to a pre-existing desti-
nation. These create methods require an application to pass destination names using a vendor-specific
syntax.

For WebLogic JMS, the default syntax is:

<jms-server-name>/<jms-module-name>!<jms-destination-name>

For example, to obtain a reference to a destination named queue1 from the module named
module1 that resides in the JMS server named JMSServer1, you would use a destination name of
JMSServer1/module1!queue1. You can replace the <jms-server-name> with a ‘‘.’’ to restrict the search
to the local server — that is, the one with which your JMS connection is associated (for example,
./module1!queue1).

When referring to a distributed destination, omit the JMS server name and forward slash because a
distributed destination spans JMS servers; for example, module1!MyDistributedQueue. To refer to an
individual member destination of a uniform distributed destination, use the following syntax:

<jms-server-name>/<jms-module-name>!<jms-server-name>@<udd-name>

If queue2 is the name of a distributed queue, you could use JMSServer1/module1!JMSServer1@queue2
or ./module1!JMSServer1@queue2 to get the member queue on JMSServer1.

WebLogic Server also allows you to influence the name used to call the createQueue() or
createTopic() method. This feature allows you to remove, or at least reduce, the WebLogic JMS
configuration-related information from the name passed to these create methods. Simply use the
Create Destination Identifier (CDI) under the Advanced portion of the destination’s General
Configuration tab to specify a name for the destination. Now, the syntax for a nondistributed
destination or a member of a uniform distributed destination will be <jms-server-name>/<cdi-name>

399

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 400

Chapter 10: Using WebLogic JMS

or ./<cdi-name>. Even with a CDI specified, the reference to the distributed destination remains the
same (<jms-module-name>!<udd-name>).

Given that the default behavior for the createQueue() and createTopic() methods require specifying
the WebLogic JMS server, module name, or both, we feel that these methods are of limited value (unless
you can use the CDI name with the dot notation) because:

❑ We generally want to hide the location of the destination from the application. Any advantages
that might be gained by using these methods rather than JNDI are likely to be offset by requiring
the application to understand what JMS server or module the destination lives in. Any change
in deployment topology would likely require changing the value of the names passed to these
methods.

❑ As we mentioned previously, these methods use a vendor-specific naming syntax that is not
portable across providers.

As a result, we recommend using JNDI or annotations to obtain references to JMS destinations. JNDI
lookups, though, are relatively expensive so applications should attempt to look up JMS destinations
once and cache them for reuse throughout the life of the application.

Best Practice
Use JNDI to locate destinations. Caching and sharing JMS destinations or using anno-
tations throughout the application will help to minimize the impact of the JNDI lookup
overhead.

Choosing the Appropriate Message Type
Choosing a message type is the second design choice you face when designing JMS applications.
TextMessage is one of the more commonly used message types simply because of the type of data
typically exchanged. As the popularity of XML increases, TextMessage popularity increases because the
JMS specification does not explicitly define a message type for exchanging XML documents. However,
serializing a string is more CPU-intensive than serializing other Java primitive types. Using strings as
the message payload often implies that the receiver must parse the message in order to extract the data
encoded in the string. WebLogic JMS also provides an XMLMessage type. The primary advantage of the
XMLMessage type is the built-in support for running XPath-style message selectors on the body of the
message.

Let’s take a minute to talk more about XML messages. Exchanging XML messages via JMS makes it easy
to think about solving many age-old application integration problems. Although JMS uses Java and Java
already provides a platform-independent way of exchanging data, not all messaging applications are
written in Java. Fortunately, many popular legacy messaging systems, such as IBM’s WebSphere MQ,
offer a JMS API in addition to their other language bindings. Oracle also provides both a C and .NET API
to WebLogic JMS. This solves the message exchange part of the problem.

XML solves the data exchange part of the problem by providing a portable, language-neutral format
with which to represent structured data. As a result, it is not surprising to see many JMS applications
using XML messages as their payload. Of course, the portability and flexibility of XML do not come
without a cost. Not only are XML messages generally sent using TextMessage objects, which makes

400

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 401

Chapter 10: Using WebLogic JMS

their serialization more costly, but they also generally require parsing the data in order to convert it into
language object representations that the application can manipulate more easily. All of this requires that
the receivers do more work just to be able to get the message into a form where it can be processed.

This is not to say that you should avoid XML messages completely. XML is the format of choice for
messages that cross application or organizational boundaries. When talking about applications here,
we define an application as a program or set of programs that are designed, built, tested, and more
importantly, deployed together as a single unit. What we want to caution you on is using XML message
formats everywhere — even within the boundaries of a single application — just to be using XML. Use
XML where it makes sense, and use other binary representations where XML is not required.

Best Practice
Use XML messages for inter-application messaging and binary messages for intra-
application messaging.

When choosing the message type for an application, there are several things you should consider. A well-
defined message should have just enough information for the receiver to process it. You should consider
how often the application will need to send the message and whether the message needs to be persistent.
Message size can have a considerable impact on network bandwidth, memory requirements, and disk
I/O. Keep messages as small as possible without removing information needed to be able to process the
message efficiently.

Once you decide on the information to pass, use the simplest message type that can do the job.
If possible, use a message format that is directly usable by the receiver, such as a MapMessage or
ObjectMessage.

If you have only a few primitive types to send in a message, try using a MapMessage instead of an
ObjectMessage for better performance. As the number of fields gets larger, however, the mapping code
itself can add complexity. You might find that the performance benefit is outweighed by the additional
maintenance burden. MapMessage also provides some extensibility in the sense that you can add new
name-value pairs without breaking existing consumers. When you are using an ObjectMessage, provid-
ing your own custom serialization by implementing Externalizable rather than relying on the default
Serializable implementation can improve the marshalling performance.

We should caution you about the implications of using an ObjectMessage to pass data across application
boundaries. ObjectMessage uses Java serialization, which relies on the sender and the receiver having
serialization-compatible versions of the class available. This can lead to tightly coupled producers and
consumers — even though you are using asynchronous messaging for communication. It might be pos-
sible to escape some of this coupling by implementing Externalizable, but this just means that your
externalization code has to deal with object versioning. In contrast, XML provides more loosely-coupled
message passing between applications. XML schemas can be written to validate different versions of a
message, optional content can be ignored by systems that don’t understand it, and an XML message can
easily be transformed and adapted.

BytesMessage generally will produce the smallest message sizes. However, you need to carefully
weigh the benefits of the smaller message sizes against the expense and complexity of marshalling and
unmarshalling your data into and out of an array of bytes. Like with using an ObjectMessage to cross

401

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 402

Chapter 10: Using WebLogic JMS

application boundaries, using a BytesMessage to cross application boundaries can produce a similar
coupling problem in that the sender and receiver must understand the format of the byte array being
passed.

Best Practice
Use the simplest and smallest message type that is directly usable by the receiving
application. Favor MapMessage when sending small collections of primitive data types,
and avoid ObjectMessage and BytesMessage to reduce coupling between disparate
systems.

Compressing Large Messages
XML messages tend to be larger than their binary counterparts. As you can imagine, larger messages will
require more network bandwidth, more memory, and more importantly, more storage space and disk
I/O to persist. If the messages are infrequent, this may not be an issue, but as the message frequency
increases, the overhead will compound and start affecting the overall health of your messaging system.
One way to reduce this impact is to compress large messages that carry strings as their payload. Com-
pressed XML messages may actually provide a more compact representation of the data than any other
binary format.

WebLogic JMS connection factories provide a Default Compression Threshold parameter to compress
messages automatically whose serialized message body exceeds the configured value. The performance
impact of message compression, however, is not clear cut and needs to be evaluated on a case-by-case
basis. When considering the use of compression, there are a number of things to weigh. First, are your
messages big enough to warrant compression? Small messages do not generally compress very well so
using compression can, in some cases, actually increase the size of your message.

Second, will the extra overhead of compressing and decompressing every message prevent your appli-
cations from meeting your performance and scalability requirements? Compressing messages can be
thought of as a crude form of throttling because the compression step will slow down your message
producers. Of course, this isn’t necessarily a good thing because your consumers will also have to decom-
press the message before processing it.

Finally, will compression significantly reduce your application’s network and memory resource
requirements? If the producers and consumers are not running inside the same server as the destination,
compressing the messages can reduce the network transfer time for messages. It can also reduce
the memory requirements for your WebLogic JMS server. If the messages are persistent, it can also
reduce the amount of disk I/O for saving and retrieving the messages. When the persistent store
type is JDBC, it can reduce the network traffic between the WebLogic Server and the database. If the
producers, consumers, and JMS server are all running inside the same WebLogic Server instance, many
of these benefits may be outweighed by the additional CPU and memory overhead of compression and
decompression.

402

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 403

Chapter 10: Using WebLogic JMS

Best Practice
The decision whether to use compression is something that needs to be carefully consid-
ered. It is usually only beneficial when transferring messages to and from remote clients
over low speed networks. If the producers, consumers, and destinations are collocated
inside a WebLogic Server instance, it is generally better not to use compression.

Selecting a Message Acknowledgment Strategy
WebLogic JMS retains each message until the consumer acknowledges that it has received the message.
Only at this point can WebLogic JMS remove the message from the server. Committing a transaction is
one way for an application to acknowledge a message has been received. If transactions are not being
used, an application uses message acknowledgments to acknowledge that a message, or set of messages,
has been received. Message acknowledgments and transactions, whether they are JMS transacted sessions
or JTA transactions, are mutually exclusive. If you specify both transactions and acknowledgments,
WebLogic JMS will use transactions and ignore the acknowledgment mode.

Your application’s message acknowledgment strategy can have a significant impact on performance
and scalability. WebLogic JMS defaults to using AUTO_ACKNOWLEDGE mode. This means that WebLogic
JMS will automatically acknowledge each message after the receiver processes it successfully. Using
AUTO_ACKNOWLEDGE mode can reduce the chance of duplicate messages; however, it comes at a cost
because the receiver’s runtime must send an acknowledgment message to the JMS server after each
message to tell the server to remove the message.

If your application can tolerate duplicate messages, JMS defines the DUPS_OK_ACKNOWLEDGE mode to allow
the receiver’s runtime to acknowledge the messages lazily. Another technique that gives you a little
more control is using CLIENT_ACKNOWLEDGE mode to explicitly acknowledge groups of messages rather
than each message individually. Though message duplication is still possible, it typically occurs only
because of a failure where your receiver has already processed some messages but had not acknowledged
them. You could imagine building a strategy that tries to detect duplicate messages when starting up or
recovering from a failure condition.

In addition to the standard JMS message acknowledgment modes, WebLogic JMS provides two addi-
tional acknowledgment modes through the weblogic.jms.WLSession interface:

NO_ACKNOWLEDGE This mode tells WebLogic JMS not to worry about message acknowledgments
and simply provide a best-effort delivery of messages. In this mode, WebLogic JMS will imme-
diately delete messages after they have been delivered, which can lead to both lost and dupli-
cate messages in the event of a software or hardware failure. Applications that want to maximize
performance and scalability and can tolerate both lost and duplicate messages should use this
acknowledgment mode.

MULTICAST_NO_ACKNOWLEDGE This mode can only be used for nondurable topic subscribers, and
tells WebLogic JMS to use IP multicast to deliver messages to consumers. This has large perfor-
mance and scalability benefits, because the network only deals with one message regardless of the

403

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 404

Chapter 10: Using WebLogic JMS

number of subscribers, but it does require a fast, reliable network and the application must be able
to tolerate occasional message loss. As the name implies, this mode has similar acknowledgement
semantics to the NO_ACKNOWLEDGE mode.

For remote, nondurable subscribers, WebLogic JMS pushes local copies of the message to every client
JVM to optimize network overhead. Because this strategy also includes message acknowledgment
optimizations, these subscribers really will not benefit from using the aforementioned CLIENT_
ACKNOWLEDGE strategy or from using NO_ACKNOWLEDGE; AUTO_ACKNOWLEDGE should perform equally well.

We talk more about using multicast sessions later in this section.

Best Practice
Applications that explicitly acknowledge sets of messages will generally be faster and
more scalable than those that acknowledge each message individually to minimize the
possibility of receiving duplicate messages.

Designing Message Selectors
As we discussed earlier in the ‘‘JMS Key Concepts’’ section, message selectors allow consumers to fil-
ter the set of messages they want to receive. Consumers specify a logical statement using an SQL WHERE
clause–like syntax that the JMS provider evaluates against each message’s headers or properties to deter-
mine whether the consumer should receive the message. WebLogic JMS adds another type of selector for
use with the WebLogic JMS XMLMessage type. With this message type, you can specify XPath expressions
that evaluate against the XML body of the message.

In WebLogic JMS, all selector evaluation and filtering takes place on the JMS server, with the exception of
multicast subscribers, which we discuss later. For topics, WebLogic JMS evaluates each subscriber’s mes-
sage selector against every message published to the topic to determine whether to deliver the message
to the subscriber.

For queues, the evaluation process is more complex. A message is always delivered to a queue, and
WebLogic JMS will evaluate the message against each active consumer’s message selector until it finds
a match. An active consumer is either a synchronous receiver that is waiting in a receive() call or an
asynchronous listener that has room for more messages in its local buffer, whose size is controlled by the
consumer’s connection factory’s Maximum Messages per Session attribute. If no active consumer’s mes-
sage selector matches the message, the message will remain in the queue. When a new active consumer
associates itself with the queue, WebLogic JMS must evaluate the consumer’s message selector against
each message in the queue, delivering matching messages. This may take some time.

What does this all mean? It means that while a queue consumer stays active, WebLogic JMS maintains
state about which messages have been tested against the consumer’s selector. As soon as it becomes
inactive, that state is lost. The next time it becomes active, it must start from the beginning of the queue,
testing each message until it either becomes inactive or reaches the end of the queue. Once it reaches the
end of the queue, the consumer’s selector will be added to the set that is evaluated when new messages
arrive — a much more efficient process. If your queue maintains a large backlog and your consumers
are going in and out of the active state frequently, your consumers will likely end up evaluating their
selectors against the same messages multiple times.

404

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 405

Chapter 10: Using WebLogic JMS

Be wary of applying selectors where consumers are frequently connecting to queues — which includes
those switching in and out of the active state — that contain an existing backlog of messages. In these
circumstances, performance of queue selectors may be greatly degraded. In contrast, the performance of
topic message selectors is stable, and the cost of adding a new subscriber is small. See our discussion of
indexed subscribers later in this section.

It is often better to split a destination into multiple destinations and eliminate the need for message selec-
tors. For example, imagine an application that sends messages to the trade queue. If the application’s
consumers that use message selectors to select only buy or sell orders, we can split the trade queue into
buy and sell queues and eliminate the need for a message selector. When a producer sends a buy mes-
sage, it sends the message directly to the buy queue, and only buy consumers need to listen to that queue.
Partitioning applications in this way has other advantages besides performance. With this architecture,
you can monitor each message type individually in each queue, and if performance does become an issue
down the road, you can even separate the queues onto separate servers.

Best Practice
Always evaluate the advantages and disadvantages of using multiple destinations
before deciding to use message selectors. Favor splitting destinations over the use of
message selectors when there is a clear separation of message types.

Of course, there will be situations when using a message selector is appropriate. In these situations, there
are several things to keep in mind when designing your message selector strategy. First, what fields does
your selector need to reference? Message header and property fields are the fastest to access. Examin-
ing an XMLMessage message body adds a significant amount of overhead and, therefore, will be much
slower.

Suppose that the producer sends a message in XML format like the one shown here:

<order type="buy">
<symbol>beas</symbol>
<quantity>5000</quantity>

</order>

The consumers can use an XPath message selector like this:

"JMS_BEA_SELECT(’xpath’,’/Order/attribute::type’) = ‘buy’"

These XPath message selectors are the most expensive expressions to evaluate because they involve
parsing at least some portion of the XML document. Of course, XPath selectors are convenient to use, but
you should realize that they are expensive and plan your use of them accordingly.

Second, what type of operators do you need to use? In general, you should strive to keep selectors as
simple as possible. Avoid complex operators such as like, in, or between in favor of primitive operators
such as =, >, or <. The more complex the selector is, the slower its evaluation will be. In general, an XPath
expression will be the most expensive because it has to scan the XML body of the message looking for
the element or attribute value to compare.

405

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 406

Chapter 10: Using WebLogic JMS

Best Practice
Keep message selectors as simple as possible. Try to avoid more complex operators
such as like, in, or between.

Third, what data type do you need to use for the selector? Where possible, avoid the use of strings in mes-
sage properties, especially if they are large. Strings are more expensive to serialize and more expensive
to compare than other primitive types. In our previous example, if we decided to use message selectors
to distinguish between buy and sell messages, we would be better off performance-wise defining the
message property as an integer (for example, 1 = buy, 2 = sell) rather than using the strings buy or sell.

WebLogic JMS supports the concept of indexed subscribers for topic applications that have many sub-
scribers and a need to efficiently use selectors to differentiate messages. With an indexed subscriber, an
application uses message property names, rather than the value of a particular message property, to dis-
tinguish the messages. To obtain a performance boost, an indexed subscriber’s selector must be exactly
of the form <property_name> IS NOT NULL. For example, the application would set the buy message prop-
erty to any value on all buy messages and the sell message property to any value on all sell messages.
Consumers only interested in sell messages would use the expression sell IS NOT NULL for its message
selector. Because the subscribers are indexed based on the message property names in the selector, it is
generally faster to use an indexed subscriber than it is to use the strings buy and sell as the value for the
trade_type message property.

Tip to Remember
String data types are typically the slowest, most expensive types to compare. Using
other primitive data types will generally improve the efficiency of your application. If
your topic-based application needs to use strings to differentiate messages, use indexed
subscribers to improve the performance of the message selectors.

Fourth, when using compound selectors, which elements are most efficient to process and which ele-
ments are most selective? If a selector involves both message header fields and message property fields,
place the message header field to the left of the expression. It is less expensive to use the expression
JMSPriority > 5 AND (trade_type = ‘buy’) than it is to use the expression (trade_type = ‘buy’)
AND JMSPriority > 5. When a selector involves multiple evaluation criteria where one field is much
more selective than the other, it may make sense to put this one first to reduce the number of evalua-
tions necessary to rule out a particular message. For example, if you had a selector that did something
like (trade_type = ‘buy’) AND (trade_num_shares > 100000), it would make more sense to reverse the
order because presumably there are many more buy orders than there are orders that involve more than
100,000 shares. Selector evaluation is always left-to-right, except where parentheses explicitly preclude it.

Tip to Remember
With compound selectors, order matters. WebLogic JMS will short-circuit message
selector evaluation once it determines the message does not match. Design your selec-
tors to take advantage of this default left-to-right evaluation order.

406

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 407

Chapter 10: Using WebLogic JMS

Finally, what type of messaging do you need to use? We certainly do not recommend that you choose
the messaging model based on whether you need to use message selectors. You should know, though,
that message selectors generally tend to be faster and more predicable with topics than with queues. Of
course, this is not always the case. When using message selectors with queues, the performance will be
very dependent on the consumers keeping up with the producers and with quick matching of a message
to a consumer. In cases where the queue is typically empty and it is easy to find a match between a
message and a consumer, queues will actually outperform topics. The problem is that when something
happens to make the consumers not keep up, the performance of message selectors with queues will
degrade much faster than with topics because the performance can degrade proportionally to the number
of messages in the queue.

One last thing to mention before moving on to other design considerations is the interaction between
message selectors and paging. WebLogic JMS maintains messages in memory whenever possible. When-
ever paging is necessary, only the message body is paged out of memory. This means that WebLogic
JMS can evaluate most selectors even if the message body itself is paged out. The exception to this would
be XPath selectors. Because WebLogic JMS evaluates the selectors on topics at the time the message is
published, this is only a big concern for XPath selectors used in conjunction with queues.

Choosing a Message Expiration Strategy
By default, JMS messages never expire. When your application is sending messages to queues or topics
with durable subscribers, WebLogic JMS must retain the message until it is consumed. This is fine in
most point-to-point messaging applications because consumers are constantly consuming messages. Any
message sent to a queue will typically be consumed in a relatively short period of time. If the queue
consumers get disconnected, they will usually reconnect as soon as possible and start processing any
messages that might have built up in the queue.

For durable subscribers to a topic, this is not necessarily true. The messaging system is forced to retain
any message that has not been consumed by a durable subscriber, regardless of whether that durable
subscriber will ever return. In this case, WebLogic JMS is at the mercy of the durable subscriber to unsub-
scribe when it no longer wishes to receive the messages. If the durable subscriber logic is flawed in such a
way that the subscribers do not unsubscribe properly, the messaging system will start to fill up with mes-
sages that may never be delivered. As you can imagine, this calls for real caution in your use of durable
subscribers. Fortunately, there is another way to help deal with this problem.

Conventional wisdom suggests that the time-sensitive messages should be sent only to nondurable
subscribers, and that is true for the most part. In some situations a producer may wish to publish time-
sensitive messages even when a subscriber is not connected. For example, an employee portal application
may wish to publish messages to a topic that represents all employee mailboxes. If each employee uses
his or her login ID as the durable subscription’s client ID, the employees can receive published messages
every time they log in. Imagine that you want to send pension plan enrollment information to all your
employees. The problem is that the JMS server must retain the message until every employee reads the
message, which may never happen. Because the message is really irrelevant after the enrollment period
ends, it is better to set an expiration time on the message so that WebLogic JMS can discard the message
when it becomes unimportant — even if some employees never read it.

Message expiration can be set at the connection factory level or via any of the other override mechanisms
discussed earlier. Using a connection factory’s Default Time-to-Live attribute, using a JMS template’s
or destination’s Time-To-Live Override attribute, or by explicitly calling the setTimeToLive() method

407

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 408

Chapter 10: Using WebLogic JMS

on the MessageProducer, you can specify the number of milliseconds that WebLogic JMS should retain
an undelivered message after it is sent.

Best Practice
For messages that become irrelevant after a certain time, set the connection factory’s
Default Time-to-Live attribute, use the JMS template’s or destination’s Time-To-Live
Override attribute, or call setTimeToLive() on the producer to avoid message buildup.

Active Expiration
Prior to WebLogic Server 8.1, WebLogic JMS used a lazy message expiration policy. This means that it
would remove expired messages from the system only when it happened to discover them in its normal
course of processing messages. If a destination was idle, it was possible for expired messages to accumu-
late and continue to consume system resources. This meant that, under certain conditions, it was possible
for a new message to be rejected because of quota restrictions even though the destination or JMS server
contained expired messages that, if removed, would have cleared the quota condition and allowed for
the delivery of the message.

WebLogic Server 8.1 added support for active message expiration, in addition to the lazy message
expiration scheme. Active message expiration works by having each JMS server periodically scan all
destinations for expired messages. The JMS server’s Expiration Scan Interval property controls the
frequency of the scans. If a message expires at time t, the maximum length of time that the message
will be retained is t + ExpirationScanInterval + s, where s is the time it takes to scan all message
expiration times in the JMS server at the next scan interval. Some messages may be removed almost
immediately, by lazy message expiration. Other messages may not be removed until the full amount of
ExpirationScanInterval + s seconds has elapsed. Setting ExpirationScanInterval to 0 disables active
message expiration. Even with active expiration disabled, messages will still expire and be removed
during normal message processing by the lazy message expiration mechanism.

Setting ExpirationScanInterval to a very large value effectively disables active
scanning for expired messages. Of course, expired messages will still be removed
during normal message processing by the lazy expiration mechanism.

Expiration Policies
WebLogic JMS supports the concept of an Expiration Policy on a destination. Expiration policies allow
you to define the action that WebLogic JMS should take when it finds an expired message. Configure the
Expiration Policy using the JMS template’s or destination’s Delivery Failure Configuration tab in
the WebLogic Console. The valid values are as follows:

Discard WebLogic JMS removes expired messages from the destination. This is the default.

Log WebLogic JMS removes the expired messages from the destination and writes an entry to the
server log file indicating that the messages have been removed. The Expiration Logging Policy
defines the actual information that is logged.

Redirect WebLogic JMS moves the expired messages from their current destination to that des-
tination’s configured Error Destination, if defined.

408

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 409

Chapter 10: Using WebLogic JMS

You cannot use the Redirect policy when there is no valid error destination defined
for the destination. Similarly, you cannot remove the error destination for a
destination that is using the Redirect policy.

By setting the Expiration Policy to Log, you are telling WebLogic JMS to write a log entry for every
expired message it removes. Using the Expiration Logging Format attribute, you can tell WebLogic JMS
what information to log. WebLogic JMS will always write the JMSMessageID header; by default, this is
the only information logged. You can add message headers or properties to the list by explicitly listing
their names using a comma to separate the entries. WebLogic JMS also provides two wildcard values,
%header% and %properties%, that will write all message headers or all message properties to the log,
respectively.

Tip to Remember
When the Expiration Policy is set to Log, WebLogic JMS always writes the
JMSMessageID field to the log. If you forget to set the Expiration Logging Format, the
log entry will contain only the message’s JMSMessageID value.

Handling Poison Messages
At some point, most messaging applications encounter situations where they are unable to process a
message successfully. This might occur for multiple reasons; for example, the message could contain
bad data, or the business logic might require access to a backend system that is temporarily unavail-
able. In these situations, the message consumer cannot successfully process the message and needs
to do something with that message so that it can move on to do other useful work, if possible. For
example, a message-driven bean using transactional delivery might call setRollbackOnly() on its
MessageDrivenContext object to prevent the transaction from committing, thus forcing the JMS provider
to requeue the message.

The problem with our example is that the JMS provider will simply try to redeliver the message at some
point in the future. If the redelivery occurs and the application is still unable to process the message,
the application can end up in a deadly cycle of trying to process a poison message. When designing your
messaging application, you need to understand in what situations your application might encounter
poison messages and come up with strategies that make sense to reduce the burden on the underlying
messaging system.

If your application accepts messages from another application, you might want to plan for unexpected or
invalid message formats or data. Although you could use WebLogic JMS’s support for error destinations
to handle this situation, it doesn’t solve the problem. In this case, the problem is not a system-level
problem with the actual delivery of the message, but an application-level problem with the expected
contents of the message. As a result, asking the messaging system to try to redeliver the message is a
waste of resources because the application will never be able to process the message. Furthermore, the
offending message producer might continue to try to resend this message or, worse, all messages with
this invalid message format or data. In this situation, you almost always want the application to reject
the message, possibly by notifying the sending application that the message was rejected because of a

409

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 410

Chapter 10: Using WebLogic JMS

bad message format or bad data. This means that you need the receiving application to divert the poison
message to an error-handling process that will notify the sender of the problem rather than rejecting the
message and forcing the messaging system to try to redeliver it.

Best Practice
Use application-level error handling rather than redelivery and error destinations to
handle errors in message content, including invalid formats and bad data.

Another common situation that occurs in the message processing application is that a backend system
becomes temporarily unavailable. Because the receiving application may require access to this backend
system to be able to process the incoming messages, the application must somehow delay the processing
of the messages until the backend system becomes available. Ideally, you could somehow detect that the
backend system is unavailable and simply tell the application to stop trying to consume any messages
until further notice. Today this means writing your application to support this. Fortunately, WebLogic
JMS provides several features that support this.

First, WebLogic JMS supports pausing and resuming JMS destinations either at server startup or at
runtime. Destinations can be paused for message production, insertion, and consumption. Pausing a
destination for insertion pauses it for production, but also affects in-flight operations such as:

❑ Messages that have not yet reached their time-to-deliver.

❑ Messages that are part of a transaction that has yet to be committed.

❑ Messages that are awaiting available quota.

Pause a destination for insertion if you want to make sure no new messages appear on the destination.
With these management capabilities, it is much simpler to pause message consumption to prevent MDBs
from continually trying to consume the messages and resume message consumption only once the back-
end system becomes available. For cases where you expect, or at least want to plan for, long periods
of backend system unavailability, you should carefully consider using a mechanism for automatically
pausing and resuming the consumption of messages.

Second, WebLogic Server automatically disconnects an MDB if its source destination becomes unavail-
able. WebLogic Server will periodically try to re-establish the JMS connection to the source destination
until it successfully reconnects.

You can also suspend and resume the MDB’s JMS connection manually through the WebLogic Console or
WLST. If the destination your MDB is listening on has multiple consumers and not all of them access the
unavailable backend application, suspending the MDB may be a better option than pausing consumption
from the WebLogic JMS destination.

Third, WebLogic MDBs will heuristically pause themselves after a certain number of consecutive appli-
cation failures. See the discussion of this in the ‘‘Message-Driven Bean Settings’’ section of Chapter 8 for
a detailed discussion of this capability.

Finally, if your backend systems are highly available and you never expect more than transient periods
of unavailability, you might want to rely on the JMS provider’s ability to redeliver the message at some

410

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 411

Chapter 10: Using WebLogic JMS

point in the future. WebLogic JMS supports this through the use of Redelivery Delay, Redelivery Limit,
and Error Destination.

Tip to Remember
For receiving applications that require access to external systems that are known to
be unavailable occasionally, consider manually pausing message processing when the
system becomes unavailable and resuming it after the system comes back online.

Redelivery Delay, Redelivery Limit, and Error Destination
Redelivery Delay instructs WebLogic JMS to defer the redelivery of messages for a specified amount
of time. Messages with a redelivery delay do not prevent other messages behind the delayed message
from being delivered and can alter message ordering for those applications not using WebLogic JMS’s
Unit-of-Order or Unit-of-Work features. You can set the Default Redelivery Delay on your WebLogic
JMS connection factory. From there, you can explicitly override the Redelivery Delay on the session by
using the WebLogic JMS extensions:

((WLSession)session).setRedeliveryDelay(redeliveryDelayMilliseconds);

You can also administratively override both the connection factory and session settings by setting the
Redelivery Delay Override on a template or destination.

Redelivery Limit controls the number of times that WebLogic JMS will attempt to deliver a message
before declaring it undeliverable. When a message is determined to be undeliverable, WebLogic JMS will
move the message from its current destination to that destination’s associated Error Destination. If no
Error Destination is configured, the messages are silently deleted.

If the Error Destination has reached its quota, WebLogic JMS will drop the message and log an error
message once every five minutes until the quota problem is resolved. For non-persistent messages, this
means that the message is discarded; for persistent messages, the message will remain in the persistent
store and will reappear in the original destination the next time the server starts.

Message producers can set the redelivery limit for messages they produce using the WebLogic JMS
WLMessageProducer extension:

((WLMessageProducer)producer).setRedeliveryLimit(3);

If you pass –1 as the argument to setRedeliveryLimit(), it means that there is no limit unless it is
overridden by the destination. Both the Redelivery Limit and Error Destination are configurable
on a JMS template or destination. Setting the Redelivery Limit on a template or destination overrides
any setting passed in from the producer; a value of –1 specifies that there is no override. An Error
Destination can be a queue or a topic but must physically reside in the same JMS server as the associated
destination.

When using error destinations, it is very important to incorporate the processing of messages from this
destination in your application. One of the biggest challenges in doing this can be determining why
the message was not successfully processed and what your application needs to do with it. We highly
recommend that you do not let the error queue be used to handle application-level message content

411

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 412

Chapter 10: Using WebLogic JMS

errors. If you can handle these errors through a separate process, you should be able to treat all messages
in the error destination as messages that could not be processed due to transient failures. One way of
processing them would simply be to resend them to their original destination once you know that the
transient failure has subsided. If you are using an Expiration Policy of Redirect, you may also have
to look at message expiration times to segregate the messages to retry from those that expired. This isn’t
a big deal because it is easy to accomplish. Trying to segregate application-level errors from transient
system-level errors placed onto the error queue is much more difficult.

Trying to separate messages on an error queue that got there because of both
application-level errors and system-level errors can be very difficult, if not impo-
ssible. Designing your application to use a separate application-level destination for
application errors will make processing messages in an error destination much
simpler.

Redelivered Flag and Redelivery Count
Nontransactional applications may want to perform extra checking when receiving a message to deter-
mine if it has been delivered previously. This extra checking often involves checking some persistent
history to determine whether or not the message has already been processed. To support this type of
checking, the JMS specification requires JMS providers to support the Message.getJMSRedelivered()
method, which must return true if the message has already been delivered.

WebLogic JMS also supports the JMSXDeliveryCount property that returns the number of delivery
attempts. If a message has potentially already been delivered once, the value of this field will always
be at least 2. WebLogic JMS tries to persist the value of JMSXDeliveryCount so that it survives server
restarts. In the event of a server crash or forced shutdown, the returned value may be lower than actual
number of delivery attempts, but will always be at least 2 if at least one delivery attempt has already
been made.

Handling Message Ordering Issues
Many applications require processing of messages in the order in which they were sent. The problem is
that the only way to guarantee that messages are processed in order is to have a single consumer pro-
cessing one message at a time. For example, imagine that you have to send three messages to a queue
in the following order: message1, message2, and message3. If you have two consumers, consumer1 and
consumer2, processing messages concurrently from that queue, WebLogic JMS will pick up message1
and hand it to consumer1 and then pick up message2 and hand it to consumer2. From a WebLogic JMS
perspective, it has delivered the messages in order; from an application perspective, the messages may
or may not be processed in order, depending on the thread or process scheduling between the two con-
sumers. It is a race condition at this point. As such, it is entirely possible for consumer2 to get more
resources than consumer1 and complete the processing of message2 before consumer1 completes the
processing of message1. Furthermore, it is also possible for consumer2 to go back to WebLogic JMS to
get message3 and complete the processing of message3 before consumer1 ever finishes with message1. In
short, as soon as you start parallel processing, message ordering across the threads or processes can no
longer be guaranteed.

412

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 413

Chapter 10: Using WebLogic JMS

Other factors besides having a single JMS consumer can affect message ordering. To summarize, ordered
processing of messages requires you to:

1. Have a single JMS consumer processing the messages.

2. Set the JMS Connection Factory’s Maximum Messages per Session attribute to 1.

3. Ensure that all messages requiring ordering go to the same physical destination.

4. Do not use custom destination sort orders that alter the normal FIFO ordering.

5. Do not set redelivery delays.

Clearly, you need a way to maintain ordering without creating a bottleneck in your application that
can process only one message at a time. The typical way to handle message ordering issues is to try
to define sets of messages that require ordering only within the set and parallelize the processing by
assigning different sets of messages to different threads/processes. WebLogic JMS’s Unit-of-Order feature
allows JMS applications to easily define sets of messages that require ordered processing while allowing
different message sets to be processed in parallel.

Unit-of-Order
WebLogic JMS provides a unit-of-order capability to allow JMS applications to group messages into sets
that require strict ordered processing. A unit-of-order set is identified by its name and its associated
destination. For each destination, all message producers using the same unit-of-order name will produce
messages that are part of the unit-of-order.

When unit-of-order messages are processed, they will be processed in strict order. While the current unit-
of-order message is being processed by a message consumer, the next message in the unit-of-order will
not be delivered unless it is to the same transaction or session. If no message associated with a particular
unit-of-order is processing, then a message associated with that unit-of-order may go to any session that’s
consuming from the message’s destination. This guarantees that all messages will be processed one at
a time and in order, and any rollback or recover will not prevent ordered processing of the messages.
Unit-of-order works with distributed destinations and with the WebLogic Store-and-Forward service,
which we discuss later in the ‘‘External JMS Providers’’ section.

As you can see, the choice of the unit-of-order name changes how the messages are processed. If the unit-
of-order name is an account number, no two sessions or transactions will process the same account at the
same time. This helps the overall application design to know what overlapping processing is prevented.
Moreover, this can help speed up processing of shared resources. You may need locks for correctness,
but the locks for a resource associated with a unit-of-order should not be contended.

You can set WebLogic JMS units-of-order administratively on connection factories, templates, or destina-
tions, or your application can set it directly by calling a method on its producer.

The connection factory’s Default Unit-of-Order for Producer attribute allows you to specify one of the
following values.

❑ None — Specifies no default unit-of-order for producers created using the connection factory;
this is the default value.

413

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 414

Chapter 10: Using WebLogic JMS

❑ System-generated — Specifies that WebLogic JMS should use a system-generated unit-of-order
name for producers created using the connection factory.

❑ User-generated — Specifies that WebLogic JMS should use the value of the User-generated
Unit-of-Order Name attribute as the unit-of-order name for producers created using the connec-
tion factory.

WebLogic JMS templates and destinations can also be configured to assign a default system-generated
unit-of-order name to any messages arriving at a destination that is not already part of a unit-of-order.
Be careful when using this default unit-of-order option with distributed destinations, as WebLogic JMS
scopes the ordering to a particular member destination. If a producer sends messages to two different
members, the producer’s messages may not be processed in the order in which they were sent. To ensure
strict ordering when using a default unit-of-order with a distributed destination, the producer for an
ordered set of messages must pin itself to a single member destination so as not to divide the ordered set
of messages across more than one member destination.

Finally, JMS applications can programmatically configure a system- or user-generated unit-of-order
using one of the setUnitOfOrder() methods from the weblogic.jms.extensions.WLMessageProducer
interface, as shown here.

Destination queue = (Destination)ctx.lookup("java:comp/env/jms/myqueue");
MessageProducer producer = session.createProducer(queue);
((WLMessageProducer)producer).setUnitOfOrder(); // use system-generated UOO
String uooName = ((WLMessageProducer)producer).getUnitOfOrder();

As you can see, you have multiple ways to set up your JMS applications to use the unit-of-order feature.
With some applications, administratively configuring unit-of-order may allow your application code to
take advantage of this advanced feature without requiring code change. As the logic that determines the
unit-of-order to use becomes more complex, the application may need to choose different connection
factories or destinations to send messages to the proper unit-of-order or they may need to program-
matically change the unit-of-order before each message send. If you find that you need to create large
numbers of connection factories or destinations to meet your application’s unit-of-order requirements
administratively, you may be better off setting the unit-of-order programmatically.

Best Practice
Administratively configure unit-of-order when your application’s ordering require-
ments are simple. As the complexity of choosing which unit-of-order to use for each
message increases, consider specifying the unit-of-order programmatically, because it
may be simpler.

A unit-of-order’s scope is a destination; that is, all messages associated with a particular unit-of-order
must be sent to the same destination. As such, multiple destinations using the same unit-of-order
name will each define separate units-of-order. If a unit-of-order is defined on a distributed des-
tination, by default WebLogic JMS routes all messages for that unit-of-order to one member
destination since only one physical destination at a time can own a unit-of-order. If the unit-of-
order’s member destination is unavailable, producers associated with the unit-of-order will receive
a weblogic.jms.extensions.JMSOrderException when sending a message because the specified
quality of service is not available. When using unit-of-order with distributed destinations, you should

414

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 415

Chapter 10: Using WebLogic JMS

always send the messages to the distributed destination rather than to one of its members. If you are
not careful, sending messages directly to a member destination may result in messages for the same
unit-of-order going to more than one member destination and cause you to lose your message ordering.

Messages sent as part of a unit-of-order associated with a distributed destination are
always sent to one member destination. If that member destination becomes
unavailable, the producer will receive a JMSOrderException when sending the
message because the specified quality of service is not available.

You might be wondering how WebLogic JMS knows which member destination to use when multi-
ple producers are sending messages associated with the same unit-of-order to a distributed destina-
tion. WebLogic JMS supports two routing mechanisms to accomplish this: Path Service–based routing
and hash-based routing. Before we talk about the routing mechanisms, let’s discuss another message
grouping feature of WebLogic JMS called Unit-of-Work. Before we do that, we need to talk about using
unit-of-order with topics.

Using Unit-of-Order with Topics
Unit-of-order is most commonly used with queues. While it can be used with topics, care must be
taken when the message consumers are MDBs. As mentioned previously, WebLogic MDBs not using
container-managed transactions will multiplex the messages from a topic subscription across multiple
MDB instances, thus processing the messages in parallel. This feature is useful to speed up message pro-
cessing but, at the time of writing, it does not take into account any unit-of-order. You must disable this
parallel processing to preserve the order by either using container-managed transactions or by setting
<max-beans-in-free-pool> to 1.

When producing unit-of-order messages to a distributed topic, you must target the distributed topic
itself. Unlike other JMS messages, sending unit-of-order messages directly to a member topic is not
recommended and may cause messages to be delivered out of order. Sending the messages directly to
the distributed topic is the natural approach so this restriction shouldn’t cause any problems.

Unit-of-Work
Whereas unit-of-order provides JMS applications with a way to achieve strict ordered processing within
a group of messages, some applications need additional guarantees that require the entire group of mes-
sages to be processed as a unit by a single consumer. This is exactly what WebLogic JMS’s Unit-of-Work
feature provides. One or more message producers define messages belonging to a unit-of-work by name.
Each message contains JMS message properties that specify the unit-of-work name, the message’s posi-
tion in the unit-of-work sequence, and whether or not the message is the last message in the unit-of-work.
Unit-of-work messages can pass through any number of intermediate destinations; consumers at these
intermediate destinations can process the messages individually, in any order, and even in parallel — no
grouping semantics are enforced at intermediate destinations. When the messages in the unit-of-work
reach the terminal destination, they are held until all messages in the group arrive. Once they all arrive,
the entire group of messages is passed to a single consumer as a java.util.List of messages stored
inside a javax.jms.ObjectMessage.

To create messages that are part of a unit-of-work, simply use the standard JMS methods to set the JMS
message properties listed in Table 10-1 on each message before sending it.

415

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 416

Chapter 10: Using WebLogic JMS

Table 10-1: Unit-of-Work Message Properties

Property Name Property Type Example Value

JMS_BEA_UnitOfWork String ‘‘myUnitOfWork’’

JMS_BEA_UnitOfWorkSequenceNumber int 5

JMS_BEA_IsUnitOfWorkEnd boolean false

At some point, all messages in a unit-of-work must end up at a terminal destination. A terminal destina-
tion is any destination whose Unit-of-Work (UOW) Message Handling Policy is set to Single Message
Delivery. Terminal destinations also have an Expiration Time for Incomplete UOW Messages property
to specify how many milliseconds a destination should wait before expiring messages in an incomplete
unit-of-work. By default, messages never expire. If an incomplete unit-of-work is expired, the expired
messages are handled using the destination’s specified expiration policy.

To consume the messages at a terminal destination, the message consumer code will look similar to that
shown here.

void onMessage(Message message)
{

List msgList = (List)((ObjectMessage)message).getObject();
for (int i = 0; i < msgList.size(); i++) {

TextMessage msg = (TextMessage)msgList.get(i);
...

}
}

Like unit-of-order, unit-of-work can be used with distributed destinations. Terminal destinations that are
distributed destinations route all messages for each unit-of-work to the same member destination. This
is accomplished via either the Path Service or hash-based routing.

Unlike a unit-of-order where the messages effectively stream through the system one at a time, appli-
cations must take care to control the size of a single unit-of-work. All of the messages comprising a
particular unit-of-work are ultimately collected into a single ObjectMessage for delivery to the final con-
sumer. As such, both the server that delivers this message and the client that receives it must have enough
memory to hold the entire message.

Path Service and Hash-Based Routing
The Path Service is a singleton service that runs on one server in the cluster and routes all messages asso-
ciated with a particular unit-of-order and unit-of-work to the same member destination of the targeted
distributed destination. It uses a WebLogic Server persistent store to save the state of which member
destination a particular unit-of-order or unit-of-work is currently using. When a Path Service receives
the first message for a particular unit-of-order or unit-of-work bound for a distributed destination, it
uses the normal JMS load balancing heuristics to select which member destination will handle the unit
and writes that information into its persistent store. Note that when a unit-of-order has no unconsumed
messages pending, the Path Service entry is removed and future messages may be sent to other member
destinations.

416

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 417

Chapter 10: Using WebLogic JMS

By default, the Path Service uses the server’s default persistent store. For high availability purposes, the
Path Service can be targeted to a migratable target to allow for automatic or manual migration; however,
this requires the use of a custom store.

If the Path Service is not configured, WebLogic JMS uses a hash-based routing mechanism. The hash-
based routing algorithm uses the unit-of-order name to determine to which member destination the
unit-of-order is associated. This means that the routing decision is made in the client based on the num-
ber of configured member destinations without any considerations for the normal JMS load balancing
heuristics.

Both styles of routing have strengths and weaknesses. Hash-based routing makes the routing decision
in the client so it is more efficient and does not require service or whole server migration to make the
routing service highly available. However, hash-based routing is static in the sense that it doesn’t take
into account which members are up and running. If a member is down, producers for that unit-of-order
will throw weblogic.jms.extensions.JMSOrderException — even if there are no outstanding messages
for that unit-of-order. In addition, administratively adding or removing members will cause the hash
results to change and will break the ordering guarantee for any executing unit-of-orders when messages
start getting routed to new locations.

The Path Service provides a more resilient ordering guarantee. Unlike hash-based routing, the Path
Service ensures that a new UOO, or an old UOO that has no messages currently on any destination,
can be enqueued anywhere in the cluster. Adding and removing member destinations will not disrupt
any existing unit-of-order because the routing decision is made dynamically and those decisions are
persistent. Of course, use of the Path Service requires accessing the Path Service and potential disk access
to make the routing decision, which can add overhead to your application.

The major drawback of the Path Service is that it is a singleton service. You must provide for high avail-
ability of this service either via JMS service or whole server migration. If the Path Service is unavailable,
any requests to create new units-of-order will throw the JMSOrderException until the Path Service is
available. Information about existing units-of-order are cached in the connection factory and destination
servers so the Path Service availability typically will not prevent existing unit-of-order messages from
being sent or processed.

If you can accept the occasional loss of ordering (perhaps you are just using UOO to avoid locking prob-
lems), or you will only change distributed destination configuration when the system is shut down,
hash-based routing is fine. If you need strict message ordering that can cope with the reconfiguration of
distributed destinations, or you wish to use the producer load balancing heuristics for each new unit-of-
order (important if you want server affinity), you should configure the Path Service, and further consider
making it highly available.

We hope that some future version of WebLogic Server provides a new and improved routing option that
combines the best of these two mechanisms and eliminates most of the drawbacks. Check your WebLogic
Server documentation for more information on the current options, capabilities, and limitations.

Using Transactions
Transactions are used when multiple operations need to be treated as single atomic unit. As discussed
earlier, the JMS specification introduces the concept of a transacted session to allow multiple JMS
operations to be performed within the scope of a transaction. If your transactions involve multiple

417

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 418

Chapter 10: Using WebLogic JMS

JMS operations only within a single session, you should use transacted sessions. For transactions that
involve multiple JMS sessions or other resources, you will need to use JTA transactions. You can make
your JMS session JTA-aware by enabling XA transaction support on your connection factory. Using the
WebLogic Console, simply check the XA Connection Factory Enabled checkbox on the Transactions
Configuration tab. This will make WebLogic JMS return a connection factory that implements the
javax.jms.XAConnectionFactory interface whenever you look up the connection factory from JNDI.

If your transaction involves multiple resources, the WebLogic JTA transaction manager detects this and
switches automatically to the two-phase commit (2PC) protocol. WebLogic JMS implements its own XA
resource manager and therefore can participate in a 2PC transaction without requiring support from the
underlying storage manager (for example, the JDBC driver for JDBC-based message stores). One side
effect of this is that transactions that involve JMS and any other database resource — even if JMS is using
the same database as its persistent store — will always involve a 2PC transaction. Another side effect
of this is that JMS JDBC-based persistent stores do not use XA JDBC drivers. You must use the non-XA
version of the driver for accessing the persistent store; WebLogic JMS will update the database to reflect
the commit or rollback of JMS transaction branches without enlisting the database itself in the global
transaction.

Tip to Remember
Do not use an XA JDBC driver to create JMS JDBC stores even when the store would
participate in global transactions.

For any other database work done by other components as part of the transaction, you need to use a JTA-
aware DataSource. A JTA-aware DataSource means one that has the Supports Global Transactions
attribute selected. Typically, you will want your JTA DataSource to use an XA-compliant JDBC driver
so that it can participate in 2PC transactions using the XA protocol. It is possible for WebLogic JTA to
involve one non-XA JDBC resource in a global transaction. For a DataSource that refers to a JDBC con-
nection pool that is not using an XA-compliant driver, you can use either the Emulate Two-Phase Commit
option or the Logging Last Resource option. In the ‘‘Selecting Transaction Options for a Data Source’’
section of Chapter 12, we discuss why you should always use the Logging Last Resource option when
using a non-XA JDBC driver to perform work as part of a larger JTA transaction involving XA resources.

Best Practice
When your application uses transactions that contain JMS resources and other
resources, using XA JDBC drivers will give you transactional safety and the most
flexibility. One of the database resources can be configured to use the Logging Last
Resource option without sacrificing the transactional safety of pure XA and with better
performance.

If you are going to be using global transactions that involve JMS, the most important thing to keep in
mind is that WebLogic JTA will optimize global transaction coordination for collocated resources. Some
of the ways that you can collocate resources are as follows:

❑ If your transactions involve JMS and one or more EJBs, deploy all of your EJBs and JMS destina-
tions on the same WebLogic Server instances. If you are using distributed destinations, deploy
all of the EJBs to every server that hosts a member destination.

418

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 419

Chapter 10: Using WebLogic JMS

❑ If your transactions involve an MDB and distributed destinations that both run in the same clus-
ter, target the MDB to the cluster. This combination will cause WebLogic Server to automatically
deploy an MDB instance on each distributed destination member and to dynamically respond as
destination members are migrated, created, or deleted.

❑ If your transactions involve JMS and JDBC resources, deploy your JDBC connection pools, JTA-
aware DataSource objects, and JMS destinations on the same WebLogic Server instances. Again,
for distributed destinations this means deploying them to every server that hosts a member des-
tination.

❑ If your transactions involve multiple JMS destinations, deploy all of the destinations on the
same WebLogic Server instance. For applications accessing multiple distributed destinations,
make sure to collocate the members of each distributed destination on the same WebLogic
Server instances. In both cases, it is even more efficient if you can deploy them in the same JMS
servers.

Using Multicast Sessions
Multicast sessions are a WebLogic JMS extension for publish-and-subscribe messaging that can improve
performance dramatically, especially when your application needs to send individual messages to a large
number of subscribers. When using IP multicast to transmit messages, the underlying network needs to
carry only one copy of the message regardless of the number of subscribers. Because of the inherent
unreliable nature of the UDP protocol on which IP multicast is based, WebLogic JMS does not guarantee
delivery of messages sent using multicast sessions. Network congestion plays a big role in the quality of
service. Clearly, applications that cannot tolerate message loss should not consider the use of multicast
sessions.

Multicast also requires a tightly controlled network environment. Most routers and firewalls are not
configured to allow multicast traffic to pass through them. Though it is possible to configure them to do
so, it requires that your subscribers and WebLogic JMS servers are all connected by a network that you
can control. Multicast messages use a time-to-live (TTL) concept that routers use to control the propagation
of multicast messages. Each router that forwards a multicast packet decrements the packet’s TTL; once
the TTL reaches zero, the packet will no longer be forwarded between network segments. Multicast uses
a special class of IP addresses, known as Class D addresses, which range from 224.0.0.0 to 239.255.255.255.
Typically, addresses in the 224.0.0.x range are reserved for multicast routing.

WebLogic JMS supports only multicast sessions for topics. This makes sense because the benefit of multi-
cast is seen only when the same message is sent to large numbers of consumers. To use multicast sessions,
you need to configure the multicast information for your topics. When using multicast, we highly recom-
mend that you select unique multicast address and port combinations for each topic that will be using
multicast for message delivery. Doing this will help segregate the traffic for a particular topic and will
reduce the chances of message loss.

Best Practice
Always select unique multicast address and port number combinations for each topic
that will use multicast message delivery. Never use the same multicast address and
port number used by your WebLogic clusters.

419

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 420

Chapter 10: Using WebLogic JMS

Once the topics are properly configured, you need to create a JMS session that uses the WebLogic JMS-
specific MULTICAST_NO_ACKNOWLEDGE acknowledgment mode, as shown here. Note that multicast sessions
cannot use transacted sessions or JTA transactions. Use the following code to create a multicast session:

Session session =
connection.createSession(false, WLSession.MULTICAST_NO_ACKNOWLEDGE);

Next, we create the MessageConsumer as we normally would, as shown here. This call will fail if the topic
is not configured to support multicast. Also note that multicast consumers cannot be durable subscribers.

MessageConsumer consumer = session.createConsumer(topic);

Finally, we need to register our MessageListener and start the connection, if it is not already started.
Multicast sessions must use asynchronous delivery via the MessageListener:

consumer.setMessageListener(new MyMessageListener());
connection.start();

For multicast sessions, WebLogic JMS tracks the message sequence. A sequence gap occurs when mes-
sages are lost or received out of order. When WebLogic JMS detects a sequence gap, it will deliver a
weblogic.jms.extensions.SequenceGapException to the multicast session’s ExceptionListener, if
one is registered.

Tip to Remember
If your application cares about sequence gaps when using multicast delivery, you can
register an ExceptionListener with the WebLogic JMS session to be notified when
sequence gaps occur.

At the time of writing, you should avoid using multicast sessions with distributed topics. The semantics
of this combination are not well defined and your subscribers may well receive multiple copies of each
message (because each member topic that receives the message will rebroadcast it). Please check the
WebLogic JMS documentation for any updates that may have happened since this book was published.

At the time of writing, the semantics of using multicast sessions with distributed
topics is not well defined. As such, you should avoid this combination. Check the
WebLogic JMS documentation for any recent updates that may have occurred since
this book was written.

Handling Request/Reply Style Message Exchange
JMS is all about sending and receiving messages. Whenever an application sends a message to another
application, it is not uncommon for the sending application to require a response message after its orig-
inal message is processed. This pattern is so common that JMS explicitly supports the pattern in several
ways.

420

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 421

Chapter 10: Using WebLogic JMS

First, JMS supports the concept of a temporary destination, and the JMS message headers include a
JMSReplyTo field for passing a reference to a reply-to destination as part of a message. Though there is
nothing that requires the reply-to destination to be a temporary one, this is a common pattern that clients
use to prevent having to use message selectors to find their response among responses for other clients.
Be very careful about using a distributed queue as the reply-to destination. Because the responding
application uses a different JMS connection to reply, it is very possible that the reply message could end
up on a different member destination than the one the requestor is using to listen for the reply. As such,
only applications where any node in the cluster can handle the response should use this pattern.

Be very careful about using a distributed queue as the reply-to destination. Doing
so will likely cause situations where the reply message is sent to a different member
queue that the one the requestor is using to listen for the reply. Only applications
where any node in the cluster can handle the response should use this pattern.

An example of how you might use the JMSReplyTo field for passing a reference to a temporary reply-to
destination is shown here:

Queue responseQueue = session.createTemporaryQueue();
MessageConsumer consumer = session.createConsumer(responseQueue);
consumer.setMessageListener(new MyMessageListener());
textMessage.setText("My Request Message");
textMessage.setJMSReplyTo(responseQueue);
producer.send(textMessage);
...
responseQueue.delete();

Now, let’s look at the consumer of the request message. In the consumer, we simply get the JMSReplyTo
destination from the request message, generate our response message, and send the response message to
the destination:

Queue replyQueue = (Queue)requestMessage.getJMSReplyTo();
producer.send(replyQueue, replyMessage);

In this example, our request producer is using the MessageListener to asynchronously receive the
response that will be sent to the temporary destination. This is the recommended way of accomplish-
ing the request/response pattern. Of course, applications sometimes want to block until the response
comes back. You could achieve this using the synchronous receive() method:

Queue responseQueue = session.createTemporaryQueue();
MessageConsumer consumer = session.createConsumer(responseQueue);
textMessage.setText("My Request Message");
textMessage.setJMSReplyTo(responseQueue);
producer.send(textMessage);
Message responseMessage = consumer.receive();
responseQueue.delete();

Here, we used the no-args receive() method that blocks until a message arrives. There is also a version
that accepts a timeout value, after which the method will return control to the application even if no

421

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 422

Chapter 10: Using WebLogic JMS

message has arrived. Finally, there is a receiveNoWait() method that does not block and will return
null if no message is waiting.

Use the receive(long timeout) or receiveNoWait() methods inside server
applications that need to receive a response message synchronously from another
application. Even in standalone JMS client applications, think twice before using
the no-args receive() method, which can cause the application to block for an
uncontrolled length of time.

Notice that, in both cases, we call the delete() method on the temporary destination when we are
through with it. Applications should try to reuse temporary destinations rather than continually creating
and deleting them, wherever possible. WebLogic Server will automatically delete temporary destinations
when the JMS connection is closed.

The JMS specification authors thought that this pattern was so common that they created an easier way
to accomplish the same thing by using a Requestor object. The code shown here demonstrates how to
accomplish the same synchronous request/response pattern using a temporary queue.

QueueRequestor queueRequestor =
new QueueRequestor(queueSession, requestQueue);

textMessage.setText("My Request Message");
Message responseMessage = queueRequestor.request(textMessage);

The QueueRequestor and TopicRequestor utility classes automatically create the temporary destination
and block waiting for the response. Be forewarned that these classes do not allow you to perform non-
blocking or blocking with a timeout request. You must use nontransacted sessions with these classes.
As with all temporary destinations, the messages sent to them are non-persistent because temporary
destinations, by definition, do not survive application restarts or failures.

Best Practice
When using request/response style messaging inside a WebLogic Server instance, be
very careful about calling blocking methods to receive the response. If you must call
receive(), always use a relatively short timeout to prevent tying up WebLogic Server
execute threads for extended periods of time. Wherever possible, use the asynchronous
MessageListener to wait for the reply. Or better still, use a non-temporary reply queue
and process responses in an MDB.

The other major approach for supporting request/reply messaging is through the use of a correlation ID.
Correlation IDs provide you with the ability to assign a unique identifier to a message and its reply. JMS
doesn’t do anything with these correlation IDs; it is up to the application to use them to correlate requests
with replies. By using correlation IDs, you have much more freedom about where and when you send the
reply. Using correlation IDs can be useful even when used in conjunction with temporary destinations to
help applications that can have multiple outstanding messages at any point in time.

422

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 423

Chapter 10: Using WebLogic JMS

To use correlation IDs, the first thing you need to decide on is what unique identifier you are going
to use to correlate the messages. The JMS provider creates a unique identifier for every JMS message
that it stores in the JMSMessageID header. As a result, using the JMSMessageID as the correlation ID is a
common practice. JMS messages also contain a JMSCorrelationID header that applications can use to set
the correlation ID for a particular message.

When using this scheme, the producer sending the message needs to call only the getJMSMessageID()
method on the Message after the message is sent. It is important to wait until after the message is
sent because WebLogic JMS does not actually set the message’s JMSMessageID header until the
message is sent. The producer doesn’t actually need to set the JMSCorrelationID field in the request
message because the consumer is going to associate the JMSMessageID of the request message with the
JMSCorrelationID of the reply message:

replyMessage.setJMSCorrelationID(requestMessage.getJMSMessageID());

Of course, there is nothing preventing you from using your own correlation ID scheme. Simply set the
correlation ID in the original request message, and have the consumer read the incoming request mes-
sage’s correlation ID using the getJMSCorrelationID() method and then set it on the outgoing reply
message.

The last thing we need to discuss as it relates to correlation IDs is the use of a shared reply queue across
all requests. A very common pattern we see occurs where you have a synchronous client, such as a web
application responding to a request from a browser, needing to call a backend system that is accessible
only via a messaging system. Usually, the synchronous client wants to send a message and wait for
the response. The client, however, will typically wait only so long and then give up on the response,
possibly even resending the original request. This causes a problem if your backend system is slow but
still working, in that the shared reply queue may end up with reply messages that have already been
abandoned by the requestor. Fortunately, you can do several things to handle this problem.

First, you can use message expiration on the reply messages to prevent them from accumulating. For
that matter, you might want to use expiration times on the request messages to try to prevent the
backend from receiving messages that the client has given up on. Finally, you could just use temporary
destinations that the client deletes when giving up on the reply. This will also give your backend system
some indication that the client has left when it gets an error trying to send the response to the temporary
destination that no longer exists. None of these solutions really solves all of the application-level
problems associated with this type of scenario, but at least they help keep the messaging system
healthy.

WebLogic Server provides an asynchronous servlet programming model that allows the server to release
execute threads while waiting for the data needed to generate the HTTP response. While this will help
you build a more scalable, resource-friendly application for this type of scenario, it does not solve the fun-
damental problems with the messaging system since the client request may still timeout. The preferred
approach to dealing with this type of scenario is to try to separate the synchronous client request into
two separate requests, one to submit the backend request and another to look for the backend response.

Before we move on, we need to discuss another issue you may need to consider when using the JMS
request-response pattern. The JMS request-reply mechanisms discussed in this section assume that the
responder knows how to send a message to the reply-to destination. If both the requestor and the respon-
der are using the same logical JMS server (for example, WebLogic JMS resources deployed to the same
cluster), the responder can simply use a local JMS connection factory to send the reply message. What

423

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 424

Chapter 10: Using WebLogic JMS

happens if the reply-to destination is hosted in another logical JMS server (for example, a WebLogic JMS
destination deployed to a remote WebLogic Server cluster)?

Your responding application must use a connection factory that knows how to route the message to the
reply-to destination. Since the JMS specification does not define a standard way to pass the connection
factory along with the JMSReplyTo header, your application must define a mechanism to pass this infor-
mation to the responder. Typically, you will want to pass the information as part of the JMS message; for
example, in custom JMS message properties.

We do not recommend trying to pass the actual connection factory object. Instead, we recommend pass-
ing enough information to perform a JNDI lookup of the appropriate connection factory. One approach
would be to pass the required JNDI InitialContext properties and the connection factory’s JNDI name
so that the responder knows how to look up the connection factory from the remote JNDI provider.
Another approach is to leverage WebLogic JMS’s Foreign Server or WebLogic Server’s Foreign JNDI
Provider capabilities to create a local JNDI binding to the remote JMS connection factory. This would
eliminate the need to pass the JNDI InitialContext properties so that only the JNDI name needs to be
passed. One drawback of this approach is that the JNDI name the requesting application needs to pass
changes to the JNDI name in the responding application’s JNDI tree rather than its own local JNDI tree,
which makes for slightly tighter coupling of the requesting and responding application. We discuss the
WebLogic JMS’s Foreign Server and WebLogic Server’s Foreign JNDI Provider capabilities in more detail
later in the ‘‘Mapping External JMS Objects to WebLogic JNDI’’ section.

WebLogic JMS Application Programming
In this section, we look at how to use WebLogic JMS in your application. We start out by talking about
the WebLogic JMS resource pooling and how to leverage that support with web applications and EJBs.
We finish this section with a discussion of how to use WebLogic Server’s message-driven bean support
to consume JMS messages from server-side applications.

Using WebLogic JMS with Servlets and EJBs
Using WebLogic JMS from within your server-side application can be simpler than using it from within
standalone client applications. By making use of the Java EE–defined mechanisms for referencing JMS
objects through deployment descriptor resource reference mappings, WebLogic JMS transparently sub-
stitutes the real JMS objects for wrappers that pool JMS resources like connections and sessions. This also
works with foreign (third-party) JMS providers. To use this, you simply add a resource-ref into your
standard Java EE deployment descriptor (that is, web.xml or ejb-jar.xml):

<resource-ref>
<res-ref-name>jms/BigRezEmailConnectionFactory</res-ref-name>
<res-type>javax.jms.ConnectionFactory</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Then, you add a matching resource-description entry in your WebLogic Server–specific deployment
descriptor (that is, weblogic.xml or weblogic-ejb-jar.xml):

<resource-description>
<res-ref-name>jms/BigRezEmailConnectionFactory</res-ref-name>

424

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 425

Chapter 10: Using WebLogic JMS

<jndi-name>BigRezEmailConnectionFactory</jndi-name>
</resource-description>

Finally, you simply look up the connection factory and write standard JMS code, as shown here:

ConnectionFactory factory = (ConnectionFactory)
jndiCtx.lookup("java:comp/env/jms/BigRezEmailConnectionFactory");

Queue queue = (Queue)
jndiCtx.lookup("java:comp/env/jms/BigRezEmailQueue");

Connection connection = null;
try {

connection = factory.createConnection();
...

}
catch (JMSException jmse) {

...
}
finally {

if (connection != null) {
try { connection.close(); } catch (JMSException ignore) { }

}
}

Java EE 5 makes obtaining the JMS connection factory and destination objects even easier through the
use of annotations. Using the @Resource annotation, we can eliminate the need for the deployment
descriptor entries and simplify the code, as shown in this excerpt from the EmailServicesImpl stateless
session bean in our bigrez.com example.

@Resource(mappedName=bigrez.jms.connectionfactory)
private ConnectionFactory jmsConnectionFactory;

@Resource(mappedName=bigrez.jms.emailQueue)
private Destination emailQueue;

...
try {

Connection connection = null;
try {

connection = jmsConnectionFactory.createConnection();
...

}
finally {

if (connection != null) {
connection.close();

}
}

}
catch (JMSException jmse) {

...
}

The @Resource annotation’s mappedName attribute specifies the global JNDI name where the resources
can be located. This value is used only if it has not been provided or overridden in one of the deployment
descriptors.

425

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 426

Chapter 10: Using WebLogic JMS

Notice that we are closing our connection at the end of each use inside the finally block. This is critical
when using pooled resources and is just like what you would do when using JDBC connection pools. In
our example, we are using injection to obtain the connection factory and queue references. Do not try to
cache any of the intermediate objects like the connection, session, or sender. WebLogic JMS is already
pooling these objects so it is important to release them back to the pool when you have finished using
them.

Best Practice
From your server-side applications, take advantage of JMS resource pooling by using
Java EE resource references to obtain your JMS connection factory. Always close your
connection objects at the end of each use to allow WebLogic JMS to release these pooled
objects back into the pool.

If you use JMS within XA transactions, you do not need to reference the XA versions of the JMS objects
when using the WebLogic JMS pooling mechanism. The wrapper object is smart enough to detect the
presence of a JTA transaction and will automatically use the XA capabilities of the JMS provider to enlist
it in the XA transaction. If the underlying JMS provider does not support XA (or you haven’t enabled
XA support), you will need to suspend the JTA transaction either by telling the container that the EJB
does not support transactions or by using the JTA APIs. We talk more about integrating with foreign JMS
providers in the last section of this chapter.

At this point, it is important to discuss another transaction-related feature of these wrappers that greatly
simplifies your application. Although the WebLogic Server MDB container transparently handles all JTA
transaction manager registration and transaction enlistment of foreign JMS providers for inbound mes-
sages, it is your responsibility to register and enlist any foreign JMS providers you use to send messages
to foreign JMS providers from within your applications. This registration and enlistment process can
be tricky and error prone; see Link 10-10 for more information on manual registration and enlistment.
Note that the WebLogic Messaging Bridge, which we discuss later, also handles this registration and
enlistment process for both the inbound and outbound foreign JMS providers.

Fortunately, the wrapper framework we are discussing can take care of registering the foreign JMS
providers’ XA resource and enlisting it in the transactions. To create a resource reference for a foreign
JMS provider, simply use the same process to create the connection factory reference. Since resource
references require a local JNDI binding, the only additional step you need to do is to tie that foreign
provider’s connection factory into WebLogic JNDI using WebLogic JMS’s Foreign Server support, which
we discuss later in the ‘‘Mapping External JMS Objects to WebLogic JNDI’’ section of this chapter.

One other thing to be aware of is that these wrapper objects enforce some Java EE restrictions on these
pooled objects that are not enforced when working directly with the real JMS objects. These restrictions
basically prevent you from calling certain JMS methods that require asynchronous delivery and thus
require a thread to be created. For example, you are not allowed to associate a MessageListener with a
consumer. What this means is that the only way to asynchronously consume messages from a Java EE
application is to use either a message-driven bean or a server session pool, which we discuss in the next
section. Because both of these mechanisms are using pooled objects that are not specific to a particular
client or request, the main thing that you lose through this is the ability to create a MessageListener that
contains state about the specific client or request. This simply means that any state that you require the
asynchronous listener to have must be passed through or accessible using the contents of the message.

426

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 427

Chapter 10: Using WebLogic JMS

For more information on the methods that are not allowed, see the ‘‘Java EE Compliance’’ section of
Link 10-11.

WebLogic JMS resource pooling enforces the restrictions laid out for server-side
applications in Section 6.6 of the Java EE 5 specification. This means that existing
server-side applications that use the asynchronous MessageListener pattern will no
longer work properly if resource pooling is in use.

Consuming Asynchronous Messages on the Server
When building server-side applications that asynchronously consume JMS messages, you have two
primary options for how to do this: message-driven beans (MDBs) and server session pools. WebLogic
JMS server session pool support has been deprecated for several years because there were few reasons
left for them since message-driven beans arrived. As a result, we will focus our discussion on MDBs. For
more information on using WebLogic JMS support for server session pools, please refer to the WebLogic
JMS documentation at Link 10-12.

Message-Driven Beans
Our coverage of MDBs is not intended to be exhaustive. If you want to learn more about MDBs, please
refer to the WebLogic Server documentation at Link 10-13.

Understanding Concurrency
Like stateless session beans, the WebLogic Server EJB container pools message-driven bean instances
in memory. You can control the size of the pool using the <initial-beans-in-free-pool> and
<max-beans-in-free-pool> parameters found in the weblogic-ejb-jar.xml deployment descriptor.
When messages arrive at the associated destination, the EJB container tries to find a bean in the free
pool to handle the message. If no instance is available, the container will create a new instance if the
size of the pool is currently less than <max-beans-in-free-pool>. If the pool is already at its maximum
size, the message will remain in the destination until a bean in the pool becomes available. Of course,
the maximum amount of parallelism, and therefore the maximum number of beans the EJB container
will ever create, is also controlled by the maximum number of threads available for use by the MDB
instances. Unlike stateless session beans, the maximum number of available threads varies depending
on how the MDB is deployed.

When you deploy an MDB, the WebLogic EJB container limits the maximum number of threads the MDB
can use using the following rules, in order of precedence.

1. If WebLogic Server self-tuning thread pool is disabled and the MDB is using a custom exe-
cute queue, the maximum number of threads will be equal to the execute thread count.

2. If the MDB is using a custom work manager with a <max-threads-constraint>, the maxi-
mum number of threads will be equal to the value of <max-threads-constraint>.

3. If self-tuning is disabled and the MDB is using the default execute queue, the maximum
number of threads will be equal to (execute thread count/2) + 1.

4. Otherwise, the maximum number of MDB threads equals 16.

427

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 428

Chapter 10: Using WebLogic JMS

The maximum number of threads used will be further restricted by the <max-beans-in-free-pool>
setting.

You should never need to disable the self-tuning thread pool. If you want to alter the maxi-
mum concurrency for an MDB to be greater than 16, configure a custom work manager with a
<max-threads-constraint> and associate it with your MDB. If you want the maximum concurrency
to be less than 16, you can either set <max-beans-in-free-pool> or use a custom work manager. We
recommend using a custom work manager in both cases. Bear in mind that the maximum number of
threads will only be used if there are a sufficient number of queued messages, and the self-tuning thread
pool has determined that the additional threads will improve throughput or the work manager also has
a <min-threads-constraint>.

When you deploy an MDB to listen for messages on a queue, WebLogic Server uses one JMS session
and consumer per bean instance in the pool. This allows for parallel processing of queued messages.
In contrast, WebLogic Server uses one JMS session and consumer per pool for MDBs listening for mes-
sages on topics. Although this means that the EJB container receives one message at a time, it actually
dispatches the messages to the bean instances in parallel for non-XA MDBs listening on WebLogic JMS
topics.

These algorithms may differ somewhat between different WebLogic Server releases so we recommend
that you check the MDB section of the Performance & Tuning Guide for your particular version (see Link
10-14).

Using Transactions
MDBs support both container-managed and bean-managed transactions. You can control the transac-
tional semantics for your MDBs through Java annotations or the ejb-jar.xml deployment descriptor,
just as you do for any other type of EJB. When using container-managed transactions, WebLogic Server
will automatically start a JTA transaction before invoking an MDB’s onMesssage() method so that the
incoming message delivery is part of the JTA transaction. If you want to force the container to roll back
the transaction, you should call the setRollbackOnly() method on the MessageDrivenContext object.
In general, you should avoid throwing a RuntimeException like EJBException from the onMessage()
method. Although this will cause the container to roll back the transaction, it also forces the container to
remove the MDB instance from the pool, as required by the EJB specification. Of course, the container is
free to create another instance should it need to do so.

Best Practice
Avoid throwing a RuntimeException, such as EJBException, from an MDB’s
onMessage() method to roll back transactions. If an MDB does throw a
RuntimeException, the EJB specification requires the container to remove the
instance that threw the exception from memory. Calling setRollbackOnly() works
just as well and does not force the container to remove the instance from memory.

To deploy an MDB that uses container-managed transactions, the MDB must use an XA connection
factory. If the referenced connection factory does not support XA, WebLogic Server will not deploy the
MDB.

428

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 429

Chapter 10: Using WebLogic JMS

Tip to Remember
MDBs that use container-managed transactions must use XA connection factories.

MDBs provide a declarative mechanism to tell the EJB container to start a transaction before delivering a
message to them. As we discussed earlier, JMS does not generically support the concept of transactional
delivery of asynchronously received messages. For JMS providers whose session objects implement
the weblogic.jms.extensions.MDBTransaction interface, WebLogic Server will support truly asyn-
chronous transactional delivery by receiving the message using the CLIENT_ACKNOWLEDGE mode, start
a JTA transaction, and then use this callback interface to associate the message delivery with the JTA
transaction. Obviously, this interface is specific to WebLogic Server, but at least one other third-party
JMS vendor (Progress Software’s SonicMQ) implements this interface. For JMS providers that do not
implement this interface, WebLogic Server uses synchronous polling to support transactional delivery of
JMS messages to MDBs.

MDBs also support bean-managed transactions. When using bean-managed transactions, the incom-
ing message delivery cannot be included as part of the transaction. In the onMessage() method,
the WebLogic EJB container gives you access to the JTA UserTransaction object through the
MessageDrivenContext so that your application can begin, commit, and roll back transactions as
necessary. In all cases, you must end your transaction before the onMessage() method returns. Once
the onMessage() method returns, the EJB container will acknowledge the message. To prevent this
message acknowledgment from occurring, you must throw a RuntimeException after ending the
transaction.

To help applications prevent message acknowledgement and force redelivery more efficiently,
WebLogic Server will not destroy the MDB instance if the MDB throws a weblogic.ejb.
NonDestructiveRuntimeException. While this exception works for all MDBs, it is most impor-
tant for MDBs that are not using container-managed transactions since throwing a RuntimeException is
the only way to prevent the container from acknowledging the message. MDBs using container-managed
transactions should use setRollbackOnly() instead.

You have several choices for controlling the type of message acknowledgment that the container uses.
By using the @ActivationConfigProperty annotation to set the acknowledgeMode property or set-
ting the <acknowledge-mode> element in the ejb-jar.xml deployment descriptor, you can control
the acknowledgment mode for any MDB that is not using a container-managed transaction. When
container-managed transactions are being used, this attribute is ignored. By default, the container uses
AUTO_ACKNOWLEDGE mode when container-managed transactions are not in use (or the transaction type
is set to NotSupported). You can also choose to use DUPS_OK_ACKNOWLEDGE or one of the WebLogic
JMS–specific modes, NO_ACKNOWLEDGE or MULTICAST_NO_ACKNOWLEDGE. An MDB is prohibited from using
client acknowledgment by the EJB specification.

Dealing with Durable Subscriptions
MDBs can also use durable subscriptions. Durable subscriptions require a unique client identifier.
WebLogic Server lets you set the client identifier for an MDB’s durable subscription in two ways: using
the <jms-client-id> element in the weblogic-ejb-jar.xml deployment descriptor or using the Client
ID for Durable Subscribers attribute on the connection factory’s Client Configuration tab in the
WebLogic Console.

429

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 430

Chapter 10: Using WebLogic JMS

As we previously discussed in the ‘‘Consuming Messages from a Distributed Topic’’ section, this create
a problem when deploying the MDB to a cluster. When you target an MDB to a cluster, WebLogic Server
deploys a copy of the MDB in each WebLogic Server instance. Because each copy of the MDB deployed
to the individual servers is treated as a separate deployment, this causes a problem because, as far as
WebLogic JMS is concerned, you have just deployed multiple durable subscriptions that are using the
same client identifier.

To solve this problem, simply set the MDB’s <generate-unique-jms-client-id> element to true in the
weblogic-ejb-jar.xml deployment descriptor and WebLogic Server will generate a unique subscription
ID for each managed server’s MDB deployment. This allows each managed server’s MDB deployment to
create and consume from a unique durable subscription so that each managed server receives one copy
of each published message. When a managed server’s MDB is unavailable, other cluster members will
store the published messages and forward them once the MDB reconnects.

As previously discussed, WebLogic Server did not support creating durable subscriptions directly on
distributed topics when we were writing this book. The WebLogic EJB container actually allows you
to deploy durable subscriber MDBs that reference the JNDI name of a distributed topic that is running
in the same cluster, rather than one of its member topics. This is purely a convenience mechanism that
makes it easier to create MDBs that are durable subscribers, and MDBs using this approach must still set
<generate-unique-jms-client-id> to true. Behind the scenes, the EJB container actually creates each
server’s MDB durable subscription against the member topic.

WebLogic Server MDB’s also provide a <durable-subscription-deletion> element to tell the server
whether to automatically delete the durable subscription when you undeploy or remove the MDB. By
default, this value is set to false.

Tip to Remember
If you need to use durable subscriptions with message-driven beans in a WebLogic
Server cluster, use the <generate-unique-jms-client-id> feature to prevent client
identifier conflicts. If using durable subscriptions in conjunction with distributed topics
that are running in the same cluster as the MDB, use the distributed topic’s JNDI name
in your MDB — WebLogic Server will create the appropriate durable subscriptions on
the member topics automatically.

We expect that the capabilities and options surrounding distributed topics will be changing in an upcom-
ing version of WebLogic Server — possibly by the time you are reading this book. Please consult the
WebLogic Server documentation at Link 10-4.

Connecting to Distributed Destinations
As previously discussed, WebLogic JMS consumers are pinned to a distributed destination member at
the time you create them. This behavior, in conjunction with server affinity, usually provides you with
exactly what you want — an optimized connection where your consumer is listening for messages on a
local member destination. By default, WebLogic Server MDBs also exhibit this exact same behavior when
deployed into the same cluster as the distributed destination. Again, this is typically what you want.

What happens if your distributed queue and MDB are in two different clusters? It used to be that the
behavior was exactly the same as any other remote consumer — each managed server’s MDB would

430

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 431

Chapter 10: Using WebLogic JMS

connect into the remote cluster and get pinned to a member queue. Assuming load balancing was
working, you typically got a reasonable distribution across the distributed destination’s members. The
problem started when the managed servers hosting the distributed queue’s members were shut down
and restarted.

When a queue member’s managed server was shut down, the MDB container would detect that and
attempt to reconnect to the distributed queue. Because one server was down, that connection request
would be processed by a server that was still running. When the member queue’s managed server comes
back up, it will have no consumers until a server shuts down or a consumer is forced to reconnect. Imag-
ine if the WebLogic Server administrator for the cluster hosting the distributed queue shut down the
entire cluster and brought each server back up one at a time. Because the EJB container is periodically
trying to reconnect to the JMS destination, it is very possible that all MDBs in the cluster might connect to
one, or maybe two, member queues. If no failures or server shutdowns occur, the MDBs might all be lis-
tening to a single member destination for a very long time. Also, as more distributed queue members are
added, the MDBs won’t use them until they are forced to reconnect. As you can tell, this was problematic.

In all current versions of WebLogic Server, MDBs use a more appropriate load balancing algorithm when
the distributed queue is in a remote cluster. Each MDB pool in the cluster creates consumers on every
member queue in the remote distributed queue. Additionally, the MDB pools will respond dynamically
to changes in the remote distributed destination — even when members shut down, restart, or migrate.

WebLogic Server MDBs also have advanced capabilities when interacting with distributed queues in the
same cluster. When the MDBs are targeted to the same cluster as a distributed queue, WebLogic Server
will create a pool of MDB instances for each member of the distributed queue. The MDBs will move
automatically if the members migrate from server to server.

WebLogic Server also supplies the <distributed-destination-connection> element in the
weblogic-ejb-jar.xml deployment descriptor that allows you to change the default behavior where
each MDB pool only creates consumers on the local member (LocalOnly) and force it to create them on
every member (EveryMember).

Application Design Considerations
When designing your MDB-based application, there are several things to keep in mind. First, it is gen-
erally better to use a delegation model to keep the business logic inside the onMessage() method to a
minimum. By delegating the actual message processing to another component, you can turn the MDB
into a controller that does nothing more than dispatch messages to the right business component. This
promotes modular design and component reusability.

Remember that an MDB instance can process only one message at a time. This creates a problem if the
business logic takes a relatively long time to process a message. As we have mentioned several times
throughout this chapter, a well-designed messaging application requires consumers to be able to keep
up with producers over long periods of time. If your message processing takes a long time, you need to
make sure that you have enough concurrency to handle the incoming message volume. Also remember
that WebLogic JMS consumers use a message pipeline to help speed up delivery of messages — this
applies to MDBs as well. Therefore, you should typically create your own JMS connection factory and set
Maximum Messages per Session to 1 for any MDB that will take tens of seconds, or even longer, to process
each message. This ensures that messages do not accumulate in an MDB’s message pipeline waiting for
MDBs to finish processing the current message when there might already be MDBs available to process

431

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 432

Chapter 10: Using WebLogic JMS

the message. Please refer to the ‘‘Connection Factories’’ subsection of the ‘‘Configuring WebLogic JMS’’
section earlier in this chapter for a more complete discussion of the message pipeline.

When deploying MDBs, it is best to deploy them to the same WebLogic Server instance that hosts the
destination whenever possible. When deploying to a cluster which hosts both the MDBs and their JMS
destinations, you should make sure that the MDBs are listening only on destinations in the same server
instance. This happens by default when you deploy the MDB to the cluster (that is, its target is a cluster as
opposed to the individual managed servers) and you set the MDB to listen to a distributed destination.
When you do this, WebLogic Server starts the MDB instances only on servers that contain a member
destination.

While using distributed destinations that contain multiple member destinations is not appropriate for
every application, you can leverage this capability even with an application that uses a single physical
destination by wrapping it in a distributed destination with only one member. Assuming that you do this
and target the MDB to the cluster, the MDB will only activate on the managed server currently hosting
the single member destination. That means that if you use service migration to migrate the destination to
another server in the cluster, WebLogic Server will activate the MDB on the new hosting server as part of
the migration process.

Of course, all of the other considerations we discussed previously in the ‘‘WebLogic JMS Application
Design’’ section apply to MDBs as well.

External JMS Providers
Sometimes, you may need to use a remote WebLogic JMS system or another vendor’s messaging system
to be able to access as application. Many of the messaging systems in use today are starting to provide
JMS APIs that make this job easier. The Java EE 5 specification does not really define exactly how Java
EE applications deployed using one vendor’s application server should be able to integrate with JMS
providers from another vendor. For example, the EJB 3.0 specification does not define how the MDBs
should support interaction with a foreign (third-party) JMS provider. Fortunately, WebLogic Server
provides seamless integration with foreign JMS providers.

In general, two strategies exist for integrating your Java EE applications deployed in WebLogic Server
with external JMS providers: direct and indirect integration. These external JMS providers might be
another vendor’s JMS product or just another WebLogic Server instance that hosts the JMS destinations.
With direct integration, the application interacts directly with the external JMS destinations from the
application code or the MDB’s deployment descriptors. This method has the advantage of being the most
efficient but exposes the Java EE application to the availability of the external provider.

Indirect integration uses a store-and-forward model where the application produces messages to or con-
sumes messages from local JMS destinations. A message forwarding agent is responsible for moving
messages between the local and external destinations. Because all availability and reconnection issues
are handled by the agent, the application itself never has to worry about the external JMS provider.
WebLogic Server provides two message forwarding agent technologies for use in different scenarios.

In this section, we start by looking briefly at the capabilities of the two message forwarding agent tech-
nologies: WebLogic Messaging Bridge and WebLogic Store-and-Forward (SAF). We follow that with a

432

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 433

Chapter 10: Using WebLogic JMS

discussion of MDB support for foreign JMS providers. Next, we discuss WebLogic JMS’s new Foreign
Server support, which allows an administrator to maintain the configuration details required to establish
the connections as part of the WebLogic Server domain configuration. We end this section with a brief
discussion of the trade-offs of the different approaches.

Understanding the Messaging Bridge
WebLogic Server provides a built-in messaging bridge that you can configure using the WebLogic Con-
sole to move messages between any two JMS destinations. The WebLogic Messaging Bridge provides
three alternative qualities of service (QoS) that control the message delivery: Exactly-once, Atmost-once,
and Duplicates-okay. Exactly-once delivery means just that; the message will be delivered from the
sending destination to the receiving destination using XA transactions so that the receiver gets exactly
one copy of each message. Atmost-once delivery makes sure that the receiving destination receives only
a single copy of the message or does not receive it at all. With the Duplicates-okay delivery mode,
the bridge acknowledges receiving the message from the source destination only after writing it to the
target destination. Because this is done outside the scope of a transaction, failures after writing the mes-
sage to the target and before acknowledging the source can result in duplicate messages being delivered
but should never result in a message being lost. This type of delivery is better known as at-least-once
delivery.

The bridge uses J2EE Connector Architecture adapters to connect to the different messaging systems,
though the adapters it can use are currently limited to the following built-in set of adapters:

eis.jms.WLSConnectionFactoryJNDIXA The bridge uses this adapter to communicate with
any XA-compliant JMS provider to provide Exactly-once delivery.

eis.jms.WLSConnectionFactoryJNDINoTx The bridge uses this adapter to communicate with
any JMS provider to provide either Atmost-once or Duplicates-okay delivery.

You must create an instance of the Messaging Bridge that maps each source destination with a target
destination. Each destination is configured using one of the bridge’s adapters. Each bridge instance
is targeted to a specific WebLogic Server instance. If the source is a distributed destination, the JMS
consumer load balancing rules will associate the bridge with a single destination. In this case, it is best to
connect a separate bridge instance to each member of the source destination. This leads to a proliferation
of bridge instances that must be reconfigured if the cluster membership changes.

The WebLogic Messaging Bridge provides many different configuration options that we will not spend
time on here. For a complete discussion of the bridge, please refer to the WebLogic Server documentation
at Link 10-15.

Best Practice
Use the WebLogic Messaging Bridge to store and forward messages between JMS des-
tinations where one or both destinations are either hosted by foreign JMS providers or
running on older versions of WebLogic Server that do not support the new Store-and-
Forward service.

433

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 434

Chapter 10: Using WebLogic JMS

Understanding the Store-and-Forward Service
WebLogic Server 9.0 introduced the Store-and-Forward (SAF) service that allows applications to send mes-
sages reliably to destinations hosted by remote WebLogic Server instances without worrying about the
availability of the remote environment. The WebLogic Server Web Services container relies on SAF to
support Web Services Reliable Messaging (WS-RM)–based applications. SAF also provides JMS clients
running in standalone JVMs with the ability to reliably send messages to a WebLogic JMS system, pro-
viding a mechanism by which you can build disconnected client applications (see Link 10-16 for more
information about the SAF client).

Both WebLogic SAF and the Messaging Bridge provide the JMS applications a message forwarding
agent-based technology and the same three qualities of service. However, a few key differences exist:

❑ SAF supports only WebLogic JMS 9.0 and higher endpoints. The Messaging Bridge can supports
all versions of WebLogic Server, and any third-party JMS endpoint.

❑ SAF supports clustered deployment with distributed destinations. Though the Messaging Bridge
can be used in a cluster and with distributed destinations, you must configure a bridge instance
for each member of the source distributed destination.

❑ SAF cannot be used with temporary destinations to support the request-reply pattern using the
JMSReplyTo field. However, it supports JMSReplyTo using permanent/preconfigured destina-
tions. JMSReplyTo using temporary destinations is supported by the Messaging Bridge.

❑ WebLogic Server provides a version of the SAF agent that runs in a standalone client. The Mes-
saging Bridge must be deployed to a WebLogic Server instance.

❑ SAF tends to perform better than the Messaging Bridge for the exactly-once quality of service. It
uses an internal duplicate elimination algorithm that does not require XA transactions.

❑ SAF provides exactly-once messaging without requiring distributed transactions that span
between the source and the target systems.

SAF is the preferred mechanism to store and forward in WebLogic Server 9.0 and higher. You should
always choose to use SAF for routing messages between two standalone WebLogic Server instances,
between server instances in a cluster, across clusters in a domain, or across domains. Use the Messaging
Bridge when forwarding messages to older WebLogic JMS servers, interoperating with foreign JMS
providers, and when using the request-response pattern with temporary destinations.

When forwarding messages between remote applications, both sides must coordinate to guarantee deliv-
ery with the specified quality of service: the local sending side and the remote receiving endpoint. SAF
uses agents to store and forward the messages between the sending and receiving sides. You must
configure SAF agents to support sending, receiving, or both; the appropriate settings depend on what
technology is used and which side the agent is supporting, as shown in Table 10-2.

SAF agents are similar to JMS servers in that they have persistent stores, paging directories, and destina-
tions, as well as quotas, thresholds, and other similar configuration parameters. The primary difference
is that SAF agents only support imported destinations, a local representation of remote destinations to
which messages are stored locally and then forwarded. SAF agents also support targeting to migratable
targets to enable SAF agent service migration.

434

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 435

Chapter 10: Using WebLogic JMS

Table 10-2: SAF Agent Configuration

Technology Side Required Agent

JMS Sending Sending agent only

JMS Receiving No agent needed

WS-RM Sending Sending and receiving agent

WS-RM Receiving Receiving agent

Reliability in SAF is time-based in that the Time-To-Live attribute determines how long the agent will
attempt to forward the message before expiring it. The rules to determine a message’s time-to-live on the
sending side are:

❑ A connection factory used by a MessageProducer can specify the Default Time-to-Live for all
messages it sends. This value defaults to 0, which means the messages never expire.

❑ An application can override the connection factory’s Default Time-to-Live setting using the
MessageProducer.setTimeToLive() method. By default, messages never expire.

❑ SAF can override all messages’ time-to-live that were set by the application calling the
MessageProducer.setTimeToLive() method before sending the message. Here is how it works:

❑ A Store-and-Forward Agent can set their Time-To-Live attribute to set the expiration time
for all messages sent to imported destinations whose Enable SAF Default Time-to-Live
attribute is set.

❑ The SAF Imported Destinations artifact that you create in a JMS module and associate
with a Store-and-Forward Agent acts as a container for the imported queues or topics it
defines. At this container level, you can set the default values of the Enable SAF Default
Time-to-Live and SAF Default Time-to-Live attributes. These values will apply to all
imported queues or topics defined by the container.

❑ Each imported queue or topic can set the Enable SAF Default Time-to-Live and SAF
Default Time-to-Live attributes to override those set by the SAF Imported Destinations
container.

If an imported queue or topic does not enable the Enable SAF Default Time-to-Live attribute, SAF will
not override the messages’ time-to-live for messages sent to that imported queue or topic. When setting
a time-to-live on one of these SAF objects, a value of -1 means that the value is not set, 0 means that the
message never expires, and a positive value defines the number of milliseconds after the message was
created that the message will expire.

If a message expires, SAF error handling provides four expiration policies from which to choose: Discard,
Log, Redirect, and Always-forward. The first three have the exact same meaning and semantics as the
JMS server expiration policies we discussed previously in the ‘‘Choosing a Message Expiration Strategy’’
section. Always-forward ignores the default Time-To-Live setting on the imported destinations and any

435

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 436

Chapter 10: Using WebLogic JMS

message expiration time and forwards the message even after it has expired. Typically, you would use
this option if your application had expiration policies set up on the remote destinations and you want the
expired messages to be handled using these policies.

Once the message reaches the target destination on the remote server, the remote destination’s
Time-to-Live Override, if set, will override the time-to-live values on any incoming messages. If
a message expires after arriving at the target destination, the destination’s normal WebLogic JMS
expiration policy settings apply.

When using SAF to forward messages between WebLogic Server domains, setting up cross domain
security is not required. It is required if one domain has enabled cross domain security and the SAF
agent is importing uniform distributed destinations whose membership may change, either through
configuration or at runtime. Please see the ‘‘Setting up Cross Domain Security and Single Sign On (SSO)’’
section of Chapter 11 for more information about setting up cross domain security.

The WebLogic Store-and-Forward service provides a wide variety of configuration options and has
numerous design considerations that need to be accounted for when configuring applications to use it.
Please see the WebLogic Server documentation at Link 10-17 for more information.

Using Message-Driven Beans
MDBs use JNDI to retrieve connection factories and destinations. You can use MDBs in WebLogic
Server to work with any JMS provider that supports and implements the JMS and JNDI specifica-
tions. When configuring an MDB to use a remote JMS provider, you must provide the JNDI information
needed to look up the remote connection factory and destination using the MDB’s deployment descrip-
tors. This information may include the values of the JNDI Context.INITIAL_CONTEXT_FACTORY and
Context.PROVIDER_URL parameters that WebLogic Server should use to create the InitialContext, as
well as the JNDI names of the connection factory and destination. However, there is no support in the
deployment descriptor for providing the authentication information needed if the foreign JNDI provider
requires authentication. For this, you need to use WebLogic Server’s Foreign JNDI Provider or WebLogic
JMS’s Foreign Server support discussed in the next section.

WebLogic Server also supports using container-managed transactions with foreign JMS providers to
provide transactional delivery of messages to the MDBs. Make sure that the connection factory the MDB
deployment descriptors references is an instance of javax.jms.XAConnectionFactory so that WebLogic
Server will fully support the transactional settings of the MDB and provide for transaction coordina-
tion between the external provider and any other resources your business logic might involve in the
transaction.

At the time of writing, WebLogic JMS cannot participate in distributed transactions managed
by a foreign (third-party) transaction manager. The WebLogic JMS client does not support the
javax.jms.XASession.getXAResource() method unless it is running inside a WebLogic Server
instance. Because of this, it is not possible to enlist WebLogic JMS in an XA transaction managed
by a foreign transaction manager. This means that, for example, you cannot deploy an MDB that is
using container-managed transactions with a WebLogic JMS destination to another vendor’s Java EE
application server.

436

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 437

Chapter 10: Using WebLogic JMS

Mapping External JMS Objects to WebLogic JNDI
WebLogic Server provides two facilities that give you the ability to create an administrative link between
objects in an external JNDI provider and a binding in your local WebLogic Server’s JNDI tree. This
makes it easier for your applications, or the messaging bridge configuration, to abstract itself away from
the external JNDI provider’s configuration details. The two facilities are:

WebLogic Server’s Foreign JNDI Provider WebLogic Server provides a general JNDI mapping
capability that allows you to map objects stored in remote JNDI providers’ JNDI trees to WebLogic
Server’s JNDI tree. Though not specific to JMS objects, you can use this facility to map JMS connec-
tion factories and destinations from remote or foreign JMS providers’ JNDI tress to your server’s
local JNDI tree.

To use this facility, you start by using the WebLogic Console to create a Foreign JNDI Provider
entry for each of your external JMS providers. This entry contains the information about how to
connect to the external JMS provider’s JNDI provider. Once the Foreign JNDI Provider entry
exists, you can add any number of links between external connection factories and destinations for
that server and local JNDI bindings. For more information about using this feature, see Link 10-18.

WebLogic JMS’s Foreign Server WebLogic JMS supports defining a Foreign Server as a resource
configured in a JMS module. This Foreign Server resource represents a remote or foreign JMS
provider and its connection factory and destination objects. Like the WebLogic Server Foreign
JNDI Provider, the idea is to bind references to the remote JMS connection factories and destina-
tions into the local WebLogic Server JNDI tree. This Foreign Server feature is specific to JMS and
is simpler to use than a Foreign JNDI Provider for mapping remote JMS connection factory and
destination objects into the local JNDI tree. In addition, it has some additional capabilities such as
providing support for specifying that the username and password that the server should use for
creating JMS connections.

To use this facility, first you must create a new Foreign Server resource in an existing JMS module
by giving it a Name and specifying the Targets. Typically, you should accept the JMS module’s
default targeting.

Next, edit the new Foreign Server and use the Foreign Server’s General Configuration tab to
specify the foreign provider’s JNDI information. WebLogic Server will use this information to
establish a JNDI InitialContext and perform lookups of the connection factories and destination,
as needed.

Finally, use the Destinations Configuration tab to create new destination references and the
Connection Factories Configuration tab to create new connection factory references. With both
types of references, you specify the following attributes:

❑ Name: The logical name used in the WebLogic Server configuration.

❑ Local JNDI Name: The JNDI name to use to bind the reference into the local JNDI tree

❑ Remote JNDI Name: The JNDI name to use to look up the object in the foreign server’s JNDI
tree.

After creating a connection factory reference, you can also specify a User Name and Password that
WebLogic JMS will use to call the ConnectionFactory.createConnection(username, password)

437

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 438

Chapter 10: Using WebLogic JMS

method. Not all providers require this — check your JMS provider documentation to determine if
you need to supply these credentials to create JMS connections.

Of course, the Foreign Server mechanism is tightly integrated with the WebLogic Server JMS
and MDB subsystems so we recommend using this approach for foreign or remote JMS provider
integration. For more information on the WebLogic JMS’s Foreign Server support, please see the
WebLogic JMS documentation at Link 10-19.

Best Practice
Use the WebLogic JMS Foreign Server capabilities to isolate the rest of your application
configuration away from the external JMS provider’s configuration by making the
objects visible from the local JNDI tree. Use the WebLogic Server Foreign JNDI Provider
to achieve the same sort of isolation with non-JMS objects.

Integrating Oracle Advanced Queuing
Many Oracle customers have applications that use Oracle Advanced Queuing (AQ), which comes as
part of the Oracle Database, as their messaging provider. Oracle AQ provides a JMS interface that allows
applications to use the JMS interface to send and receive messages. Though we do not cover AQ or AQ
JMS in this book, we do need to discuss the subject of AQ JMS integration because there are some caveats
to the normal foreign JMS provider integration approach we have been discussing.

With the release of Oracle WebLogic Server 11g, AQ JMS now integrates directly using the standard JMS
foreign server approach described previously. The initial release has some limitations which include only
supporting the Oracle 11g Thin driver and the lack of support for any of the options that allow using a
non-XA data source within a global transaction (for example, Logging Last Resource). We expect the
support for other options to be added over time so please consult the WebLogic Server documentation at
Link 10-20 for details.

To configure this integration, start by setting up AQ in the database. For the purpose of this section, we
use the following SQL commands to create our jmsuser database user.

% sqlplus SYS/manager1@ORCL AS SYSDBA
SQL> grant connect,resource,aq_administrator_role to jmsuser identified by jmsuser;
SQL> grant select on sys.DBA_PENDING_TRANSACTIONS to jmsuser;
SQL> grant execute on sys.dbms_aqadm to jmsuser;
SQL> grant execute on sys.dbms_aq to jmsuser;
SQL> grant execute on sys.dbms_aqin to jmsuser;
SQL> grant execute on sys.dbms_aqjms to jmsuser;
SQL> exec dbms_aqadm.grant_system_privilege(’ENQUEUE_ANY’,’jmsuser’);
SQL> exec dbms_aqadm.grant_system_privilege(’DEQUEUE_ANY’,’jmsuser’);

Next, we create our AQ queue tables and queues using the commands shown here.

% sqlplus jmsuser/jmsuser AS SYSDBA;
SQL> exec dbms_aqadm.create_queue_table(queue_table=>’jmsdemo_queue_table’,

queue_payload_type=>’sys.aq$_jms_text_message’,multiple_consumers=>false);
SQL> exec dbms_aqadm.create_queue_table(queue_table=>’jmsdemo_topic_table’,

queue_payload_type=>’sys.aq$_jms_text_message’,multiple_consumers=>true);
SQL> exec dbms_aqadm.create_queue(queue_name=>’JMSDEMO_QUEUE1’,

438

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 439

Chapter 10: Using WebLogic JMS

queue_table=>’jmsdemo_queue_table’);
SQL> exec dbms_aqadm.create_queue(queue_name=>’JMSDEMO_TOPIC1’,

queue_table=>’jmsdemo_topic_table’);
SQL> exec dbms_aqadm.start_queue(queue_name=>’JMSDEMO_QUEUE1’);
SQL> exec dbms_aqadm.start_queue(queue_name=>’JMSDEMO_TOPIC1’);

Creating a queue with multiple_consumers set to true will allow us to use the AQ queue as a JMS
topic.

Once AQ is properly configured, we need to set up a WebLogic Server data source to connect to our
database as our AQ user: jmsuser. We will not go through the details here but remember that you
must select either the Oracle Thin XA driver or the Oracle Thin driver for AQ integration in WebLogic
Server 11g. If you choose the non-XA driver, accept the defaults of Supports Global Transactions and
One-Phase Commit on the Transaction Options screen of the WebLogic Console’s data source creation
wizard.

Next, we need to create the WebLogic JMS resources needed to configure a foreign server for our AQ
integration by doing the following:

1. Create a JMS module called AQSystemModule using the WebLogic Console and target that
module to your server or cluster.

2. In the module, create a Foreign Server resource named AQForeignServer and accept the
default targeting it inherits from the module (that is, do not use the Advanced Targeting
button).

3. Using the foreign server’s General Configuration tab, set the JNDI Initial Context
Factory to oracle.jms.AQjmsInitialContextFactory and add the datasource property to
the JNDI Properties field and set its value to the JNDI name of the data source you created
for accessing AQ (for example, datasource=AQJMSDataSource).

4. Set up the foreign server’s connection factories using its Connection Factories
Configuration tab. Note that AQ JMS does not require predefining the connection factories
in the database. AQ JMS provides the six connection factories shown in Table 10-3. Map
each AQ JMS connection factory your application requires to an appropriate Local JNDI
Name using the Remote JNDI Name from Table 10-3. We chose to map ConnectionFactory to
AQJMS_ConnectionFactory and XAConnectionFactory to AQJMS_XAConnectionFactory.

5. Set up the foreign server’s destinations using its Destinations Configuration tab.
For queues, the Remote JNDI Name will be of the form Queues/<AQ queue name>,
where the AQ queue name is the one specified in the database (for example,
Queues/JMSDEMO_QUEUE1). For topics, it will be of the form Topics/<AQ queue name>
(for example, Topics/JMSDEMO_TOPIC1).

Once you complete these steps and activate your changes, you should be able to see the JNDI bind-
ings you just created for these JMS resources in the server’s JNDI tree, which you can view using the
server’s General Configuration tab in the WebLogic Console. MDBs can reference these artifacts using
WebLogic JNDI and the local JNDI names you chose so your MDB is completely decoupled from the
AQ-specific configuration data. Note that in this first release of native AQ JMS integration with WebLogic
Server, this is the only supported integration mechanism. MDBs cannot integrate directly with AQ JMS’s
JNDI provider and the Messaging Bridge is not supported. Be sure to check the documentation for your
release to see if anything has changed.

439

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 440

Chapter 10: Using WebLogic JMS

Table 10-3: AQ JMS Connection Factory Remote JNDI Names

Remote JNDI Name JMS Object Type

QueueConnectionFactory javax.jms.QueueConnectionFactory

TopicConnectionFactory javax.jms.TopicConnectionFactory

ConnectionFactory javax.jms.ConnectionFactory

XAQueueConnectionFactory javax.jms.XAQueueConnectionFactory

XATopicConnectionFactory javax.jms.XATopicConnectionFactory

XAConnectionFactory javax.jms.XAConnectionFactory

Integrating AQ with Older WebLogic Server Releases
Older releases of the AQ JMS library and WebLogic Server are not able to take advantage of this new
support. Prior to the release of WebLogic Server 11g, AQ JMS did not provide its own JNDI provider.
Instead, it relied on Oracle Internet Directory’s (OID) or the Oracle Containers for Java (OC4J) applica-
tion server’s JNDI providers. AQ JMS also provides proprietary APIs to obtain connection factory and
destination object references; however, these references do not implement standard JNDI interfaces so
they are incompatible with WebLogic Server JNDI.

At the time of writing, the only solution for pre–WebLogic Server 11g integration with AQ JMS is an open
source framework written by one of the book’s authors. This package provides a startup class–based
mechanism to integrate AQ JMS connection factories and destinations into WebLogic JNDI. Because
this is all that it does, it has the same caveats that we previously mentioned concerning automatic XA
resource registration and enlistment. That is, WebLogic Server handles XA resource registration and
enlistment for inbound messages being consumed by MDBs; it doesn’t handle automatic registration
and enlistment for outbound messages sent by your applications. We recommend using the JMS wrapper
mechanism described in ‘‘Using WebLogic JMS with Servlets and EJBs’’ section to leverage automatic
registration and enlistment for outbound connections. Please note that at the time of writing, you can use
the wrapper approach only for the connection factory and not the destination. Though this is sufficient to
obtain the benefits of wrapper, we hope to address this limitation by the time you are reading this book.
Please check the readme file included in the package for further information.

You can download the source code for this framework at Link 10-21. You should use this framework only
after you understand its implementation, have tested it with your application, and are willing to accept
the risks associated with the lack of commercial support for this package.

Choosing an Integration Strategy
When your application is consuming messages from an external JMS provider, consider using the
direct integration approach with MDBs rather than the indirect bridging approach. MDBs deployed in
WebLogic Server can support the same qualities of service supported by the message forwarding agents.
MDBs support exactly-once delivery through the use of XA transactions. If you are not using transactions,

440

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 441

Chapter 10: Using WebLogic JMS

use either AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE modes to get at-least-once delivery. The trade-
offs between the two acknowledgment modes are really about reducing the chances for duplicate mes-
sages versus improving performance. By using the WebLogic JMS–specific modes of NO_ACKNOWLEDGE or
MULTICAST_NO_ACKNOWLEDGE, you can achieve at-most-once delivery of your messages. MDBs also sup-
port automatic reconnection to the external provider should the connection fail, such as when the external
JMS provider is restarted. You can tune the polling interval with which the MDBs will try to reconnect
by using the <jms-polling-interval-seconds> element in the weblogic-ejb-jar.xml deployment
descriptor. The default value is to try to reconnect once every 10 seconds. Use of the Foreign Server mech-
anism allows you to handle situations where the JNDI objects change when the external JMS provider is
restarted, as well as remove environment-specific settings from the MDB deployment descriptors.

For applications that are sending messages to a foreign provider, using the indirect integration approach
via SAF or the Messaging Bridge is typically a better option unless the application is waiting on a
response to be able to continue processing. For example, a web application that is using request/reply
style messaging to an external backend system in order to be able to send a web page back to the client’s
browser would not be a good candidate for the indirect integration approach. In this situation, direct
integration is better because the application will receive a system exception and can immediately abort
the web request if its message cannot be sent to the remote system. Of course, we could argue that this
isn’t the best design, as we did earlier in the chapter, but we hope that the example gets our point across.
Using the indirect approach allows the application to complete requests by writing the message to a local
JMS queue. This means that the application will continue to function properly even when the remote
system is down. The SAF agent or Messaging Bridge handles all of the reconnect logic to deal with the
external JMS provider being unavailable for a period of time.

Chapter Review
We covered a lot of ground in this chapter. We started off by reviewing some key concepts of JMS. We
spent quite a bit of time talking about the WebLogic JMS provider, covering how it works and what
features it provides. After that, we discussed things to consider when designing WebLogic JMS appli-
cations. Next, we talked briefly about WebLogic JMS programming and how to best use WebLogic JMS
from within Java EE applications. This discussion included the server-side JMS resource pooling and a
discussion of message-driven beans. We finished up the chapter with a discussion of how to integrate
WebLogic Server applications with external JMS providers using either the direct or indirect approach to
integration. In the next chapter, we talk in detail about WebLogic Server security.

441

Patrick c10.tex V3 - 09/18/2009 12:19pm Page 442

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 443

Using WebLogic Security

In this chapter, we discuss the WebLogic Server Security Service. If you are unfamiliar with general
security concepts or Java EE security features, you should consult the WebLogic Server documenta-
tion at Link 11-1 in the book’s online Appendix at http://www.wrox.com/ for more information.

We begin with an overview of WebLogic Server security, from both a runtime and administra-
tive perspective. This is important so that you understand the big picture of how interactions with
WebLogic Server are secured. Next, we dive into the details of the WebLogic Security Framework
and the security providers that are available to the security service. We follow that with a brief
discussion of how to use external security stores with WebLogic Server. Next, we show you how
to set up WebLogic Server to use Secure Socket Layer/Transport Layer Security (SSL/TLS). From
there, we move into a discussion of client-side programming to the WebLogic Server Security Ser-
vice. This includes a detailed discussion of how to set up and use two-way SSL between different
types of Java clients and WebLogic Server. Then, we briefly discuss how to manage application
security using both Java EE security features and WebLogic Server’s own application security. We
end the chapter with a discussion of how to provide single sign-on (SSO) to WebLogic Server across
domains and across the Internet.

In this chapter, the term server refers to one instance of a WebLogic Server or multiple instances
of WebLogic Server acting as a cluster. We will treat the cluster of servers as one logical entity.
Throughout the chapter, we refer to several examples when discussing certain features. As with the
other chapters, these examples are available on our companion Web site at http://www.wrox.com/.

WebLogic Security Overview
Let’s start our discussion of WebLogic Server security by looking at the different types of clients
and how they can access a WebLogic Server application. WebLogic Server supports many different
types of clients and protocols for accessing the server, as shown in Figure 11-1. As far as security is
concerned, three primary types of clients will be calling into the server.

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 444

Chapter 11: Using WebLogic Security

Browser
(HTTP, HTTPS)

Browser w/
Applet

(HTTP, HTTPS,
T3, T3S, IIOP,
IIOPS, JRMP)

Web Service
Client

(SOAP over
HTTP, HTTPS,

T3, IIOP)

Java Application
Client

(T3, T3S, IIOP,
IIOPS, JRMP,
HTTP, HTTPS)

CORBA Client
(IIOP, IIOPS)

COM Client
(DCOM)

Web Server
w/ WebLogic

Plug-In
(HTTP, HTTPS)

WebLogic Server

Servlet and Web
Services Containers

EJB Container,
JMS, and jCOM

Database

LDAP Client
(LDAP)

LDAP Server

SNMP Server

SNMP Client
(SNMP)

Figure 11-1: Client connectivity options.

The first type is typically a browser that either calls directly into the server or accesses the server
via an intermediate web server running one of the WebLogic Server web server plug-ins. Java or
non-Java applications that make standard HTTP requests would also fall into this category. These
clients generally authenticate themselves to the WebLogic Server using one of the standard HTTP
authentication mechanisms: basic authentication or certificate-based authentication using two-way
SSL. SSL also provides confidentiality by protecting the contents of the HTTP messages from being
seen in clear text by parties other than the sender and the receiver.

The second type is the application client that typically calls directly into the server using a
distributed object–based protocol like T3, IIOP, or JRMP. These clients generally authenticate

444

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 445

Chapter 11: Using WebLogic Security

themselves using the security mechanisms associated with the particular protocol or programming
model, such as the Java Authentication and Authorization Service (JAAS) or the Common Secure
Interoperability Version 2 (CSIv2) in the case of CORBA clients. Although HTTP tunneling of
these protocols can allow these clients to communicate through an intermediate web server,
authentication still uses the same mechanisms that it would if the protocols were not being
tunneled.

The third type is a SOAP web services client. The web services client could be the WebLogic Server
web service client or any other Java or non-Java web service client. Normally, these clients access
WebLogic Server over HTTP in which case the protocol-level security mentioned previously can
be used. In addition, the SOAP messages themselves can have protections applied — identity
tokens, encryption, and digital signatures. The binding of security information to SOAP messages
is defined by the OASIS WS-Security specification. Message-level security should be used when
multiple parties have different access to the same message. For example, a loan application con-
tains the applicant’s credit history along with information about the property. A home inspection
service needs to have access to the information about the property, but should not be able to see
the credit information. In this case, the part of the message containing the credit information can be
encrypted. Message-level security should also be used when the message is part of an asynchronous
process because the protections provided by the transport protocol are not there once the message
is enqueued. In the case of simple synchronous requests, protocol-level security is often sufficient.

With any type of client, the calls could be routed through one or more firewalls. We talk about
suggested firewall layouts in Chapter 15. In addition to external firewalls, WebLogic Server has its
own software firewall called a connection filter. The connection filter can grant or deny access to
different protocols and ports running on WebLogic Server by domain, machine, or network mask.
For example, you might use a connection filter to ensure that all traffic coming to WebLogic Server
is coming from your web servers running the WebLogic Server web server plug-in.

As these clients make calls into the various business applications on the server, these applications
use the WebLogic Server Security Service to authenticate the client’s identity, authorize their access
to application functionality, audit security decisions, map the caller’s identity into a different creden-
tial needed to access another system, and perform other security-related tasks. The WebLogic Server
Security Service supports the Java EE security features as well as specialized WebLogic Server secu-
rity features. Depending on the security mode used to deploy the application, WebLogic Server can
apply roles and security policies defined in the application’s deployment descriptors or manage
access to application resources using roles and policies defined by WebLogic Server.

When the WebLogic Server Security Service is called, it makes calls into the security framework for
security decisions. The security framework defines a rich set of service provider interfaces (SPIs)
that the security service calls when security decisions must be made. Through these provider inter-
faces, the framework calls into one or more security providers that are configured for the server.
Figure 11-2 shows the architecture and where each component fits into the big picture.

WebLogic Server also supports JSR-115: Java Authorization Contract for Containers (JACC). JACC
is an alternative to the WebLogic Security Framework for EJBs and web applications. JACC defines
a mapping between Java security permissions and Java EE objects such as servlets and EJBs. You can
find details on WebLogic Server and JACC at Link 11-2. The capabilities defined in the JSR-115 are
not as rich as those found in WebLogic Server. Though fully supported, using JACC with WebLogic
Server is not recommended.

Compatibility security is the ability to secure WebLogic Server with a WebLogic Server 6.x–style
security realm. The older realm architecture defined all of security services in a single object — for

445

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 446

Chapter 11: Using WebLogic Security

example, LDAP Realm. In this model, all of the security information (users, groups, ACLs) was
maintained in LDAP. Compatibility security has been deprecated since WebLogic Server 7.0. You
can find details about compatibility security at Link 11-3. This chapter only focuses on the current
security architecture.

WebLogic Server

Security Framework

Authentication
& Identity
Assertion

Provider(s)

Authorization
Provider(s)

Auditing
Provider(s)

Role Mapping
Provider(s)

Credential
Mapping

Provider(s)

Certification
Path

Provider(s)

Principal
Authenticator

Authorization
Manager Auditor Role

Manager
Credential
Manager

Certification
Path

Security Service

weblogic.security Protocol Handlers

Java EE/Web Service Containers

Oracle Layered Products

Applications

Figure 11-2: WebLogic Server security architecture.

The term realm persists in the current version of WebLogic Server, but a realm now is a named con-
figuration of individual security providers. In the current version of WebLogic Server, for example,
authentication can occur in LDAP, but the groups can be retrieved from an RDBMS. The roles and
policies stored inside of WLS using eXtensible Access Control Markup Language (XACML) go well
beyond a simple ACL-based model. XACML is a standard for defining authorization policy, and we
discuss it in more detail later in the chapter. Though many applications won’t have such elaborate
security requirements, the point is that the security provider–based model is much more flexible
and powerful than its predecessor.

446

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 447

Chapter 11: Using WebLogic Security

Administration
The bulk of this chapter is organized around and focuses on the runtime behavior of
WebLogic Server security. As each topic is covered there is an explanation of how to con-
figure WebLogic Server to provide the functionality. As a reference, the WebLogic Console
tab names for the administrative operations covered in this chapter are listed in Table 11-1,
Table 11-2, Table 11-3, and Table 11-4 in this section. The security administration functionality
is organized by resource scope — there is no one single security area of the WebLogic Con-
sole. Rather in the context of the resource being secured, the appropriate security options are
available. This section provides an overview of security administration and the location of the
specific tasks in the WebLogic Console as well as in the JMX MBean hierarchy. To represent the
location in the MBean hierarchy, this section uses the WebLogic Scripting Tool (WLST) directory
structure.

Table 11-1: Domain Level Security Administration

Operation Domain’s Tab Name

Set the Default Realm General Security

Enable/Disable Cross Domain Trust General Security

Unlock a User Unlock User Security

Define a Connection Filter Filter Security

Manage the Embedded LDAP Embedded LDAP Security

Configure Admin Policies
(Who is authorized to Unlock Users,
Upload/Download Files, View Logs, and
Assert Identities)

Roles Security
Policies Security

Configure Web Services Token Handler Web Services Security

Configure Credential Provider Web Services Security

Table 11-2: Server Level Security Administration

Operation Server’s Tab Name

Configure Trust and Identity Keystore Keystores Configuration

Configure SSL SSL Configuration

Configure SAML SSO and other
SAML-based Services

Federation Services Configuration

Define Server Policies (start and stop server) Policies Security

447

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 448

Chapter 11: Using WebLogic Security

Table 11-3: Realm Level Security Administration

Operation Realm’s Tab Name

Configure the Security Model for the Domain General Configuration

Configure RDBMS as a Security Store RDBMS Security Store Configuration

Configure the User Lockout Policy User Lockout Configuration

Manage Users and Groups Users and Groups

Manage Global Roles Roles and Policies

Manage Root Level Policies Roles and Policies

Configure Credential Mappings for Cross Domain Users Default Credential Mappings

Configure which Keys to use by a user when
Signing/Encrypting Web Services

PKI Credential Mappings

Manage Security Providers — Authentication,
Authorization, Adjudication, Role Mapping, Auditing
Credential Mapping, Certification Path, Keystores

Providers

Import/Export of Security Policy Migration

Domain Level
Domain is the highest level of security configuration. The following administration oper-
ations are performed on the domain in the WebLogic Console. With the exception of
the roles and policies, these operations are also performed from WLST from /<domain
name>/serverConfig/SecurityConfiguration/<domain name>. Roles and policies are managed
using the active realm’s XACMLRoleMapper and XACMLAuthorizer MBeans for the active realm.

Server Level
Some security properties are defined at the server level. The following administrative operations
are performed on the server in the WebLogic Console. With the exception of the roles and policies,
the operations are also performed from WLST /<domain name>/ serverConfig/Servers/<server
name>.

Realm Level
A domain has only a single active security realm, so realm-level settings for the active realm are
at the same level/scope as the domain security settings, but are managed on the active security
realm in the WebLogic Console. The roles and policies for the entire domain are visible and can be
administered from the Roles and Policies tab. This is for convenience. The same roles and policies
are visible on the Roles Security and Policies Security tabs of the individual objects as well.

With the exception of the management of roles and policies, the operations are also per-
formed from WLST from /<domain name>/serverConfig/SecurityConfiguration/<domain

448

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 449

Chapter 11: Using WebLogic Security

name>/Realms/<realm name>. Roles and policies are managed from the XACMLRoleMapper and
XACMLAuthorizer MBeans for the active realm.

Table 11-4: Provider Management Level Administration

Operation Realm’s Tab Name Provider-Specific Type

Configure SAML WebSSO
Identity Provider Partner

Authentication Providers SAML2IdentityAsserter

Configure SAML WebService
Identity Provider Partner

Authentication Providers SAML2IdentityAsserter

Configure Trusted
Certificates

Certification Path
Providers

CertificateRegistry

Configure SAML WebSSO
Service Provider Partner

Credential Mapping
Providers

SAML2CredentialMapper

Configure SAML WebService
Service Provider Partner

Credential Mapping
Providers

SAML2CredentialMapper

Provider Management Level
A realm is a collection of individual security providers. A few of the built-in providers have their
own management operations that are accessible from the WebLogic Console via the Management
tab of the provider. WebLogic Server has extensive Security Assertion Markup Language (SAML)
capabilities. SAML is a standard for propagating identity and WebLogic Server can use it in both a
web and web services context. The SAML security providers make extensive use of this provider-
level management feature. The details of SAML are discussed later in this chapter.

From WLST, access the management operations of the provider from <domain name>/serverConfig/
SecurityConfiguration/<domain name>/Realms/<realm name>/<provider type>/<provider
name>.

The roles and policies for the entire domain are accessed via WLST by accessing the
XACMLRoleMapper and XACMLAuthorizer, respectively.

WebLogic Security Framework
This section discusses the WebLogic Security Framework in detail, with particular emphasis on the
out-of-the-box functionality. As you may have noticed in Figure 11-1, WebLogic Server ships with
an embedded LDAP server. This server is used as the default security store — the persistent reposi-
tory of security policy information for authorization, roles, credential mapping, and certificate registry
providers. Our first topic in this section is describing how the embedded LDAP server or an external
RDBMS is used as the security store. By default, the embedded LDAP server is also used to store users
and groups. These capabilities are discussed here as well. Next, we present an overview of the default
security providers. Because these providers are fairly complex, we cover only some of the more important
features. For more detailed information, please refer to the WebLogic Server security documentation at
Link 11-4.

449

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 450

Chapter 11: Using WebLogic Security

Embedded LDAP Server
WebLogic Server’s default security providers use an embedded LDAP server to persist all security-
related data. Each server stores this data locally, including all of the user, group, role, access control
policy, and credential information. For each domain, the admin server acts as the master LDAP server
and replicates new information to the embedded LDAP running on each of the managed servers.

In addition to the normal replication flow, the embedded LDAP server supports some additional sce-
narios. Configuration changes made on a managed server are first sent to the admin server’s embedded
LDAP server and then from there replicated to all other managed servers’ embedded LDAP servers.
Also, managed servers can be configured to receive an entire replica of the configuration from the admin
server at startup. The default behavior is to receive the set of incremental updates. Changing this setting
is useful in situations where a managed server has been off-line for an extended period, thus making it
inefficient for the admin server to send each individual change to the managed server.

Each LDAP server does automatic backups of the entire LDAP directory tree once a day. You can config-
ure the time that the backup task kicks off with the Backup Hour and Backup Minute parameters found
on the domain’s Embedded LDAP Security tab in the WebLogic Console. All backup files are compressed
and stored with the LDAP server’s data files; the maximum number of backup files the server will keep
is also configurable through the same Embedded LDAP Security tab in the console.

Whenever a WebLogic Server is started, it places all of its internal files in a server instance–specific direc-
tory. By default, the server’s directory is located in the directory it was started from and has the same
name as the server instance (for example, user_projects/domains/<domain name>/servers/<server
name>). Inside this server directory is a data/ldap subdirectory where you will find the LDAP server’s
files. Table 11-5 shows the full directory structure and description of the embedded LDAP server direc-
tory contents. If you ever encounter a problem where a managed server won’t start and you suspect
that its LDAP data may be corrupt, you can either try to use one of the backup zip files from the backup
directory to revert the contents of the ldapfiles directory, or simply remove the entire ldap directory
and let it be recreated when the managed server starts up and connects to the admin server.

Table 11-5: Embedded LDAP Server Directory Structure and Usage

Directory Information Stored

backup Zipped backup files created once a day from the ldapfiles directory

conf Configuration files that are generated on the first server start

ldapfiles LDAP server data files

log LDAP server log files

replicadata Managed server replicated data

Within the ldapfiles directory, you will find seven data files. EmbeddedLDAP.tran, EmbeddedLDAP
.trpos, and EmbeddedLDAP.twpos are the transaction tracking files. If there is ever an internal prob-
lem with the embedded LDAP server these files can be deleted without loss of data. EmbeddedLDAP.data
is the main data file where all the users, groups, roles, and policies are stored. EmbeddedLDAP.delete
contains information about deleted entries, and EmbeddedLDAP.index is the index of data files. Finally,

450

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 451

Chapter 11: Using WebLogic Security

the EmbeddedLDAP.lok file is used to ensure access consistency to the LDAP information. In some cases,
a WebLogic Server might shut down without allowing the embedded LDAP server to unlock the data. If
this happens, the server will go into a loop, waiting for the file to be removed and printing out a warning
message:

####< Jun 21, 2009 9:42:54 PM CDT> <Warning> <EmbeddedLDAP> <lhotse>
<AdminServer> <[ACTIVE] ExecuteThread: ‘0’ for queue:
‘weblogic.kernel.Default (self-tuning)’> <<WLS Kernel>> <> <> <1245638574219>
<BEA-171520> <Could not obtain an exclusive lock for directory:
.\servers\AdminServer\data\ldap\ldapfiles. Waiting for 10 seconds and then
retrying in case existing WebLogic Server is still shutting down.>

Typically, deleting the EmbeddedLDAP.lok file will resolve this issue.

WebLogic Server stores the default security providers’ default configuration information in a set of files
with the ldift extension. Most of these files are located in the $WL_HOME/server/lib directory, though
you will also see a couple of these ldift files in your WebLogic Server domain’s security directory.
WebLogic Server runs these ldift files through a preprocessor to convert them into standard LDAP
ldif files that can then be fed directly into the embedded LDAP server.

The embedded LDAP server listens on the normal WebLogic Server listen port. Because the WebLogic
Server installation program automatically generates a random, unique password for the LDAP server,
this does not pose any significant security threat. You should avoid changing this password unless you
absolutely need to because the generated password is typically harder to crack than those you might
normally choose. If you need to access the embedded LDAP server using standard LDAP mechanisms,
you will need to change the security credential. You can change the embedded LDAP server’s credential
through the same Embedded LDAP Security tab we previously discussed. Once you have set this cre-
dential to a known value, you can use any LDAP tool to access the server’s LDAP directory by setting
the Base DN to the pattern dc=<your_domain_name>, the username to cn=Admin, and the password to the
value used to set the credential through the WebLogic Console.

The embedded LDAP server uses replication between the administration server and any managed
servers. This replication uses the server’s SSL port, if it is enabled. Therefore, if you are concerned about
the security of your LDAP replication data flowing between the admin server and any managed server,
you should configure and enable SSL on all servers in the domain. We talk about how to enable and
configure SSL a little later.

Best Practice
If the network connecting the WebLogic Server instances in your domain is not trusted,
make sure you enable SSL on each server in the domain so that WebLogic Server can
use SSL for all LDAP replication between the admin server and all managed servers.

RDBMS Security Store
WebLogic Server 10.3 introduced an option to configure a domain to use an RDBMS security store.
This means that instead of storing the security policy information in the embedded LDAP server, the
information is stored in a relational database.

451

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 452

Chapter 11: Using WebLogic Security

Using an RDBMS security store is strongly recommended when using SAML SSO in a domain with
more than 1 server. With the embedded LDAP, any updates made at the managed server need to be first
sent to the admin server and then replicated to the other managed server. This resulting latency creates
problems with some of the SAML 2 capabilities. You can find the scripts for creating and removing the
security store database in $WL_HOME/server/lib. For example, the create and remove scripts for the Ora-
cle database are rdbms_security_store_oracle.sql and rdbms_security_store_oracle_remove.sql,
respectively. Note that you must create the security store database before starting the domain.

We recommend that you consider the type of security store needed before creating a domain since there
is no easy migration path to moving from using embedded LDAP to the RDBMS security store. If you do
need to upgrade an existing domain, the process is essentially creating a new domain using the RDBMS
security store, exporting the data from the existing domain, importing it into the new domain, and rede-
ploying any existing applications. The WebLogic Server Configuration Wizard allows you to configure
an RDBMS security store as part of the domain creation process. We recommend this method since the
Configuration Wizard validates the database configuration for you. This helps ensure that your domain
will be able to retrieve its security policies and start up correctly.

When using an RDBMS security store, you must configure a shared JMS topic for synchronizing changes.
The JMS shared topic ensures that configuration or policy changes made to a security provider are com-
municated to the other servers in the domain. If a server cannot connect to the shared topic, its caches
will become stale, and will have to be restarted to pick up any changes. At restart, the managed server
directly communicates with the database to get the latest data. To avoid the complexities of configuring
cross-cluster, domain-wide, highly available JMS topic, we recommend that you only use the RDBMS
security store in a domain that contains a single cluster.

When using the RDBMS security store, prefer configurations that limit the domain
to a single cluster to avoid the complexities of configuring a cross-cluster,
domain-wide, highly available JMS topic.

The security providers that leverage the RDBMS security store are:

❑ XACML Authorization and Role Mapping providers

❑ WebLogic Credential Mapping provider

❑ PKI Credential Mapping provider

❑ Certificate Registry

❑ SAML 1.1 providers: SAML Identity Assertion provider V2, and SAML Credential Mapping
provider V2

❑ SAML 2.0 providers: SAML 2.0 Identity Assertion provider, and SAML 2.0 Credential Mapping
provider

The next section covers the XACML Authorization and Role Mapping, WebLogic Creden-
tial Mapping, PKI Credential Mapping and Certificate Registry in detail. Details of the
SAML 1.1 and SAML 2.0 providers are discussed later in the ‘‘Single Sign-On’’ section of this
chapter.

452

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 453

Chapter 11: Using WebLogic Security

Security Realms and Providers
WebLogic Server includes a wide range of security providers that plug into the security framework. In
this section, we begin by looking at the providers that are configured in a realm by default — the default
providers — in more detail. WebLogic Server includes other providers that we use for situations where
more advanced security functionality is required. We discuss those providers in detail later in the ‘‘Using
External Security Stores’’ and ‘‘Single Sign-On’’ sections of this chapter. Finally, we end this section with
a look at how to manage these default providers using the JMX capabilities of WebLogic Server.

Let’s start by looking at the different types of security providers. Table 11-6 shows the different types
of providers and explains their functionality. To see the security providers running in your server, use
the WebLogic Console to navigate to the Security Realms folder. Select the active realm, which in most
cases is called myrealm, and then click the Providers tab.

Table 11-6: Security Provider Types and Features

Provider Type Features

Authentication The default security provider allows for
username-and-password-based, direct-to-server certificate-based, and
HTTPS certificate-based authentication. The authentication provider
gives the server a JAAS configuration that points at a specific JAAS
LoginModule.

Identity Assertion This security provider maps an outside authentication token to a
username. This allows for functions like perimeter authentication. The
identity asserter provides an implementation of a JAAS
CallbackHandler. The default identity asserter supports WebLogic
Server security tokens, X.509 certificates, CSIv2, and WS-Security
password digest.

Authorization This security provider decides whether an authenticated Subject may
access a set of resources given a certain application context.

Adjudication When using multiple authorization providers, this provider tallies the
decisions from each provider and decides on the final verdict of
authorization. It is unnecessary if there is only one authorization
provider.

Audit This security provider collects and stores the security logs.

Role Mapper After a Subject is authenticated, as it tries to access resources, the role
mapper decides what roles apply to the Subject and stores them in the
Subject object.

Credential Mapper This security provider supplies the credentials for legacy systems to an
authenticated Subject when needed.

Certification Provider This provider, also referred to as Certificate Lookup and Validation
(CLV), performs two important functions for working with X.509
certificates. It completes certificate chains and validates certificates.

453

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 454

Chapter 11: Using WebLogic Security

Figure 11-3 describes the typical call flow to those security providers.

Authentication

Authentication

Identity AsserterSubject Signing

Role Identification

WebLogic Server

Authorization

Client

Role Mapper

LoginModule

Adjudicator

Authorization
Provider

Figure 11-3: Authentication and authorization call flow.

WebLogic Server loads the default security providers from the Java archive files in the
server/lib/mbeantypes directory. These files contain not only the default security provider
implementation classes but also their JMX configuration MBeans. When loading the security providers,
WebLogic Server does not load these files from the classpath, but rather dynamically loads them using
an internal class loader.

Before we move on to explore the different provider types in detail, we need to point out that the
WebLogic Server supports multiple application security models. By default, it supports the standard
Java EE deployment descriptor–based model that defines roles and authorization policies in deployment
descriptors, or the equivalent Java annotations. For simplicity, we will not distinguish between defining
the roles and policies using deployment descriptors or annotations, and will simple refer to them as being
defined in deployment descriptors. It also supports more dynamic security models where some or all of
this information is managed by WebLogic Server or some external provider. This results in WebLogic
Server exposing four high-level application security models from which to choose:

DD only Only use the roles and policies defined in the Java EE application deployment descrip-
tors.

Custom Roles Use the roles and policies defined in the deployment descriptors but, rather than
mapping roles to principals in the WebLogic Server–specific deployment descriptors, map them
using the WebLogic Console.

Custom Roles and Policies Use only the WebLogic Console to define roles and policies, ignor-
ing any roles and policies defined in the deployment descriptors.

Advanced Use the roles and policies defined in the deployment descriptors to seed the WebLogic
Server security roles and policies, and use the WebLogic Console to modify roles and policies from
that point onward.

We discuss the details of these various models later in the ‘‘Setting Up WebLogic Server Application
Security’’ section.

454

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 455

Chapter 11: Using WebLogic Security

The realm defines a default security model for the applications being deployed in the domain. As you
deploy applications, the WebLogic Console asks you to choose a security model for the application with
the default value being the value set by the realm. Each application can accept or override this value but
regardless of their choice, the application’s security model is recorded in the config.xml file. The only
way to change the application’s security model choice is to redeploy the application.

Some security providers can also affect the application’s security model. The XACMLAuthorizer,
DefaultAuthorizer, XACMLRoleMapper, DefaultRoleMapper, and DefaultCredentialMapper security
providers each have an option to enable deployment. Enabling deployment, which is the default, means
that the provider uses the role or policy definitions from Java EE deployment descriptors. We discuss
these details in each of the provider-specific sections below.

Authentication
In addition to the preconfigured providers, WebLogic Server comes with several built-in, configurable
authentication providers. These providers primarily include support for external LDAP servers; these
include support for Active Directory, Sun Java System Directory Server (formerly known as iPlanet and
SunOne), OpenLDAP, and Novell eDirectory, Oracle Internet Directory, and Oracle Virtual Directory
LDAP servers. WebLogic Server also ships with a generic LDAP provider that serves as a template for
any LDAP v3–compliant server. WebLogic Server still ships a Windows NT Domain authentication
provider, but it is deprecated. As an alternative, use the Active Directory authentication provider.

If you want to use an external LDAP server as your sole authentication provider, you must map
WebLogic Server’s Admin role to at least one group or user. By default, this Admin role maps to the
Administrators group, so simply defining an Administrators group in your external LDAP tree is
sufficient.

WebLogic Server’s security framework fully supports the Java Authentication and Authorization
Service (JAAS) specification. JAAS specifies that all authentication requests are to be routed through a
LoginModule interface. LoginModules can be stacked together to form a pluggable framework. WebLogic
Server’s security framework supports multiple authentication providers in exactly the same way, thus
allowing for multiple, pluggable providers. Each authentication provider supports one LoginModule;
therefore, using multiple LoginModules requires using multiple authentication providers. LoginModules
do not interact directly with the environment. They interact with a CallbackHandler through the
handle(Callback[])method. A typical LoginModule passes a NameCallback and a PasswordCallback.
In WebLogic Server, the identity asserter provides the specific CallbackHandler implementation. In the
case of perimeter authentication, the security framework uses the identity asserter that matches the token
type being presented (SAML, X.509 certificate, digest authentication). Identity asserters are discussed in
more detail later in this section.

Each authentication provider has a configuration option called a control flag. This control flag allows the
provider to specify how its authentication results affect the overall authentication process. These control
flag options, which are the same as the JAAS LoginModule configurations that we discuss in the ‘‘Writing
Java Clients That Use JAAS’’ section later in this chapter, can have the following values:

Required The authentication provider is required to succeed. If it succeeds or fails, the authenti-
cation process continues to proceed through the list of configured providers.

Requisite The authentication provider is required to succeed. If it succeeds, the authentication
process continues through the list of configured providers. If it fails, the authentication process
immediately fails and returns control to the application.

455

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 456

Chapter 11: Using WebLogic Security

Sufficient The authentication provider is not required to succeed. If it does succeed, the
authentication process succeeds and control immediately returns to the application. If it fails, the
authentication process continues down the list of configured providers.

Optional The authentication provider is not required to succeed. If it succeeds or fails, the
authentication process continues down the list of configured providers.

When you create a new authentication provider, you should use a less strict control flag while in devel-
opment. The primary reason is that a value of Required or Requisite will cause the authentication
to fail if the new provider fails. Because the server must authenticate the administrative user used to
start the server, a misconfigured provider using one of these strict control flags will prevent the server
from starting. If the control flag is set to either Sufficient or Optional, the server will show you the
error information about the incorrectly configured provider but will start, thus allowing you to use the
WebLogic Console to modify the configuration. Once you verify that everything is working in the new
provider, set the control flag to the desired value.

Best Practice
Set the control flag for all authentication providers to OPTIONAL before applying any
changes to prevent a configuration error from causing the server not to boot.

The WebLogic Console now sets the default value for the Control Flag attribute to OPTIONAL. You should
be aware, though, that the default value in the underlying MBean is still REQUIRED. This means that if you
create the MBean by hand, through hand editing of the config.xml file or writing JMX programs, you
need to set the Control Flag attribute explicitly or it will automatically be set to REQUIRED. Because most
people use the WebLogic Console, this should not be a problem.

If you find yourself in a situation where your server will not boot because of a security realm configu-
ration issue, you can simply edit the provider’s config.xml entry to change the control-flag setting:

<sec:authentication-provider xsi:type="wls:custom-dbms-authenticatorType">
<sec:name>SQLAuthenticator</sec:name>
<sec:control-flag>OPTIONAL</sec:control-flag>
...

</sec:authentication-provider>

Of course, you can also restore the config.xml file from one of the backups that WebLogic Server auto-
matically makes.

When using an external LDAP authentication provider, you might want WebLogic Server to continue to
serve any unprotected information even when it cannot get authentication information from the external
server, such as when the server is unavailable. To accomplish this, you must make certain the server’s
boot identity is defined in the embedded LDAP server, so it can be used regardless of whether the exter-
nal LDAP server is operational. You can use the WebLogic Console to set connection and search result
timeout values on the external LDAP authentication provider. This will ensure that the server does not
hang when attempting to authenticate against the external LDAP server. Following these steps will allow
you to boot and serve up unprotected information with the WebLogic Server even when your external
server is unavailable.

456

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 457

Chapter 11: Using WebLogic Security

Best Practice
When using an external authentication provider, it is a good idea to store the server’s
boot identity in the embedded LDAP server. By doing this and setting timeouts on the
external authentication provider, you can continue to boot and serve up unprotected
information with WebLogic Server when the external server is unavailable.

Before we move on to talk about identity assertion, we should talk about what to do if you forget your
administrative password and cannot boot the server. Please note that the following procedure works
only for the default authenticator using the embedded LDAP server and only if you have not modified
the global Admin role, which by default is granted to the Administrators group. For our example, we
will assume that your server name is AdminServer. To reset the password, follow these steps:

1. Using the command line, change the directory to your WebLogic Server domain’s root direc-
tory and run your bin/setDomainEnv script to set up your PATH and CLASSPATH.

2. Create a new initialization file for the default authenticator by running the follow-
ing command that creates a new DefaultAuthenticatorInit.ldift file in the
$DOMAIN_HOME/security subdirectory:

java weblogic.security.utils.AdminAccount <tempadmin>
<temppassword> $DOMAIN_HOME/security

3. Remove the initialized status file DefaultAuthenticatormyrealmInit.initialized from
the $DOMAIN_HOME/servers/AdminServer/data/ldap/ subdirectory.

4. Restart the server, and enter the <tempadmin> username and <temppassword> password sup-
plied in step 2.

Identity Assertion
Identity asserters take an outside identity token, validate it, and provide information in the form of
callbacks to the authentication provider(s) so that WebLogic Server can authenticate the caller. Iden-
tity asserters almost always provide the name of the user, but can provide additional information
such as the groups to which the user belongs. The default identity assertion provider, known as the
DefaultIdentityAsserter, can validate WebLogic Server security tokens, X.509 certificates, IIOP CSIv2
tokens, and WS-Security password digests.

By default, the DefaultIdentityAsserter is enabled only to support WebLogic Server security tokens;
use the WebLogic Console to enable support for the other supported token types. This default identity
assertion provider does its work via a UserNameMapper interface, which maps either an X.509 certificate
array or an X.501 distinguished name to a username. Using the WebLogic Console, you can enable and
configure the Default User Name Mapper that comes with the server to extract the username automatically
from most fields in an X.509 certificate. You can also write your own username mapper implementation
class by implementing the weblogic.security.providers.authentication.UserNameMapper interface
and configuring the DefaultIdentityAsserter to use it.

Probably the most common reason to change the default configuration of the DefaultIdentityAsserter
is to support authentication via client certificates from a two-way SSL connection. To enable identity
assertion for X.509 certificates, first you need to add X.509 to the list of chosen types at the bottom of

457

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 458

Chapter 11: Using WebLogic Security

the DefaultIdentityAsserter’s Common Configuration tab in the WebLogic Console. Next, you need to
enable and configure the Default User Name Mapper, using the Provider Specific Configuration tab.

The Default User Name Mapper Attribute Type allows you to choose which field in the distinguished
name (DN) of the Subject of the X.509 certificate to use to obtain the username. If the field being used
contains more than the username, the Default User Name Mapper Attribute Delimiter can be used
to truncate the extraneous information. For example, if you select the E value for the attribute type,
you may need to strip off the domain name information from the email address. If the email address
were someuser@bigrez.com and the WebLogic Server username were someuser, setting the delimiter
to @ would allow the username mapper to map the email address field in the certificate to the correct
WebLogic Server username properly.

Another reason to modify the configuration of the DefaultIdentityAsserter is to change the behav-
ior of WebLogic Server’s digest authentication. Digest authentication is more secure than HTTP basic
authentication because it adds protection against replay attacks. It does this through the use of time-
stamps and a nonce — a number used only once. Using the Provider Specific Configuration tab of
the DefaultIdentityAsserter, you can change the default Digest Expiration Time Period of 300 sec-
onds. WebLogic Server also has the ability to detect digest replays by persisting the digest in a database.
To enable this feature on the DefaultIdentityAsserter, select the Digest Replay Detection Enabled
attribute and set the Digest Data Source Name attribute to point to a preconfigured WebLogic Server
data source. Note that the DefaultIdentityAsserter will create the WLS_NONCE_2 table to store this data
so the database user needs permissions to create and drop tables as well as to read from and write to
this table. At the time of writing, WebLogic Server only supports digest authentication for web services.
Enabling digest authentication for web services requires the creation of a domain-level Web Services
Security Configuration, which was discussed in Chapter 9.

Authorization, Role Mapping, and Adjudication
In the current version of WebLogic Server, the default realm’s authorization and role mapping providers
are the XACMLAuthorizer and the XACMLRoleMapper, respectively. The eXtensible Access Control Markup
Language (XACML) is a standard way of defining authorization policies. Though WebLogic Server essen-
tially hides all of the details of XACML, it stores the role and security policies you define in the WebLogic
Console as XACML objects behind the scenes. As the XACML standard continues to mature, the expecta-
tion is that third-party tools will emerge to help validate/optimize XACML-based authorization policies
against relevant governance and compliance policies. In the meantime, the important thing to note is that
the XACMLAuthorizer is the default authorizer — not the DefaultAuthorizer. The DefaultAuthorizer
is the previous generation default authorization provider based on a WebLogic Server proprietary enti-
tlements language. One additional difference between the two providers is that the XACMLAuthorizer has
the ability to work with the RDBMS security store. DefaultAuthorizer can only persist its policies to the
embedded LDAP server.

The authorization and role mapping providers that WebLogic Server ships with have a setting called
Policy Deployment Enabled and Role Deployment Enabled, respectively. This setting determines if the
provider should deploy role or policy information in the application deployment descriptors. WebLogic
Server currently requires the active security realm to have at least one authorization provider and one
role mapping provider that supports deploying policies and roles from deployment descriptors. The
default providers enable deployment by default. Changing these values requires extreme caution, and
you should leave these set to the default value in most cases. Read the ‘‘Setting Up WebLogic Server
Application Security’’ section for more information before changing these values on the providers
themselves.

458

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 459

Chapter 11: Using WebLogic Security

When an authenticated user attempts to access a resource, the security framework uses three types of
providers that together to issue a yes or no answer. First, the role mapping provider determines the list
of roles that the user has for that resource. If multiple role mapping providers are specified, the resulting
sets of roles returned from the providers are combined to determine the set of applicable roles. Next, the
security framework passes the authenticated user and its roles to the realm’s configured authorization
providers. Each authorization provider issues an access decision of yes, no, or abstain. When using multi-
ple providers, it is possible that some providers may permit access whereas others either abstain or deny
access. This is where the adjudication provider comes in. An adjudicator looks at all of the responses
from the different authorization providers and decides whether to grant or deny access.

When making authorization calls into the WebLogic Server Security Service, the server passes informa-
tion about the identity of the caller, the resource being accessed, and other contextual information about
the call to the authorization provider. The authorization provider instantiates an AccessDecision object
that uses this information to make its authorization decision. For example, when a caller tries to access
a protected method of an EJB, the EJB container passes the AccessDecision object the parameters of the
EJB method call along with the method name itself. Having this additional contextual information about
the request allows the AccessDecision object to make access decisions using arbitrarily complex security
policies. Of course, the complexity of the authorization decisions depends on what type of contextual
information the server provides for a given type of resource.

The security framework passes this contextual information using objects that implement the
weblogic.security.service.ContextHandler interface. A ContextHandler is essentially a list of
name-value pairs. WebLogic Server’s default authorization provider uses the information in the
ContextHandler to decide whether a given subject may have access to a given resource. We hope that
you will not need to write your own authorization provider because the default provider supports fairly
complex policy statements. If you do, we encourage you to look at the ‘‘Developing Security Providers
for WebLogic Server’’ documentation at Link 11-5 and the sample providers on the Oracle Technology
Network web site at Link 11-6 for more information.

Tip to Remember
If you need to extend or implement your own security providers, some very good
example providers are available on the Oracle Technology Network web site at Link
11-6. These are source code examples of everything it takes to write a set of providers,
and we highly recommend them.

Unless you develop your own authorization provider, you may never need to use the adjudication
provider. Even if you add a second authorization provider, the default adjudication provider can be
configured to resolve almost any conflict.

Auditing
WebLogic Server’s default audit provider simply sends security events to the DefaultAuditRecorder.
log file in the server’s logs directory. The directory can be changed by setting the -Dweblogic.security.
audit.auditLogDir Java system property. The default realm does not include this audit provider by
default. To use it, use the WebLogic Console to create an instance of the DefaultAuditor. In the auditor’s
Provider Specific Configuration tab, you can select which ContextHandlers to audit. This allows you
to determine what information is sent to the audit log. By the way, these are the same ContextHandlers
that are passed to the roles and authorization providers.

459

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 460

Chapter 11: Using WebLogic Security

WebLogic Server can also audit administrative changes by pushing administrative changes to the secu-
rity framework’s configured audit providers. By default, configuration auditing is disabled. To enable
configuration auditing, use the Advanced area of the domain’s General Configuration tab to set the
Configuration Audit Type to one of the following values:

Change Log This setting will only write configuration change information to the server’s log file.
The domain’s audit providers are not called.

Change Audit This setting will only pass the configuration changes to the audit providers. No
change information is written to the server log.

Change Log and Audit This setting will cause changes to be written to the server log and passed
to the audit providers.

Since the DefaultAuditor writes all events to the server’s audit log, setting the Configuration Audit
Type to Change Audit or Change Log and Audit will result in the changes appearing in the server’s
audit log.

You could write your own audit provider to send security logs to a specialized, non-repudiation data
store. To do this, your provider must implement the weblogic.security.spi.AuditChannel interface,
which receives a weblogic.security.spi.AuditEvent whenever an audit message occurs.

Credential Mapping
The credential mapping provider supplies credentials for downstream systems. It is essentially the
inverse of the identity assertion provider. Identity asserters take credentials and establish a JAAS sub-
ject. Credential mappers take a JAAS subject and convert it to a credential of a specified type. WebLogic
Server uses the DefaultCredentialMapper to store and retrieve username/password credentials when:

❑ Defining cross domain trust in WebLogic Server. We discuss this in more detail later in the ‘‘Set-
ting Up Cross Domain Security and Single Sign-On’’ section of this chapter.

❑ Defining a credential mapping for a JDBC data source.

❑ Managing credentials for connections to external EIS systems in resource adapters.

There is a provider-specific flag on the DefaultCredentialMapper called Credential Mapping
Deployment Enabled. Like the Policy Deployment Enabled and Role Deployment Enabled properties on
the authorization and role mapping providers, this controls whether or not the provider copies relevant
information from the application deployment descriptors. In the case of the DefaultCredentialMapper,
this determines whether the provider stores the credential maps defined in the resource adapter’s
deployment descriptors.

WebLogic Server provides two other credential mappers that we’ll discuss later: the
PKICredentialMapper and the SAML2CredentialMapper. These credential mappers support web
services security and SAML single sign-on services. We discuss their use in more detail in the ‘‘Setting
Up Cross Domain Security and Single Sign-On’’ section of this chapter.

Certification Path
WebLogic Server provides an X.509 certificate lookup and validation (CLV) framework that consists of
two components: the CertPathBuilder and the CertPathValidator. The CertPathBuilder takes an
X.509 certificate and builds the entire certificate chain up to the root Certificate Authority certificate, as
needed. From there, the CertPathValidators takes over and validates the certificate chain. The CLV

460

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 461

Chapter 11: Using WebLogic Security

framework requires exactly one CertPathBuilder but allows for zero or more CertPathValidator
instances. Together, the CertPathBuilder and the CertPathValidator ensure that the server only
accepts registered and valid certificates. For more information, see Link 11-7.

WebLogic Server provides two CLV providers that implement both the CertPathBuilder and a
CertPathValidator interfaces: the CertPath and Certificate Registry providers. The CertPath
provider performs rigorous checking of the entire certificate chain to ensure its validity. The Certificate
Registry stores a list of client certificates that are allowed to access the server. In this context, accessing
the server means one of two things:

❑ A client calling a WebLogic Server–based application over two-way SSL or using WS-Security
message-level security (that is, where the client must present its certificate to WebLogic Server)

❑ Another server that a WebLogic Server–based application (acting as a client) is calling over SSL
or with WS-Security message-level security (that is, where the other server must present its cer-
tificate to WebLogic Server)

If you create a Certificate Registry then the WebLogic Server will only trust certificates in the registry
regardless of whether WebLogic Server trusts the certificate’s root CA. For certificates that the server
receives, the Certificate Registry provider will check to see that the certificate is in the registry and
that the root CA is trusted — it performs no other validation of the certificate chain. The Certificate
Registry provider allows you to manage the list of valid certificates using the WebLogic Console.

By default, WebLogic Server configures the CertPath provider; it is sufficient for most use cases. If you
need a simple way of managing and revoking a certificate’s access to the server then consider using the
Certificate Registry.

In the ‘‘Setting up SSL/TLS’’ section later in this chapter, there is a lengthy discussion of the WebLogic
Server identity and trust models. There is an option to use the certification path provider to validate the
inbound or outbound SSL connections. This feature is really only useful if you are using the Certificate
Registry or some other enhanced custom provider, since the CertPath provider uses the exact same trust
model as the WebLogic Server SSL stack. The web services security stack also uses the certification path
providers. Some WS-Security scenarios like responses signed with an X.509 certificate require configuring
the Certificate Registry. The reason for this is that the CertPath provider doesn’t support building a
certificate path based on the issuer DN serial number — an advanced capability required for this scenario.

Managing Security Providers
Like the rest of the server’s configuration data, WebLogic Server stores the server’s security configura-
tion data in the config.xml file. In addition to their configuration data, most security providers have
their own data that they use to make security decisions (for example, the authentication provider stores
user and group information). WebLogic Server also provides import/export facilities for the security
data that those providers use. Each security provider, as well as the realm itself, has a JMX-based man-
agement interface that is accessible from any JMX-based tool, such as WLST. This section discusses how
to perform common administrative tasks and how to use those programmatic interfaces to automate the
management of a realm and its underlying providers. If you are unfamiliar with JMX and WLST, see the
‘‘Monitoring WebLogic Server Applications’’ section in Chapter 12 for more information.

When changing a server’s security realm configuration, it is a good idea to create a new realm just in
case you make a mistake and end up with a configuration that doesn’t work. While a WebLogic Server

461

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 462

Chapter 11: Using WebLogic Security

domain can only have one active realm, it can have any number of inactive realms so it is easy to keep a
backup copy of the working realm. Doing so will allow you to quickly recover from your mistake.

The WebLogic Console does not provide a mechanism to clone a realm, but it is easy enough to do. If
you create a new realm using the WebLogic Console, the new realm will be empty so you will have
to configure all the providers and other attributes you want. A simpler way to create the new realm is to
edit the config.xml file by hand while the admin server is shut down. Simply copy everything in the
<realm> element and then paste it directly below.

<realm>
...
<sec:name>myrealm</sec:name>

</realm>
<realm>

...
<sec:name>myrealm2</sec:name>

</realm>

Make sure to change the <sec:name> element to give the new realm a unique name! After saving the file,
restart the admin server. At this point, the providers are the same between the old realm and the new
realm, but the data is not. Before we show you how to copy the data, let’s talk about the facilities we will
use to copy the data.

All WebLogic Server–provided security providers have the ability to import and export their security
data. You can perform these operations on the entire realm or on a provider-by-provider basis. What
information a provider exports and the format that it uses depends on the provider.

To export a realm’s data, use the realm’s Export Migration tab and specify the directory to which the
export files should be written. When WebLogic Server exports a realm, it writes an exportIndex.dat
file plus one additional file for each of the realm’s providers into the directory that you specify. The
exportIndex.dat contains a list of all of the provider-specific files and which provider each file came
from. Note that only providers that store their security data in the security store support exporting their
data with this facility. For providers that store their information in a different store, like any of the LDAP
authentication providers, WebLogic Server assumes that there is some other export facility available for
you to use to accomplish exporting that provider’s security data.

Using each provider’s Export Migration tab, you can control what information it exports and the form
that it uses. Likewise, each provider’s Import Migration tab allows you to control what information
it imports. Each provider may support a set of optional constraints that give the administrator more
control over the export/import process. You will find the full list of constraints at Link 11-8. There are a
few additional subtleties about constraints that are worth noting.

Specifying Constraints While the WebLogic Server documentation lists all constraints each
provider supports, it does not currently document the possible values for each constraint and each
provider. Some constraints require specifying a name=value form; others do not. For example, the
DefaultAuthenticator constraints users and groups don’t require a value. Simply putting the
word users or groups in the Export Constraints (name=value) or Import Constraints
(name=value) field is sufficient.

When specifying multiple constraints, place each constraint on a separate line in the Export
Constraints (name=value)or Import Constraints (name=value)field.

462

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 463

Chapter 11: Using WebLogic Security

Exporting Passwords Some providers support the passwords constraint to give you additional
control over the exporting of passwords. For example, the SAML identity asserter and credential
mapper providers support exporting passwords as clear text by specifying the constraint
passwords=cleartext. However, not all providers that support the passwords constraint support
exporting clear text passwords. For example, the DefaultAuthenticator stores passwords using
a one-way hash by default. As such, there is no way to determine the clear text password so the
export process will ignore a constraint of passwords=cleartext and will export the passwords in
their hashed format.

If you need to support exporting clear text passwords, you will need to check Enable Password
Digests on the DefaultAuthenticator’s Provider Specific Configuration tab. Note that
enabling this option requires you to reset all user passwords so that the DefaultAuthenticator
can store them using a reversible encryption scheme.

Controlling SAML Partner Exports When using SAML, the identity asserter and credential
mapper providers store information about the different identity and service provider partners
for the domain. Both the SAMLIdentityAsserterV2 and SAMLCredentialMapperV2 support the
ability to export only a subset of the entries using the partners and certificates constraints.
For the partners constraint, list the names of the partners you want to export (for example,
partners=ap_0001,rp_0002). For the certificates constraint, list the aliases of the certificates
(for example, certificates=cert1,cert2).

These provider-specific settings and constraints are non-persistent, which means that you cannot use
them to configure a realm-level export since they are lost as soon as you leave the provider’s Export
Migration tab. This is a shame since it really limits the value of the realm-level export. Fortunately, the
realm level export uses a set of defaults that are sufficient to accomplish the primary use case: migrating
of security data from one domain to another.

The export process only exports the security data of the providers, not the security configuration itself.
You still need to migrate the realm and its providers’ configuration information manually, as described
earlier in this section. Once you have the new realm configured, use either the realm’s or the individual
providers’ Import Migration tabs to import the data.

Now that the new realm is exactly the same as the old realm, make the configuration changes to the
new realm. To test the changes, make the new realm the active realm by changing the Default Realm
attribute on the domain’s General Security tab. The advantage of this approach is that it preserves the
existing security configuration. If there is some issue with the new configuration, you can restore the old
configuration by simply setting the old realm as the active one, and restarting.

Rather than trying to describe everything you need to do to back out from a bad realm configuration,
we recommend that in addition to testing your realm you make a backup of the entire domain directory
tree just before activating the new realm. This way, you can revert by simply restoring the entire domain
directory and restarting the server.

These facilities are useful when trying to move between environments (for example, from a development
to a test environment). If your applications define all their security policies using Java EE deployment
descriptors, simply deploying the applications will automatically populate the new environment’s secu-
rity database with this information. If the security information goes beyond that, or the application is not
using the DD-only security model, you will need to migrate the data using either the import/export capa-
bilities or through manually copying the embedded LDAP tree and the SerializedSystemIni.dat file to
the new domain. If the RDBMS security store is being used then you could use either the import/export

463

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 464

Chapter 11: Using WebLogic Security

facility of the providers or the native capabilities of the database. Regardless of the security data
and its storage, you will need to migrate the configuration information in the config.xml file
manually.

You can gain programmatic access to the security providers through JMX and WLST. You can locate
the WebLogic Server Security MBeans in the weblogic.management.security package. By looking
through the Javadocs of these MBean interfaces, you can see how to manipulate both the default secu-
rity providers and any third-party security providers that are capable of management. By default, these
methods are available only to programs running with the Admin role. We talk more about the Admin role
and the other default roles later in this chapter.

The following example, PasswordChanger, shows how to modify a user’s password programmatically
using WLST. You can find a complete source code version of this program on this book’s companion web
site (http://www.wrox.com/).

connect("weblogic","weblogic1")
cd("SecurityConfiguration")
cd(domainName)
defaultRealm = cmo.getDefaultRealm().getName()
print defaultRealm
cd("Realms")
cd(defaultRealm)
cd("AuthenticationProviders")
providers=ls(returnMap="true")
print providers
for authProvider in providers:

print authProvider
cd(authProvider)
operations=ls("o")
resetPasswordCount = operations.count("resetUserPassword")
if resetPasswordCount==1:

print "RESETING THE PASSWORD"
cmo.resetUserPassword("temp2","wlstworks")

cd("..")
disconnect()

Debugging
Before we continue, we should tell you that the security framework has its own debug scope. You enable
debugging for the security scope using the WebLogic Console. Use the server’s Debug tab and locate the
weblogic.security node in the debug scope tree. The nodes under weblogic.security are roughly
organized by the provider types, with some special debug scopes for tricky things like SSL and SAML.
Using the debug scope weblogic.security is crucial to solving security issues.

Tip to Remember
Using the debug scope weblogic.security is crucial to solving security issues.

464

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 465

Chapter 11: Using WebLogic Security

Using External Security Stores
WebLogic Server can also use external security stores for storing security data. In this section, we look at
a few of the most common external stores used with WebLogic Server. We focus on using these external
stores for authentication data because that is by far the most common usage. Most applications still use
Java EE deployment descriptor security, third-party application security products, or custom application
code to do authorization. As you see later in the ‘‘Setting Up WebLogic Server Application Security’’
section, WebLogic Server has its own application security functionality that provides parametric, policy-
based authorization that can be configured outside of the application code or deployment descriptors.

Managing External LDAP Authentication
LDAP servers have become the de facto standard for managing corporate user information. Current
versions of WebLogic Server support using both its embedded LDAP server as well as several of the
more popular commercial and open source LDAP servers on the market today. Supporting different
LDAP servers generally means that WebLogic Server has built-in knowledge of the default schemas
these servers use, which makes them easier to configure. Just because WebLogic Server does not support
a particular LDAP server out of the box, it does not mean you cannot use it. Typically, it is possible to
make it work; you just need to customize the authentication provider configuration to match the LDAP
schema and server information.

The security framework has a series of built-in LDAP authentication providers. These options include
support for Active Directory, Sun Java System Directory Server (formerly known as iPlanet and SunOne),
OpenLDAP, Novell eDirectory, Oracle Internet Directory, and Oracle Virtual Directory LDAP servers.
WebLogic Server tailors each authentication provider to understand the default or standard schemas
used by that LDAP server. WebLogic Server also includes a generic LDAP authentication provider that
you can use with any LDAP v3–compliant directory. You create and configure these providers using the
WebLogic Console.

All LDAP authentication providers use the following attributes:

Principal Distinguished Name (DN) of the user connecting to the LDAP server

Credential Password of that user

Use Retrieved User Name as Principal Selected, unless the user is authenticating in a different
directory and the LDAP server is only used for groups

User Base DN All user search queries are relative to this DN

Group Base DN All group search queries are relative to this DN

User Object Class Object class for the users in the LDAP directory

User Name Attribute Attribute of the User Object Class that contains the username

These attributes are important in describing how WebLogic Server authenticates to an external LDAP
server. WebLogic Server uses the Principal and the Credential to create the connection (bind) to the
LDAP server. When a user attempts to authenticate, LDAP provider needs to map the username passed
in the login to a DN. It does this by performing a subtree search from the User Base DN for objects of the
defined object class where the User Name Attribute matches the username entered. It then compares the
password of the user to the entry in the LDAP server. Assuming that they match and the Use Retrieved

465

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 466

Chapter 11: Using WebLogic Security

User Name as Principal is selected, the LDAP provider adds the username as a WLSUser principal object
to the JAAS subject.

The next step is to retrieve the groups that the user is a member of. It does this by performing a subtree
search from the Group Base DN for objects of the Group Object Class that have the user as a member (that
is, the username matches the Group Membership Attribute of the Group Object). For each of the groups
that the user is a member of, WebLogic Server performs another search to see whether that group is a
member of any other groups. The implication is that the user is also a member of those groups. To control
the hierarchical searching of group memberships, set the Group Membership Searching to limited and
the Max Group Membership Search Level to the appropriate number of levels. Finally, WebLogic Server
adds all of the groups found as WLSGroup principal objects to the JAAS subject.

Each LDAP provider has a slightly different configuration. The configuration for the Active Directory
authentication provider is as follows:

UserNameAttribute sAMAccountName

Principal <DN of the Administrator User> (for example, cn=Admininistrator,cn=Users,
dc=<domain>)

Credential <password for the Administrator user>

User From Name Filter (&(sAMAccountName=%u)(objectclass=user))

User Base DN CN=Users,DC=<domain>

Group Base DN CN=Users,DC=<domain>

Use Retrieved User Name as Principal Selected

Use Token Groups for Group Membership Lookup Selected

By default, the provider sets the User Name Attribute to cn. This creates issues with users created via the
Active Directory Console. Changing the attribute to sAMAccountName in both the User Name Attribute
and the User From Name Filter fixes this issue. The Principal and Credential are nothing more than
the Administrator DN and password. In many Active Directory deployments you will find user and
group objects under the same base DN — CN=Users. If the groups are in a separate subtree, change the
configuration accordingly.

The Active Directory provider has a few capabilities that are specific to the Active Directory schema.
First, there is an alternate way to retrieve the group memberships for a user. Users in Active Directory
have an attribute called TokenGroups. This attribute stores the objectSID of all of the security groups that
the user is a member of. This technique is typically faster than recursively searching through the groups.
Second, only users that are enabled in Active Directory can authenticate. Active Directory does this by
checking that the UF_ACCOUNTDISABLE bit of the userAccountControl attribute of the user is not set. By
default, this check is only performed at authentication time. To prevent having disabled users show up
in the WebLogic Console, set the All Users Filter to:

(&(objectclass=user)(!(userAccountControl:1.2.840.113556.1.4.803:=2)))

The details of the Active Directory are different from other LDAP providers, so we cover them here.
As we mentioned before, just because your LDAP server vendor is not listed, it does not mean you

466

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 467

Chapter 11: Using WebLogic Security

cannot use it with WebLogic Server. Consult your LDAP administrator to find the best match between
the supplied LDAP providers and your schema. This is the best way to create a specialized LDAP
authentication provider. Using the WebLogic Console, map the preceding configuration information
to the new LDAP providers by simply providing the information in the appropriate fields under the
provider’s Provider Specific Configuration tab.

Working with multiple authentication sources is common. The most typical scenario is for administrators
to authenticate against the embedded LDAP server and for users to authenticate against an external direc-
tory. In that case, you need to make a decision on how to order the authentication providers. Typically,
you would want to list the customer authentication provider first and set its Control Flag to SUFFICIENT.
You would list the administrator’s authentication source — the embedded LDAP server — second
and also set its Control Flag to SUFFICIENT. The assumption in this approach is that it is better for
administrators to pay the marginal performance hit of failing to authenticate to the external LDAP
server than it is for users. In cases where there are two distinct user populations authenticating against
two separate directories, you need to make a similar, yet slightly more difficult choice. One direc-
tory goes first and users in that directory will have a slightly better experience than the second group
of users.

For most applications, it will be very important to optimize the performance of your LDAP-based
authentication and group membership queries. You should try to tune your WebLogic Server LDAP
configuration filters to be as specific as possible. Another critical step in enhancing your performance
is to have your LDAP server index all of the attributes that you will use as search keys in your LDAP
search filters. Failing to index these attributes will typically cause performance problems as the number
of objects in your LDAP server grows because it forces the LDAP server to perform linear searches. Each
LDAP provider has caching configuration options. You will find these options on both the Provider
Specific Configuration and Performance tabs of the LDAP-based authentication provider inside of
the WebLogic Console.

Best Practice
Always tune your WebLogic Server LDAP configuration filters to be as specific as
possible. Indexing LDAP attributes that are used as search keys is critical for achieving
good performance with LDAP servers that contain more than a handful of objects.

Managing RDBMS Authentication
There are three different options for using an RDBMS for authentication: SQLAuthenticator,
ReadOnlySQLAuthenticator, and CustomDBMSAuthenticator. The SQLAuthenticator is the most
fully featured provider. It supports authentication and read/write access to the user/group infor-
mation via the WebLogic Server domain’s admin server. The ReadOnlySQLAuthenticator supports
authentication and read-only access to the user/group information in the WebLogic Console. The
CustomDBMSAuthenticator supports only authentication but requires the creation of a plug-in
class. The plug-in class has to implement the weblogic.security.providers.authentication.
CustomDBMSAuthenticatorPlugin interface. This interface gets access to a connection for the configured
JDBC data source. The code sample below shows how to implement the lookupPassword method. The
other key methods of the interface, userExists, and lookupGroups all follow the same pattern.

467

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 468

Chapter 11: Using WebLogic Security

package rdbmsplugin;

import java.sql.*;
import weblogic.management.security.ProviderMBean;
import weblogic.security.providers.authentication.CustomDBMSAuthenticatorPlugin;
import weblogic.security.providers.authentication.CustomDBMSAuthenticatorMBean;

public class SampleDBMSAuthPlugIn implements CustomDBMSAuthenticatorPlugin
{

public SampleDBMSAuthPlugIn()
{

System.out.println("Instantiating the Sample Auth PlugIn......");
}

//You can access the information configured in the console through the MBean.
//This is useful for things like setting your own plugin properties
public void initialize(ProviderMBean providerMBean)
{

CustomDBMSAuthenticatorMBean customMBean =
(CustomDBMSAuthenticatorMBean)providerMBean;

System.out.println("The plugin properties are " +
customMBean.getPluginProperties());

}

public String lookupPassword(Connection conn, String user)
{

try {
PreparedStatement stmt =

conn.prepareStatement("select password from users where user=?");
stmt.setString(1,user);
ResultSet rs = stmt.executeQuery();
if (rs.hasNext()) {

return rs.getString(1);
}
else {

return null;
}

}
catch (SQLException e) {

e.printStackTrace();
return null;

}
finally {

try {
connection.close();

}
catch (Exception otherException) {

otherException.printStackTrace();
}

}
}

public boolean userExists(Connection connection, String user)
{

468

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 469

Chapter 11: Using WebLogic Security

...
}

public String[] lookupUserGroups(Connection connection, String user)
{

...
}

public void shutdown()
{

...
}

}

The CustomDBMSAuthenticator is a simple way to integrate your database with WebLogic Server
for username and password authentication and retrieval of groups at authentication time, especially
if you have existing stored procedures. If you need the groups in the database to be visible in
read-only mode through the WebLogic Console or your database schema is fairly simple, use the
ReadOnlySQLAuthenticator. Use the SQLAuthenticator only if you need to manage users and groups
using the WebLogic Console.

Setting Up SSL/TLS
WebLogic Server supports secure communications with clients and other servers using either Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) connections. We assume that everyone is familiar
with SSL; for those not familiar with TLS, all you really need to know is that TLS is essentially the next
generation of SSL and that WebLogic Server currently supports TLS version 1.0. For the remainder of this
book, we will not bother to make the distinction between SSL and TLS and will simply refer to both as
SSL. Should we need to differentiate between the two, we will do it explicitly.

In this section, we begin by giving you a brief review of SSL technology. Next, we talk about how to
obtain X.509 certificates, private keys, and the CA certificates needed to configure SSL. We end this
section with a detailed walkthrough of how to configure WebLogic Server to use SSL.

Overview of SSL and X.509 Certificates
SSL supports two different connection modes or types. The two types are commonly called one-way and
two-way SSL. One-way SSL allows the SSL client to verify that the SSL server is, in fact, who it claims
to be. Two-way SSL extends one-way SSL by allowing the SSL server to verify that the client is who it
claims to be.

These verifications are accomplished through the use of public/private key technology. This technology
uses a set of two related keys known as a public key and a private key for encryption and signing pur-
poses. Anything encrypted using the public key can only be decrypted using the private key, and vice
versa. As the names suggest, the owner of the private key keeps this key locked away where only the
owner has access to it and gives its public key to everyone who might need it. In almost all cases, private
key files are additionally encrypted with a passphrase that must be supplied to get the actual private key
as an additional safety check against unauthorized use. The standard way of distributing public keys is
to use X.509 certificates that contain information about the certificate’s owner and the public key.

X.509 certificates are issued by certificate authorities that digitally sign the certificates with their private
key to allow verification (through the use of their public key) that they did, in fact, issue the certificate

469

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 470

Chapter 11: Using WebLogic Security

and that it has not been tampered with. In some cases, the signing authority’s certificate might have been
signed by another authority and so on. This brings about the notion of a certificate chain where the top
of the chain is known as the root certificate authority (CA) whose certificate is always self-signed. When
you get the CA’s certificate, that certificate will generally contain the entire certificate chain back to the
root CA. This root CA or certificate chain is used by the receiver of the original certificate to determine
whether he or she trusts that the certificate is legitimate.

With one-way SSL, the SSL client uses the server’s certificate (actually, the public key contained in the
certificate) to encrypt a symmetric session key that is sent to the server. The server decrypts the session
key with its private key. Both the client and the server use that key to encrypt and decrypt data for
the duration of the session. This is why it is critical for the server to keep its private key safe and its
passphrase a secret. With two-way SSL, the server will request a certificate from the client that it then
uses to identify and authenticate the client. In order for the client to trust the certificate provided by the
server, it must verify the signing chain of the server’s certificate. If the client trusts the server’s certificate
authority, it can verify the server’s certificate and prove that it is real and has not been tampered with.
This verification requires the client to have the CA’s certificate for the server available locally, as a notion
of which certificates the client will trust.

In the case of two-way SSL, the server must use the exact same mechanisms to verify the client’s certifi-
cate. The server requires the client’s root CA’s certificate locally for two-way SSL. See Table 11-7 for this
listing of required data on either side. Notice the concepts of identity and trust for both the SSL server and
the SSL client. The identity is the certificate and private key. The trust is the certificate authority.

Table 11-7: Required SSL Configuration Data

SSL Mode Client Server

One-way SSL Copy of server root CA certificate and chain Server root CA certificate and chain
Server certificate
Server private key

Two-way SSL Copy of server root CA certificate and chain
Client root CA certificate and chain
Client certificate
Client private key

Server root CA certificate and chain
Server certificate
Server private key
Copy of client root CA certificate and
chain

Obtaining X.509 Certificates
Now that you understand what you need, we can walk through the process of generating a new certifi-
cate and private key for the server. WebLogic Server provides two utilities you can use to generate a new
certificate and private key, or you can use the keytool program that comes with Java SE. If you want to
generate certificates and private keys quickly for demonstration or development purposes, you can use
the utils.CertGen utility. We will use utils.CertGen in the ‘‘Configuring Two-Way SSL’’ section, so
we won’t spend any time on it here.

If you need certificates for a production server, you will probably want to get your certificates signed by
a well-known certificate authority (CA) or use a public key infrastructure (PKI) product. This means that
in addition to generating the certificate and the private key, you will need to generate a Certificate Signing
Request (CSR) and submit it to a certificate authority.

470

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 471

Chapter 11: Using WebLogic Security

Oracle recommends using the keytool program that comes with Java SE. The keytool program is at
times tedious and unforgiving, so we will walk you through the certificate-generation process step by
step. First, you need to generate your self-signed certificate and private key.

keytool -v -genkey -alias server_cert -keyalg RSA -keysize 1024
-dname "CN=www.bigrez.com,OU=Operations,

O=BigRez.com,L=Dallas,S=Texas,C=US"
-keypass secret_key_passphrase
-keystore server_keystore.jks
-storepass secret_store_password

This command generates a self-signed certificate and private key, whose passphrase is
secret_key_passphrase, using a 1024-bit RSA algorithm and stores them in the key store file
server_keystore.jks, whose password is secret_store_password, under the alias server_cert. Pay
special attention to the key size and CN element of the distinguished name. The hostname you enter for
the CN here must be the same as the hostname your SSL clients will use to connect to your SSL server.

Set the CN field to the hostname that your SSL clients will ultimately use to reach
your server. Failure to do this will result in a certificate that your SSL client may
reject because the hostname does not match the IP address the client is using to
reach the server.

You should set the key size to the highest value your WebLogic Server license will allow. At the time of
writing, WebLogic Server supports 512-, 1024-, and 2048-bit key lengths.

Key lengths of less than 1024 bits are generally considered too weak. If SSL is
important enough to use in your environment, use a 1024-bit or larger key.

The next step is to generate a certificate signing request:

keytool -certreq -v -alias server_cert
-file www_bigrez_com-request.pem
-keypass secret_key_passphrase
-storepass secret_store_password
-keystore server_keystore.jks

The result of this command will be a text file called www_bigrez_com-request.pem containing your
certificate signing request.

Once you have the CSR, you can go to your certificate authority and request a signed certificate. Several
different, well-known certificate authorities will sell you a signed certificate. Some CAs will allow you
to use a CSR to get a temporary trial server certificate in about 15 minutes. These can be very useful for
development and testing efforts prior to production. VeriSign will give you a 14-day trial certificate when
you submit your CSR at Link 11-9.

Depending on your CA, you might get your signed certificate or the CA’s certificate in one of sev-
eral different formats. Privacy-Enhanced Mail (PEM) format is the most common and is just a text file
containing special beginning and ending delimiters with the certificate information Base64-encoded in

471

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 472

Chapter 11: Using WebLogic Security

between. Look at the www_bigrez_com-request.pem file in the downloadable example code to see what
a PEM-formatted certificate looks like. Distinguished Encoding Rules (DER) is the other common format,
which is a binary format.

Some certificate authorities might give you a certificate file with a .cer file extension. This is a Microsoft
file extension for certificates and can contain either a binary-encoded (DER format) or a Base64-encoded
(PEM format) certificate. Some tools may check the file extensions and refuse to recognize the .cer file
as a valid certificate. If this happens, open up the file in a text editor to see if the file is Base64-encoded
or binary. If it is Base64-encoded, rename the file using a .pem extension; if the file is binary, use a .der
extension.

Should you ever need to convert between PEM and DER formats, WebLogic Server provides two utility
programs, utils.der2pem and utils.pem2der, that will convert between PEM and DER formats. See
Link 11-10 for more information on these utilities.

Once you have your signed certificate and the CA’s certificate chain available in either PEM or DER
format, you will need to import your signed certificate into the key store. Because the keytool program
will not allow you to import a certificate for which it cannot verify the certificate’s signing chain, you need
to import the CA’s certificate chain as a trusted CA certificate before importing the signed certificate.

keytool -import -v –noprompt -trustcacerts -alias cacert
-file getcacert.der -keystore server_keystore.jks
-storepass secret_store_password

Now you are ready to import the signed certificate that will replace the self-signed certificate you created
earlier.

keytool -import -v -alias server_cert
-file www_bigrez_com-cert.pem
-keystore server_keystore.jks
-keypass secret_key_passphrase
-storepass secret_store_password

At this point, you have a key store that contains the server’s signed certificate, the server’s private key,
and the trusted CA certificate, which should include the entire certificate chain. All you need to do now is
to configure the server and provide the client with the trusted CA certificate, if the client doesn’t already
have it.

Configuring One-Way SSL
You finished all of the hard configuration work in the last section; now we’ll help you set up the server
to use your key store. All you need to do is to edit the server’s configuration to enable one-way SSL and
use the key store you created. First, change the key store information by selecting the server’s Keystores
Configuration tab. Because you are going to supply a new certificate but use the Java SE–supplied key
store, select the Custom Identity and Java Standard Trust option for the Keystores attribute.

Now, you simply fill in the file name, key store type, and key store password for the Custom Identity
Keystore and the password for your Java Standard Trust Keystore. The standard Java trust key store
is always found at $JAVA_HOME/jre/lib/security/cacerts and has a default key store password of
changeit. You can change the password of this key store using the keytool –storepasswd command;
however, we recommend that you do not modify this file. If you are not comfortable with having this

472

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 473

Chapter 11: Using WebLogic Security

trust key store with this well-known password, we recommend copying this key store to another location,
resetting the password, and switching to use a custom trust key store. This makes it easier to upgrade
your WebLogic Server software without running the risk of losing your customized trust key store.

Best Practice
Never modify the standard Java trust key store directly. If you want to use it as a start-
ing point and customize it, make a copy of it into someplace that is associated with your
application configuration and modify the copy.

The downloadable example places the identity key store file in the server-specific directory. You can place
the file anywhere you want but remember that this file must be protected, so we recommend keeping it
close to the rest of your server’s configuration files. Any relative path that you enter for the key store file
name is relative to the domain’s root directory. The key store type is JKS (short for Java key store), and
the value of the Custom Identity Keystore Passphrase attribute is simply the key store’s password you
used when creating the key store — secret_store_password in our example.

Next, you need to configure SSL to use the private key from the key store. Using the server’s SSL
Configuration tab, enter the private key’s alias in the key store and its passphrase. The private key alias
you should use in this example is the alias for the server’s certificate: server_cert. Once this is finished,
simply restart the server for your changes to take effect. Don’t forget to enable the SSL Listen Port on
the server’s General Configuration tab.

Finally, you need to make the server’s CA certificate chain available to the client. If you are using real
certificates from well-known authorities, your client will probably already have the certificate chain in
its trusted CA certificates store. If not, you will need to make the CA’s certificate chain available to the
client.

For browser-based clients, the browser will simply prompt the user to ask whether he or she wants to
trust this certificate, as well as giving the user an option to install it. You can also proactively install
the trusted CA certificate chain on the client. For Internet Explorer, you need to install the trusted CA
certificate chain in the operating system. Please talk to your Windows administrator or refer to the MSDN
article on how to manage end user certificates at Link 11-11. For Firefox or other browsers, please refer to
the browser documentation.

For Java-based clients, you can either add the new certificates to the Java SE’s $JAVA_HOME/jre/lib/
security/cacerts key store or create a new client trust key store. If you create a new client trust key
store, you need to tell your Java client to use it. If you are using JSSE, you do this by setting the Java
system properties as follows:

-Djavax.net.ssl.trustStore=<trust key store file name>
-Djavax.net.ssl.trustStorePassword=<trust key store passphrase>

If you are using WebLogic Server SSL, you do this by setting the Java system properties as follows:

-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=<trust key store file name>
-Dweblogic.security.CustomTrustKeyStorePassPhrase=<trust key store passphrase>

We talk more about how to do this in the ‘‘Writing Java Clients That Use SSL’’ section later in this chapter.

473

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 474

Chapter 11: Using WebLogic Security

Configuring Two-Way SSL
Now that you have seen how to configure the server for one-way SSL, getting to two-way SSL is pretty
simple. In this section, you use the utils.CertGen utility that comes with WebLogic Server to generate
client certificates. Remember that utils.CertGen is not intended for use in production environments.
You could just as easily use the same keytool-based process used to generate certificates for the server
to generate the client certificates. Our primary motivation for using utils.CertGen here is to show you
how you can use it to generate certificates for demonstrations or development environments without
incurring the cost of buying real certificates for every demo/development machine.

First, let’s generate the client certificate, private key, and key store. utils.CertGen is a simple utility that
can generate certificates. The syntax of the command is as follows:

java utils.CertGen –certfile <cert_file_name> -keyfile <key_file_name>
-keyfilepass <key_file_pass> -cn <hostname>
[-strength <key length (1024 by default)>]

In this example, you want to generate a certificate for a machine called rpatrick.bigrez.com so that you
can run the following command on any machine. The output of this command is four files containing the
certificate and the primary key in both PEM and DER formats:

java utils.CertGen -certfile client_cert -keyfile client_key
-keyfilepass client_key_passphrase -cn rpatrick.bizreg.com

You can find the CA certificate used to sign all certificates generated by utils.CertGen at
$WL_HOME/server/lib/CertGenCA.der. For more information on the utils.CertGen utility, see Link
11-12.

You will need to make the client’s CA certificate available to the server. Because your server is currently
configured for one-way SSL and using the standard Java trust key store, you either need to add the client
CA certificate to the standard Java key store or create a new server trust key store. Recall that we don’t
recommend modifying the standard Java trust key store. We recommend copying the standard Java trust
key store because it already contains most of the root CA certificates you will need. If your application
is an internal application, you may want to start with a new key store and add only the CA certificates
approved for use within your organization.

Tip to Remember
For sites using two-way SSL with external clients, starting with the standard Java
trust key store will ensure that most clients will be able to connect using their existing
certificates.

Start by copying the standard Java trust key store to a file called server_trust_keystore.jks in the
domain’s root directory and changing its password.

keytool -storepasswd -new secret_trust_password
-keystore server_trust_keystore.jks -storepass changeit

474

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 475

Chapter 11: Using WebLogic Security

Then, import the client’s CA certificate, just as you did before, using the keytool –import –trustcacerts
command.

keytool -import -v –noprompt -trustcacerts -alias cacert3
-file %WL_HOME%\server\lib\CertGenCA.der
-keystore server_trust_keystore.jks
-storepass secret_trust_password

Now, you need to reconfigure the server to use this new trust key store. Simply go back to the server’s
Keystores Configuration tab in the WebLogic Console and select the Custom Identity and Custom
Trust option for the Keystores attribute. Next, set the trust key store name, type, and passphrase to the
appropriate values (server_trust_keystore.jks, JKS, and secret_trust_password, respectively). You
can leave everything else unchanged and finish applying the changes. Before restarting the server, make
the other SSL changes to enable two-way SSL.

Back on the SSL Configuration tab, scroll down to the bottom of the page and select the Advanced
heading. It has a few settings of interest to our current discussion. First, you need to change the Two Way
Client Cert Behavior attribute that tells the server how to handle client certificates. Setting it to a value
of Client Certs Requested But Not Enforced will turn on two-way SSL, but the SSL connection process
will continue even if the client does not provide a certificate. If you want to require two-way SSL, set the
value to Client Certs Requested And Enforced. We will use the last setting because we want to verify
that two-way SSL is working properly.

Another attribute of interest is Hostname Verification, which controls the behavior that the server
uses when validating a certificate sent to it. This applies when the server is acting as a client to another
SSL server. By default, this is set to the value BEA Hostname Verifier, which tells the server to use
the internal implementation for verifying that the hostname in the certificate matches the destination
from which the certificate originated. In some cases, you might want to change this setting to None to
allow the use of certificates that do not match while in development. Never use this setting in a pro-
duction environment. In extreme circumstances, you might need to provide your own implementation
of the hostname verifier. You can do this by setting the value to Custom Hostname Verifier and set-
ting the Custom Hostname Verifier attribute to the fully qualified class name of a class that implements
the weblogic.security.SSL.HostnameVerifier interface.

It is also possible to disable all hostname verification completely in any WebLogic SSL client or server
by setting the Java system property weblogic.security.SSL.ignoreHostnameVerification to true. Of
course, another way to do this would be to provide your own hostname verifier class that always returns
true. Either way, this is extremely dangerous because it disables verification that the certificate being
used is actually from the host specified in the certificate. It can be useful, though, in a development or
demonstration environment when you simply want to use the demonstration certificates that come with
WebLogic Server. Do not forget to re-enable hostname verification when migrating your configuration to
a production environment.

Best Practice
Disabling hostname verification can make things simpler in a development or demon-
stration environment; always re-enable hostname verification for your production
environments.

475

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 476

Chapter 11: Using WebLogic Security

The last attributes of interest are the inbound and outbound certificate validation. For each of these
attributes there are two options: Built in SSL Validation or Built in SSL and Cert Path Validation.
The second option additionally uses the certification path providers configured for the domain to validate
certificates. WebLogic Server provides a certification path provider called Certificate Registry that is
used to manage trusted certificates. This includes the ability to revoke certificates from the WebLogic
Console without restarting the server. Also, custom certification path providers could be written to
integrate Online Certificate Status Protocol (OCSP) and Certificate Revocation Lists (CRL) checking
into WebLogic Server. OCSP and CRL are two different techniques for ensuring that a certificate is
still valid.

If you are using browser-based clients, you will need to install the client certificates used by the browsers.
Of course, these client-side, browser-based certificates will likely be user-specific certificates, so make sure
to install them appropriately. If you intend to use two-way SSL as an application authentication mecha-
nism, make sure that each user’s certificate contains his or her WebLogic Server username somewhere in
the distinguished name. We talk more about application authentication after we discuss configuring Java
clients.

For Java clients, you need to create identity and trust key stores for the client to use. Again, these key
stores can be the same or different key stores. In this example, you use two separate key stores to help
you understand what needs to go in each key store. The identity key store needs to contain the client’s
certificate and private key. To create this client key store, you will use another WebLogic Server–provided
utility called utils.ImportPrivateKey, whose syntax is as follows.

java utils.ImportPrivateKey –keystore <keystore_file>
-storepass <keystore_password> -alias <certificate_alias_to_use>
-keyfilepass<private_key_passphrase> -certfile <certificate_file>
-keyfile <private_key_file> -storetype [<keystore_type>]

If the keytool program provided an easy way to import an existing private key from a file, you would
not need this utils.ImportPrivateKey utility. Because it doesn’t, use the following command to create
your identity key store and import your existing certificate and private key.

java utils.ImportPrivateKey –keystore client_keystore.jks
-storepass client_key_passphrase -alias client_cert
-keyfilepass client_key_passphrase
-certfile rpatrick-cert.pem
-keyfile rpatrick-key.pem –storetype JKS

Notice that by using the utils.ImportPrivateKey utility you did not have to import the CA certificate
chain first. For more information on the utils.ImportPrivateKey utility, see Link 11-13.

Next, you need to create your trust key store. Because Java client programs are not typically talking with
a large number of servers controlled by different organizations, we have chosen to create a new trust
key store rather than starting with the one included with Java SE. You will place both the client’s and
the server’s CA certificate chain in the trust key store. Once again, you can use the keytool program to
create the new store and import both certificate chains.

keytool –import –v -noprompt –trustcacerts –alias client_cacert
-file %WL_HOME%\server\lib\CertGenCA.der
-keystore trust_store_keystore.jks
-storepass trust_store_password

476

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 477

Chapter 11: Using WebLogic Security

keytool –import –v -noprompt –trustcacerts –alias server_cacert
-file getcacert.der -keystore trust_store_keystore.jks
-storepass trust_store_password

Finally, you just need to get your Java client programs to use these new key stores. You use the same
Java system properties we discussed at the end of the ‘‘Configuring One-Way SSL’’ section to tell your
client which trust key store to use. As you see later in the ‘‘Writing Java Clients That Use SSL’’ section,
you specify the identity key store to use directly from within the client-side Java code.

The last thing we need to discuss is how to use two-way SSL as an application authentication mechanism.
To use client certificates to authenticate your client users, you need to configure the server to support this.
If you want to require users to have a client certificate, make sure that you set the Two Way Client Cert
Behavior attribute to Client Certs Requested And Enforced. Otherwise, WebLogic Server will permit
clients that do not present a certificate access. For web applications only, there is an additional step on
the server. Make sure that the application is configured in the web.xml to use the <login-method> of
CLIENT-CERT and that the resources that you want to protect are included in a <security-constraint>.
These settings tell WebLogic Server to look for the identity in the X.509 certificate of the caller when those
protected resources are being accessed. Next, you need to create WebLogic Server users for mapping to
client certificates. We talk more about user management in the ‘‘Setting Up WebLogic Server Application
Security’’ section later in this chapter. Finally, you need to configure the DefaultIdentityAsserter to
support X.509 token types and set up the username mapper to extract the mapping information from the
certificate and return the username, as previously discussed in the ‘‘Identity Assertion’’ section.

In this example, because the CN of our utils.CertGen-created client certificates contains the fully quali-
fied hostname, you should set the Default User Name Mapper to extract the user information from the CN
field and use the ‘‘.’’ character as the delimiter to map the hostname rpatrick.bigrez.com properly to
the WebLogic Server user rpatrick. Once you have everything configured correctly, you should be able
to use normal Java EE or WebLogic Server security mechanisms with your users without requiring them
to log in or supply a password.

To test two-way SSL from a browser, you’ll need to install the user’s private key and certificate. Both
Internet Explorer and Firefox can import a PKCS12 key store containing the private key. The Java keytool
program is used to export a key store into another format including PKCS12. The only trick is that the
password for the newly created PKCS12 key store has to be the same as the password for the user’s
private key.

keytool –importkeystore –v –srckeystore client_keystore.jks
–destkeystore client.p12 –deststoretype pkcs12
–deststorepass client_key_passphrase –srcstorepass client_store_password
-srcalias client_cert –srckeypass client_key_passphrase

This will result in the creation of a PKCS12 file called client.p12 that can then be imported into Inter-
net Explorer or Firefox. When prompted in the browser to enter the password for the certificate, enter
client_key_passphrase. We cover more of the details of the keytool and two-way SSL in the section
‘‘Writing Java Clients That Use SSL.’’

Debugging SSL Problems
Debugging problems with SSL configurations can be a frustrating task because most of the real
work happens during the initial SSL handshake, before the server-side application code is ever invoked.

477

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 478

Chapter 11: Using WebLogic Security

Fortunately, WebLogic Server has some debugging flags that cause the server to print out very detailed
information during the handshake. Without this sort of information, it is almost impossible for you (or
Oracle Customer Support) to debug the problem. To turn on this debugging output, use the server’s
Debug tab to enable the default.DebugSSL and the weblogic.security.ssl debug scopes. On the client
side use -Dssl.debug=true and –Dweblogic.StdoutDebugEnabled=true.

When running WebLogic Server with 1-way SSL, if the server starts up and the server is listening on the
SSL port then there are no issues on the server. If the server fails to listen on the SSL port then there is
either an issue with the server’s certificate or with one of the trusted CAs. Common issues with the server
certificate are that it’s expired or it’s not trusted — not all of the CAs in the certificate’s chain are trusted.
Issues with individual CAs are unlikely, but on occasion issues with expired CA certificates or invalid
certificates could cause the SSL listener to not start properly.

Assuming that the server has started, if the client cannot connect to the server over 1-way SSL then the
next place to check is on the client. The most common client issue is that the certificate of the server is not
trusted. Adding the server’s CA certificates to the client’s trust store fixes this problem. Another common
issue is that the hostname verification fails. This normally means that the CN in the SubjectDN of the
certificate does not match the hostname of the server. As was previously discussed, for non-production
environments, simply changing the client to use a less rigorous HostnameVerifier will suffice. For pro-
duction environments make sure that the IP address of the server can be resolved to the hostname that
matches the CN in the server’s certificate. Alternatively, get the server a certificate for the hostname that
does match the IP address of the server it is running.

Debugging a client that is using 2-way SSL is just an extension of the checks done for a 1-way SSL
client. In addition, there is the possibility that the client when prompted by the server to pass a
certificate is unable to do so. The most common reason for this is that when the server presents
the client with the list of CAs that it trusts, the CA for the client’s certificate is not present, so the
SSL handshake fails. The remedy in this case is to add the client’s CA certificates to the server’s
trust store.

Tip to Remember
When having SSL problems, first check the release notes for any known problems that
may apply to your particular configuration. Turning on the SSL debugging flags can
make debugging SSL configuration problems much simpler.

Writing Security-Aware Java Clients
In this section, we show you how to write security-aware Java clients that interact with WebLogic Server.
The focus is primarily around authentication and the use of SSL. First, we talk about how your Java
application client can use JAAS to authenticate to WebLogic Server. Then, we show you how to set up
an SSL connection between your application client and WebLogic Server. In Chapter 9, we showed you

478

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 479

Chapter 11: Using WebLogic Security

how to write security-aware web services clients that use SSL for transport security and WS-Security for
providing message-level protection.

Writing Java Clients That Use JAAS
Before we jump into the details of how to use JAAS with your WebLogic Server Java client application,
let’s briefly look at the theory behind it. JAAS provides a standard way to authenticate specific users and
authorize those users for specific sets of code and resources.

JAAS authentication is designed to be a pluggable framework that removes authentication methods and
decisions from business logic entirely. This framework allows for a new method of authentication to be
added to an application to either replace or augment the current authentication modules without requir-
ing the application code to change. We spend the bulk of this section looking at how JAAS authentication
works.

JAAS authorization is built using the existing Java security model, which uses a security policy to restrict
the rights of executing code. JAAS extends this model by allowing the policy to be defined for specific
users and groups. Typically and by default, this policy is defined in a text file that uses a special syntax;
this file is java.policy. Through this mechanism, JAAS allows the Java runtime to restrict access based
on where the code came from, who the code might be digitally signed by, and what authenticated prin-
cipal the code is running on behalf of. The granularity of restriction is still limited to the same low-level
system resources of the Java runtime. For example, you could restrict access to reading or writing specific
Java system properties, files, or network ports. JAAS authorization does not address the problems asso-
ciated with protecting a server’s application-level resources such as an EJB method or JMS queue. Java
Authorization Contract for Containers (JACC) uses JAAS as a foundation, and provides a standard solu-
tion for some of these issues, but in general JAAS authorization is not used to secure Java EE container
resources.

You can turn on JAAS authorization by adding the following two Java command-line options to set the
required Java system properties:

–Djava.security.manager –Djava.security.policy=weblogic.policy

The java.security.debug system property is helpful in resolving issues with JAAS authorization. Using
a combination of the access and policy values should help get to the root issue with any unexpected
behavior.

JAAS authorization might be useful to restrict the Java runtime permissions for untrusted code running
on your server. Most production environments, though, typically are not running untrusted code on the
server, so using JAAS authorization to control access on your application server is probably not worth
pursuing. A typical Java EE environment has at least minimal audits of the business applications and
code running on the server. The only real-world situation where the extra performance hit of using JAAS
authorization might be useful would be for application service providers (ASPs). JAAS authorization
makes sense only if you host applications that you don’t directly control or have the ability to audit. In
most cases, the benefits do not justify the runtime performance overhead.

479

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 480

Chapter 11: Using WebLogic Security

Best Practice
JAAS authorization addresses authorization only for low-level system resources
or capabilities like reading or writing to a file or creating a new class loader. All
application-level resources are left as an exercise for the application server or appli-
cation security vendors. Most production server environments are not typically
running untrusted code, and the performance overhead of JAAS authorization can be
substantial. Therefore, we do not recommend JAAS authorization for most application
authorization needs.

JAAS authentication occurs in a few basic steps. A JAAS client application begins the authentication
process by instantiating a LoginContext object with the client type and a new custom CallbackHandler,
as shown in the following code fragment.

CallbackHandler callback =
new ProfessionalWebLogicCallbackHandler(username, password, url));

LoginContext loginContext =
new LoginContext("ProfessionalWebLogic", callback);

In this case, the client type is ProfessionalWebLogic and the custom CallbackHandler is the
ProfessionalWeblogicCallbackHandler.

When this client code executes, the LoginContext looks up its configuration to determine the required
authentication types, or LoginModules, to be used in performing the authentication. Whereas JAAS sup-
ports a pluggable configuration model, the Java runtime ships only with the file-based implementation,
so the configuration typically comes from a file. The LoginContext matches the client type with the
LoginModule and its associated flags. In our example, the configuration information is stored in the
professionalweblogic.config file, whose contents are as follows:

ProfessionalWebLogic {
weblogic.security.auth.login.UsernamePasswordLoginModule required debug=false;

};

When the LoginContext reads this file, it finds the entry for its client type, ProfessionalWebLogic,
and determines that the correct LoginModule to use is weblogic.security.auth.login
.UsernamePasswordLoginModule, whose control flag is set to Required and debug flag is set to
false. This control flag value has the exact same semantics as we previously discussed when covering
LoginModule settings in the ‘‘Authentication’’ section.

So, the next question that should come to mind is how does the LoginContext know where to find its
configuration? Java provides two mechanisms for telling the LoginContext where to find its configu-
ration information. One way to specify the location of the JAAS login configuration is through the Java
system property java.security.auth.login.config, which can be set to point to the configuration file
the Java program should use. If this system property is not set, the Java runtime will search through the
list of entries like the one shown next in the $JAVA_HOME/jre/lib/security/java.security file looking
for a configuration file that contains an entry that matches our client type:

login.config.url.1=file:/c:/powls/ch11/professional-weblogic.policy

480

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 481

Chapter 11: Using WebLogic Security

The next step in the application is to call the LoginContext’s login() method, which starts the whole
authentication process. The LoginModules are called with the original CallbackHandler. A basic
LoginModule might simply use the CallbackHandler to prompt for a username and password on the
command line. More complex methods might require an X.509 certificate, a Kerberos token, or even
some biometric information. Each new authentication method requires a new LoginModule, and possibly
a new CallbackHandler to deal with any new Callback types the LoginModule might need. Each
LoginModule uses the CallbackHandler to decide whether to authenticate this subject.

In our example, we use a ProfessionalWebLogicCallbackHandler to hold the username and password.
We chose this approach so that you could see the inner workings of the CallbackHandler. In this case, it
would be just as easy to use the WebLogic Server’s built-in weblogic.security.SimpleCallbackHandler
or weblogic.security.URLCallbackHandler. The SimpleCallbackHandler supports only prompting for
the username and password; the URLCallbackHandler supports prompting for the username, password,
and server URL.

Upon success, LoginModules associate various Principals with the newly created Subject. If the
LoginContext is successful, the application can then retrieve the Subject from it. This new Subject
has a list of Principal objects that represent the identity of the currently authenticated user. To invoke
business logic, you must create a class that implements PrivilegedAction and contains the business
logic, and you must pass it to the WebLogic Server security subsystem along with the newly created
Subject.

loginContext.login();
Subject subject = loginContext.getSubject();
JAASExampleAction clientAction = new JAASExampleAction(url);
Security.runAs(subject, clientAction);

You should notice right away that the business logic is now encapsulated inside a PrivilegedAction
object, which is just a wrapper of a Runnable. We pass the PrivilegedAction object to the WebLogic
Server security subsystem, along with the authenticated Subject, to be run. This is different from stan-
dard JAAS, which uses the Subject itself to run the PrivilegedAction. Although covering the rationale
for this is beyond the scope of this book, suffice it to say that there are problems with losing the user
identity when combining the JAAS-specified Subject.doAs() with AccessController.doPrivileged().
Because Java EE requires the use of AccessController.doPrivileded() in certain conditions, WebLogic
Server provides a Security.runAs() method that is similar in spirit to Subject.doAs() and works with
all of your JAAS code, but does not suffer from the user identity problem.

Another important point is that the LoginModule being used by the client is not the same as the one
being used by the WebLogic Server Security Service on the server. The client-side LoginModule calls to
the server to try to authenticate the client. As a result of this request, the server will call into the security
framework, which will end up invoking the server-side LoginModule(s) to make the actual authentica-
tion decision. Your application client should either use the WebLogic Server–provided LoginModule,
called the UsernamePasswordLoginModule, or provide its own custom LoginModule. If you use a custom
LoginModule, always call weblogic.security.auth.Authenticate.authenticate() from within its
login() method, as shown here:

Subject subject = new Subject();
weblogic.jndi.Environment env = new weblogic.jndi.Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
weblogic.security.auth.Authenticate.authenticate(env, subject);

481

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 482

Chapter 11: Using WebLogic Security

The basic idea here is that the client application running the custom LoginModule must contact the server
to allow the server to do the authentication. As a part of this server-side authentication process, the
server will populate and digitally sign the Subject before returning. You can place any Serializable
object in the Environment to act as the credential instead of a password as long as the server’s configured
authentication provider knows how to use it to authenticate the user. This authenticate() method is
only for authentication to a remote server. To authenticate to the server from code running inside that
server, you need to use the weblogic.security.service.Authenticate.login() method.

Best Practice
Use only the weblogic.security.auth.Authenticate.authenticate() method
to authenticate to a remote server process. Always use the weblogic.security.
services.Authenticate.login() method for code running inside the server to which
you want to authenticate.

Writing Java Clients That Use SSL
When writing a Java client that uses SSL, there are three main types of application clients to consider:
RMI clients, programmatic HTTP clients, and web services clients. We discuss RMI clients and HTTP
clients in this section, since we covered the discussion of web services clients in Chapter 9. We end this
section with a discussion of application authentication, hostname verification, and trust managers.

RMI Clients
The first type of client to discuss is an RMI client using SSL. For one-way SSL, it is as simple as specifying
an SSL protocol and port in the PROVIDER_URL that you use to create the JNDI InitialContext object:

Hashtable ht = new Hashtable();
ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
ht.put(Context.PROVIDER_URL, "t3s://localhost:7002");
InitialContext ctx = new InitialContext(ht);

Of course, this assumes that the server’s certificate is trusted by the client — the server’s root CA certifi-
cate is in the client’s standard Java trust store. If not, you either need to add it or use a custom trust key
store that contains this root CA certificate. If using the custom trust key store, you will need to use the
Java system properties previously described in the ‘‘Configuring One-Way SSL’’ section to tell the JVM
where to find the trust store.

Making a two-way SSL connection from a standalone client is a little bit more work. In this case,
you simply need to get the certificate chain and private key from the key store and pass it into the
InitialContext constructor. You also need to establish trust with the certificate being returned by the
server. We explore in the next section the use of JSSE TrustManagers to accomplish this. Java Secure
Socket Extension (JSSE) is the standard set of libraries that the JDK provides for SSL, most of which are
located in the javax.net.ssl package. The WebLogic Server environment has the ability to specify
the MD5 fingerprint of the CAs that this client trusts. You can easily retrieve the MD5 fingerprint of
the certificate by using the keytool –list –keystore <keystore> command. The MD5 fingerprint in the
following example is for the VeriSign Trial CA certificate.

482

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 483

Chapter 11: Using WebLogic Security

KeyStore ks = KeyStore.getInstance("jks");
ks.load(new java.io.FileInputStream("client_keystore.jks"), null);
PrivateKey key =

(PrivateKey)ks.getKey("client_cert", "client_key_passphrase".toCharArray());
Certificate [] certChain = ks.getCertificateChain("client_cert");
weblogic.jndi.Environment env = new weblogic.jndi.Environment();
env.setProviderUrl(url);
env.loadLocalIdentity(certificateChain, privateKey);
env.setSSLRootCAFingerprints("B69DA4405202500DD59CE1B84B66C4AC");
Context ctx = env.getInitialContext();

Another example available for downloading shows how to accomplish the same thing using the
thin RMI client that also supports using a key store but does it by using JSSE under the covers. Java
Secure Socket Extension (JSSE) is the standard set of libraries that the JDK provides for SSL, most of
which are located in the javax.net.ssl package. Notice that instead of using the MD5 serial number
check, this example uses JSSE TrustManagers to establish trust. This example will work only if the
client is using the thin client jar file, wlclient.jar, and not running inside a WebLogic Server. As
mentioned previously, you don’t need to worry about outgoing SSL connections from the WebLogic
Server as long as you have the server configured with the proper information to find its certificate and
private key.

When using JSSE, you can configure the SSL client information either through a set of system properties
or programmatically through the instantiation of a SSLContext object. Unfortunately, current versions
of WebLogic Server no longer provide a way to pass the SSLContext into the InitialContext program-
matically. Therefore, the RMI client example below specifies the information as Java system properties.
You specify the trust key store to use by setting the Java system property javax.net.ssl.trustStore.
To verify the integrity of the data it retrieves from the key store, specify the key store password using the
javax.net.ssl.trustStorePassword Java system property.

You also need to configure JSSE to use a client identity key store by setting the Java system property
javax.net.ssl.keyStore. To retrieve the client’s certificate and private key from the key store,
set the Java system property java.net.ssl.keyStorePassword to the key store password and
private key passphrase. Also, if you are using a key store type other than JKS, such as PKCS12,
set the Java system property javax.net.ssl.keyStoreType accordingly. So, the code is the
same as the one-way SSL example above, but we must set the javax.net.ssl.keyStore and the
java.net.ssl.keyStorePassword properties to specify the client certificate information.

Hashtable props = new Hashtable();
props.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
props.put(Context.PROVIDER_URL, "iiops://127.0.0.1:7002");
InitialContext ctx = new InitialContext(props);

One important thing to point out is the JSSE Java system properties do not provide a property for the
identity key store certificate alias or for the private key passphrase. This means:

❑ JSSE only supports a client identity key store that has a single certificate/private
key pair.

❑ Through its Java system properties, JSSE requires that the password for the key store and the
passphrase for the private key be identical.

483

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 484

Chapter 11: Using WebLogic Security

When using a two-way SSL JSSE client, you need an identity key store that has one
certificate/private key pair. When using the Java system properties, JSSE requires
that the identity key store’s password and the private key’s passphrase be identical.

Programmatic HTTP Clients
The next type of client is a Java application client making HTTP requests over SSL using URLConnection
objects. You might wonder how common it is to need a Java client that makes HTTP requests. The answer
is that although it may not be very common for a true client application, it is a relatively common thing
to do when writing server-side code that may need to call out to some other site to get information.

When writing these types of clients, you have two main ways of establishing the SSL connection:
WebLogic SSL APIs or JSSE APIs. First, let’s look at using the WebLogic SSL APIs. For one-way SSL you
simply create your HttpsURLConnection object.

URL url = new URL("https", hostname, sslPortNumber, page);
weblogic.net.http.HttpsURLConnection sslConn =

new weblogic.net.http.HttpsURLConnection(url);
sslConn.connect();

As with the RMI client, this assumes that the client trusts the server’s certificate. If not, you must take the
appropriate steps to configure the client to trust the server’s certificate, as previously described.

The same exact code will work for 2-way SSL from inside WebLogic Server. There is no need to supply
the credentials because the server can be configured to automatically provide them for any outgoing SSL
connection in which the remote SSL server requests them. You can do this by enabling Use Server Certs
from the Advanced area of the SSL Configuration tab of the server. This only applies to clients using the
WebLogic Server SSL stack

If you want to make a two-way SSL connection from outside the server, you need to do a little bit
more work. You need to get the X.509 certificate chain and the private key and use these to store
the client’s identity in WebLogic Server’s version of the SSLContext. Then, you get the WebLogic
Server SSLSocketFactory from the SSLContext and use it to call setSSLSocketFactory() on the
weblogic.het.http.HttpsURLConnection object before you call connect(). The downloadable
examples contain a complete working example, the highlights of which are shown here.

import weblogic.net.http.HttpsURLConnection;
import weblogic.security.SSL.SSLContext;
import weblogic.security.SSL.SSLSocketFactory;

...

SSLContext ctx = SSLContext.getInstance("https");
ctx.loadLocalIdentity(certChain, privateKey);
SSLSocketFactory sslSocketFactory = ctx.getSocketFactory();

URL url = new URL("https", hostName, sslPortNumber, page);
HttpsURLConnection sslConn = new HttpsURLConnection(url);

484

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 485

Chapter 11: Using WebLogic Security

sslConn.setSSLSocketFactory(sslSocketFactory);
sslConn.connect();

For JSSE clients making a one-way SSL connection, it is simply a matter of changing the package of
HttpsURLConnection object to javax.net.ssl.HttpsURLConnection:

URL jsseUrl = new URL("https", hostname, sslPortNumber, page);
javax.net.ssl.HttpsURLConnection sslConn =

(javax.net.ssl.HttpsURLConnection)url.openConnection();
sslConn.connect();

Unlike the 2-way SSL RMI example using JSSE, you can instantiate the SSLContext object
and pass it to initialize your HTTP client connection. You simply use the JSSE SSLContext
object to get a JSSE SSLSocketFactory and use it to call setSSLSocketFactory() on the
javax.net.ssl.HttpsURLConnection object before you call connect(), as highlighted here. See
the downloadable examples on the companion Web site for a complete working example.

import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLSocketFactory;
import javax.net.ssl.TrustManagerFactory;

...

KeyManagerFactory kmf =
KeyManagerFactory.getInstance("SunX509", "SunJSSE");

kmf.init(identityKeyStore, args[1].toCharArray());
TrustManagerFactory tmf =

TrustManagerFactory.getInstance("SunX509", "SunJSSE");
tmf.init(trustKeyStore);

SSLContext ctx = SSLContext.getInstance("SSL");
ctx.init(kmf.getKeyManagers(), tmf.getTrustManagers(), null);
SSLSocketFactory sslSocketFactory = ctx.getSocketFactory();

URL url = new URL("https", serverName, sslPortNumber, page);
HttpsURLConnection sslConn =

(HttpsURLConnection)url.openConnection();
sslConn.setSSLSocketFactory(sslSocketFactory);
sslConn.connect();

JSSE uses the KeyManagerFactory to handle all interaction with the KeyStore. It queries the KeyStore
to determine which certificate and private key to use when asked to provide credentials. While this
programmatic API allows the identity key store password and private key passphrase to be different,
there is still no way to specify which certificate/private key pair to use. As such, you still need to use an
identity key store with a single certificate/private key pair.

When using JSSE’s KeyManagerFactory, there is no way to specify which
certificate/private key pair to use. As such, you still need to use an identity key store
with a single certificate/private key pair.

485

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 486

Chapter 11: Using WebLogic Security

Web Services Clients
The use of SSL for web services clients is covered in Chapter 9. This chapter includes both transport- and
message-level security. Before we leave the topic of SSL, we need to discuss a few miscellaneous options
related to SSL: application authentication, hostname verification, and trust managers.

Application Authentication
You can use two-way SSL to authenticate a client to your WebLogic Server application. To do this, you
simply need to map the client certificate presented to the server to a WebLogic Server username. You
can do this using the identity assertion capabilities of the WebLogic Security Framework, as discussed
earlier in the ‘‘Identity Assertion’’ section. All of the two-way SSL examples we just discussed use this
capability to allow the server-side application to determine the username. Once the WebLogic Server
identity is established, you can use any standard Java EE or WebLogic Server authorization capabilities
to restrict access to protected resources.

Hostname Verification
Both WebLogic Server and JSSE try to verify that the certificate a remote process presents matches its
hostname. They do this by invoking a default set of rules to try to match the common name (CN) field of
the X.509 certificate’s distinguished name (DN) to the host from which it came. If they are unable to do
that, they will invoke the registered hostname verifier class to verify that the certificate is, in fact, from the
host. In most situations, the hostname verification process will not need the hostname verifier. By default,
both WebLogic Server and JSSE are configured to fail all verification calls that need to call the hostname
verifier. This means that if your certificates are failing the default verification rules, you will need to get
new certificates or provide your own implementation of the weblogic.security.SSL.HostnameVerifier
or javax.net.ssl.HostnameVerifier interface, depending on which SSL implementation you are using.

There are three ways to register your custom hostname verifier class with WebLogic SSL. You can
call the setHostnameVerifier() method on either the WebLogic HttpsURLConnection or SSLContext
objects. If your code is running in the server, you can use the Advanced section of the server’s
SSL Configuration tab in the WebLogic Console. Finally, you can use the Java system property
weblogic.security.SSL.HostnameVerifier to point to the fully qualified class name of your hostname
verifier class.

Trust Managers
Our last topic is the TrustManager interface. A TrustManager is a secondary means of verifying the
certification chain supplied by the other party participating in the SSL handshake. It is a simple interface
that is called only if the default certificate chain verification fails. A common example of this occurs when
an SSL client connects to an SSL server that has a single expired certificate somewhere in its certificate
signing chain and the expired certificate has been replaced with a new certificate, next to it in the chain.
Using the new certificate in the server certificate chain and simply ignoring the expired certificate will
verify correctly. The problem is that standard SSL certificate verification will not accept a certificate chain
like this. It is considered untrusted, and the SSL handshake will fail.

If the SSL client has been set up with a TrustManager, the client’s TrustManager will be called
with the unverified server certificate chain. The TrustManager can then decide whether to allow
the certificate chain verification and thus the SSL handshake to continue. Use of a TrustManager
is not required if the default SSL certificate chain verification is all that is needed. Both WebLogic
SSL and JSSE support registering a custom TrustManager. With WebLogic SSL, you need to provide
an implementation of the weblogic.security.SSL.TrustManager interface and register it with the

486

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 487

Chapter 11: Using WebLogic Security

weblogic.security.SSL.SSLContext object. For JSSE, you need to create and register your own
javax.net.ssl.TrustManagerFactory or implement the javax.net.ssl.X509TrustManager interface
directly. Both of these are then used in conjunction with the javax.net.ssl.SSLContext object’s init()
method.

Managing Application Security
In this section, we present a brief overview of the setup, management, and administration of the
WebLogic Server application security features. We start with a brief description of the various
application security models in WebLogic Server. We continue with a review of the Java EE standard
security settings in various deployment descriptors. Next, we show you how to set up roles and
access control policies using the built-in WebLogic Server security providers’ capabilities. We finish by
talking about the different ways to specify the username and password needed to boot the WebLogic
Server.

Application Security Models
As we discussed in the ‘‘Security Realms and Providers’’ section, WebLogic Server supports several
application security models. An application security model essentially describes how WebLogic Server
should define and manage an application’s role and authorization policies. The realm defines the default
application security model for applications but each application has the choice to accept the default
model or choose one of the other models at deployment time. By default, WebLogic Server sets the
realm’s default application security model to DD Only (DD stands for deployment descriptor); this mode
gives you the standard Java EE security model. Both the role and authorization policies are defined
inside of the application’s deployment descriptors. This chapter covers the Java EE model in great
detail.

Another security model is Custom Roles. In this model, administrators can define role policies inside
of the WebLogic Console. Custom Roles allow the assignment of users to roles based on more than
just group membership (for example, time of day) or to have application- or resource-scoped roles (for
example, a Sales role for a specific web service). The DD Only model allows for the mapping of users or
groups to roles but those roles are for the entire application.

The Custom Roles and Custom Policy model extends the Custom Roles model with the ability to manage
authorization policy through WebLogic Console. Custom policies allow for finer-grained authorization
based upon information in the request — that is, contextual authorization. For example, role X can access
an EJB if the amount parameter is less than 50. The DD Only model only allows for granting roles access
to URL paths or EJB methods inside of the deployment descriptors.

In both the Custom Roles and Custom Roles and Policies models, all activity is delegated to the role
mapping and authorization providers configured in the realm. In the ‘‘Setting Up WebLogic Server
Application Security’’ section, we describe in detail the capabilities provided by the default XACML
providers.

The Advanced model allows you to combine roles and policy definitions from deployment descriptors
and the WebLogic Console. We discuss this model in more detail in the ‘‘Setting Up WebLogic Server
Application Security’’ section.

487

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 488

Chapter 11: Using WebLogic Security

Setting Up Java EE Application Security
In this section, you learn how to use Java EE security mechanisms to set up authentication requirements,
configure access control policies, and define role mappings for web applications, Enterprise JavaBeans
(EJB), resource adapters, and enterprise applications. We cover web services security in Chapter 9.

With most Java EE component types, WebLogic Server uses a two-level process for mapping roles defined
in the Java EE standard deployment descriptors or annotations to actual WebLogic Server users or groups
in the WebLogic Server–specific deployment descriptor. This mechanism allows you to use standard role
names in your application and then map them to physical users or groups at deployment time.

Securing Web Applications
When setting up web application security, the first decision you need to make is the type of HTTP authen-
tication mechanism to use. In the following web.xml deployment descriptor, we define the desired HTTP
authentication mechanism in the <auth-method> element, within the <login-config> element.

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.jsp</form-login-page>
<form-error-page>/login_error.jsp</form-error-page>

</form-login-config>
<realm-name>BigRez Realm</realm-name>

</login-config>

This tells the Web container that the web application will be using form-based authentication. Three
different types of authentication are supported.

BASIC Using this method causes the web browser to pop up the HTTP authentication dialog
box requesting a username and password. To define basic authentication in your web applica-
tion, simply replace FORM with BASIC in the <auth-method> element and eliminate the entire
<form-login-config> element. The <realm-name> tag is used only with BASIC authentication to
specify the authentication realm displayed in the browser’s pop-up authentication dialog box. It is
completely cosmetic and has no other purpose at this time.

FORM When using form-based authentication, the browser is redirected to the configured
HTML login form, as defined in the <form-login-page> element, whenever the user tries to access
a protected URL. Once authentication succeeds and authorization is granted, the Web container
automatically redirects the browser to the originally requested HTTP resource, complete with its
original HTTP headers. If this authentication fails, the browser will be redirected to the HTTP
resource defined in the <form-error-page> element. When using form-based authentication, your
form must use the j_username and j_password form element names to identify the username and
password attributes to the container. The form’s action attribute must be set to j_security_check,
as shown here. These form element and action names are required by the Java Servlet specification.

<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password">
<input type="submit" name="Login">

</form>

488

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 489

Chapter 11: Using WebLogic Security

CLIENT-CERT If you are using two-way SSL between the browser and the server, you can
choose client certificate–based authentication. This option requires not only two-way SSL con-
nections but also the use of an appropriate identity asserter to map the certificate to a WebLogic
Server username, as we discussed at length in earlier sections of this chapter. To specify client
certificate–based authentication, simply replace FORM with CLIENT-CERT in the <auth-method>
element. When using this type of authentication, the <form-login-config> and <realm-name>
elements may be omitted.

Also, specify the <auth-method> as CLIENT-CERT if users authenticate to the application using SSO
of any token type including Microsoft Desktop SSO, SAML Web SSO, or any other custom token
type.

It is important to remember that with any of these authentication options, the container will not authen-
ticate the user until the browser tries to access a protected URL. Though this seems intuitive with either
basic or form-based authentication, it also applies to client certificate–based authentication. This means
that even though the SSL handshake is complete and the client certificate is available to the server,
WebLogic Server will not invoke the identity asserter until you try to access a protected resource.

Because the security realm is defined at the domain level, all web applications on the server use the
same authentication realm. By default, WebLogic Server uses the same cookie name (JSESSIONID) for
all web applications on the server. That way, no matter what type of authentication method is used in a
particular web application, an authenticated user will have single sign-on to all other web applications
in the WebLogic Server. You can modify this behavior by changing the cookie path or cookie name for
specific web applications. The following extract from the weblogic.xml deployment descriptor shows
how to modify the cookie name. To modify the cookie path instead, simply change the element from
<cookie-name> to <cookie-path>.

<session-descriptor>
<cookie-name>ApplicationSpecificCookie</cookie-name>

<session-descriptor>

Now that you have set up the authentication mechanism, you are ready to set up the access control
policies and roles for the web application. The policies themselves are specified exclusively in the web.xml
deployment descriptor within the <security-constraint> element, as shown here.

<security-constraint>
<web-resource-collection>
<web-resource-name>SecureArea</web-resource-name>
<description>Our Secure Area</description>
<url-pattern>/secure/*</url-pattern>
<! — - no http-method elements specified -->

</web-resource-collection>
<auth-constraint>
<description>Constraints for secure area</description>
<role-name>manager</role-name>
<role-name>security-admin</role-name>

</auth-constraint>
<user-data-constraint>
<description>SSL is not required</description>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>

489

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 490

Chapter 11: Using WebLogic Security

As the bold highlighting shows, all requests for any URL matching the pattern /secure/* relative to the
root context of this web application will be protected. Even though the specification allows the further
restriction of the <web-resource-collection> with <http-method> elements, it’s best not to define any
methods here. If no methods are specified, all are protected. If some methods are specified, those not
specified are not protected — a security vulnerability that has been publicly exploited.

Best Practice
Don’t specify an <http-method> when restricting resources. This makes all methods
protected. If any methods are specified, any other HTTP methods not specified will be
unprotected — a security vulnerability that has been publicly exploited.

We have restricted access to these resources so that only users in the role manager or security-admin
can access them, but we are not requiring the use of SSL transport for access. Setting the
<transport-guarantee> to CONFIDENTIAL or INTEGRAL would further restrict access to only
those users in one of the specified roles who are using SSL to access the page. For WebLogic Server to
grant access to a resource that has set <transport-guarantee> to CONFIDENTIAL or INTEGRAL, the SSL
connection must terminate at WebLogic Server. If there is a proxy such as a web server or hardware load
balancer in front of WebLogic Server that terminates the SSL connection, the request does not meet the
requirement of <transport-guarantee>, and the request is denied.

Another situation that requires the SSL request to be terminated at WebLogic Server to work properly
is secure cookies. In order to prevent session stealing, an application can be configured to use one of two
protection schemes available in WebLogic Server. The first is to configure the JSESSIONID cookie as a
secure cookie. Secure cookie in this context means that the cookie is marked as secure before it is returned
to the browser. The browser will only send the cookie back to the server in subsequent requests that are
made over SSL. This feature can be enabled in the weblogic.xml using the <cookie-secure> element
shown here.

<session-descriptor>
<cookie-secure>true</cookie-secure>

</session-descriptor>

WebLogic Server has an enhanced secure cookie scheme that uses a secure cookie called the AuthCookie.
The actual cookie name is _WL_AUTHCOOKIE_JSESSIONID. When the user authenticates over HTTPS,
WebLogic Server sends this secure cookie back along with the JSESSIONID cookie. Even if the JSESSIONID
is not marked as secure, the AuthCookie is and will only work with the JSESSIONID that was established
at authentication time. This means that all resources that are accessed over SSL check that the JSESSIONID
value in the AuthCookie is the same as the JSESSIONID cookie passed from the browser. This ensures that
the JSESSIONID cookie is valid. WebLogic Server enables this feature by default and stores the configura-
tion setting in the config.xml file.

<WebServer Name="AdminServer" AuthCookieEnabled="true">

If there is a proxy (such as a web server or hardware load balancer) in front of WebLogic Server that
terminates the SSL connection, the request does not satisfy the requirement of coming from an SSL con-
nection. Requests between the proxy and WebLogic Server that come over an HTTP connection will not
meet the CONFIDENTIAL or INTEGRAL <transport-guarantee> so WebLogic Server will deny access. If
the application uses <cookie-secure>, WebLogic Server will not return the JSESSIONID cookie and the
enhanced session stealing prevention provided by the AuthCookie will not work.

490

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 491

Chapter 11: Using WebLogic Security

If you require these features in conjunction with a proxy-based architecture, you must configure the
proxy to connect to WebLogic Server over SSL. Please refer to Link 11-14 for details on how to configure
the WebLogic Server web server plug-ins to use SSL.

The SSL connection must terminate at the WebLogic Server in order for the server
to consider the request to be over SSL. If an intermediary such as a web server or
hardware load balancer terminates the SSL connection and the request from the
intermediary to WebLogic Server is not over SSL, CONFIDENTIAL and INTEGRAL
<transport-guarantees>, <cookie-secure>, and AuthCookie functionality will not
work.

Now that we have the security constraints defined, you need to declare the roles used in the
<auth-constraint> elements, using the <security-role> elements.

<security-role>
<description>the managers role</description>
<role-name>manager</role-name>

</security-role>
<security-role>

<description>the security-admin role</description>
<role-name>security-admin</role-name>

</security-role>

If we stopped here, WebLogic Server would try to map these roles to principals, either users or groups,
with the same name, as defined in the active security realm’s authentication provider. In most cases, you
don’t actually want this, so you need to define the mapping from these roles to actual principals defined
in the WebLogic Server security realm.

To map these roles to principals in the underlying security realm, you use the <security-role-
assignment> element in the weblogic.xml deployment descriptor. As our example here shows, we are
mapping the manager role to the Administrators group and the security-admin role to three unique
users: phil, robert, and paul.

<security-role-assignment>
<role-name>manager</role-name>
<principal-name>Administrators</principal-name>

</security-role-assignment>
<security-role-assignment>

<role-name>security-admin</role-name>
<principal-name>phil</principal-name>
<principal-name>robert</principal-name>
<principal-name>paul</principal-name>

</security-role-assignment>

We should point out that changing these role mappings in the weblogic.xml deployment descrip-
tor requires that you redeploy the application for the changes to take effect. In most cases, you will
want to map roles to groups defined in the underlying realm so that you can dynamically change who
has access to your protected resources by simply changing the group membership in the underlying
security realm.

491

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 492

Chapter 11: Using WebLogic Security

Best Practice
Always explicitly specify the mapping of your deployment descriptor roles to princi-
pals in the underlying security realm. In most cases, you will want to map these roles
to groups, rather than users, to allow you to change dynamically who has access to
protected resources without redeploying the application.

Web applications also support the ability to run the application always as a specific principal, regardless
of any authentication that may have occurred. This is an alternative to the authentication and protection
mechanisms already discussed. To configure your web application to run as a specific principal, you first
need to specify the role using the <run-as> element in the web.xml deployment descriptor, as shown
here. This declaration will tell the container to run the web application always as the AppAdmin role.

<run-as>AppAdmin</run-as>

Next, we want to specify the mapping of the role to a specific principal in the underlying security realm.
The best way to do this is to use the <run-as-role-assignment> element in the weblogic.xml deploy-
ment descriptor, as shown here.

<run-as-role-assignment>
<role-name>AppAdmin</role-name>
<run-as-principal-name>lauren</run-as-principal-name>

</run-as-role-assignment>

This mapping applies for the entire web application. If you don’t define the <run-as-role-assignment>
for a given role, the container will choose the first principal name defined for that role in the
<security-role-assignment> stanza.

It is also possible to scope the <run-as> configuration to a specific servlet in the web application. This
servlet-scoped <run-as-principal-name> configuration overrides the more general one specified using
the <run-as-role-assignment> stanza. In this example, we will always run the SampleServletName
servlet as the user hugh in the underlying realm.

<servlet-descriptor>
<servlet-name>SampleServletName</servlet-name>
<run-as-principal-name>hugh</run-as-principal-name>
...

</servlet-descriptor>

If needed, you can use programmatic security checking in the business logic of your web applications.
Though we won’t bother to go through all of the servlet security–related APIs, one interesting method to
point out is the isUserInRole() method.

boolean isUserInManagerRole = request.isUserInRole("manager")

Using this method, you can test whether the current user should get certain types of options or data. By
defining this role and mapping it to one or more principals in the web application deployment descrip-
tors, the application code can do fine-grained security checks without sacrificing the level of indirection
that role mapping gives you.

492

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 493

Chapter 11: Using WebLogic Security

Just to be complete, there is another way to restrict what a web application can do by using JAAS autho-
rization policies. As discussed previously, JAAS authorization typically uses a policy file to store its
authorization policies. This policy file specifies a set of Java runtime permissions based on where the
code originated. Because that file doesn’t know where the deployed web application will exist on the
server’s filesystem, the CodeBase cannot be statically defined. As a result, you cannot define a JAAS
authorization policy for web applications in the server-wide weblogic.policy file. To get around this
limitation, WebLogic Server allows you to define a JAAS authorization policy for a web application in
the weblogic.xml deployment descriptor. This example shows how to restrict the web application’s
java.net.SocketPermission to allow it to connect only to the Oracle web site.

<security-permission>
<description> Connect permission to Oracle Web site</description>
<security-permission-spec>
grant {

permission java.net.SocketPermission
"www.oracle.com:80", "connect"

};
</security-permission-spec>

<security-permission>

As we alluded to earlier, most applications running on a server are audited by other means to make sure
that they are not doing something they shouldn’t. The runtime overhead of JAAS authorization is high so
we recommend very careful consideration and performance testing before going too far down this path.

JAAS authorization provides very fine-grained, system-level control of Java runtime
resources. This system-level control comes at a high price in runtime overhead.
Always prototype and performance test any application making use of JAAS
authorization before committing to that approach.

Managing EJB Security
To set up an access control policy in an EJB, you use the <security-role> and <method-permission>
elements of the ejb-jar.xml deployment descriptor. In the following example, we restrict access to the
AdvertiseProduct EJB’s getResults() method to users in either the manager or ejb-admin roles.

<assembly-descriptor>
<security-role>
<role-name>manager</role-name>
<role-name>ejb-admin</role-name> </security-role>

<method-permission>
<role-name>manager</role-name>
<role-name>ejb-admin</role-name>
<method>

<ejb-name>AdvertiseProduct</ejb-name>
<method-name>getResults</method-name>

</method>
</method-permission>

...
</assembly-descriptor>

493

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 494

Chapter 11: Using WebLogic Security

EJB 3.0 also allows for declaration of EJB security constraints through annotations found in the
javax.annotations.security package. The same example could be implemented using annotations.

import javax.annotations.security.*;
@Stateless(name="AdvertiseProduct")
@DeclaredRoles(value={"manager","ejb-admin"})
public class AdvertiseProduct
{

@RolesAllowed(value={"manager","ejb-admin"})
public Results getResults()
{

...
}

EJBs also support the concept of role mapping. Similar to web applications, the application
server–specific deployment descriptor, weblogic-ejb-jar.xml, contains the actual mapping data.
The following example maps the manager role to both the Administrators group and the user
someadminuser. Additionally, you can use the <externally-defined> element to force a role to be
defined in the role mapping security provider.

<security-role-assignment>
<role-name>manager</role-name>
<principal-name>Administrators</principal-name>
<principal-name>someadminuser</principal-name>

</security-role-assignment>
<security-role-assignment>

<role-name>ejb-admin</role-name>
<externally-defined/>

</security-role-assignment>

As you might expect, EJBs also support the ability to run as a specific principal. Similar to web applica-
tions, we start by specifying the <run-as> role in the ejb-jar.xml, as shown in the following example
where we set the <run-as> role to EJBAppAdmin.

<security-identity>
<run-as>EJBAppAdmin</run-as>

</security-identity>

Now, we map the specified <run-as> role to a specific principal using the <run-as-role-assignment>
tag in the weblogic-ejb-jar.xml deployment descriptor. Here, we map the EJBAppAdmin role to the
user bob.

<weblogic-ejb-jar>
...
<run-as-role-assignment>
<role-name>EJBAppAdmin</role-name>
<run-as-principal-name>bob</run-as-principal-name>

</run-as-role-assignment>
</weblogic-ejb-jar>

We can also scope the <run-as> configuration to a specific EJB within the jar file, as shown in the
code that follows, where we map the <run-as> role to the user jason for the BandEJB. As before, this

494

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 495

Chapter 11: Using WebLogic Security

EJB-scoped <run-as-principal-name> configuration overrides the more general one. If there is no
<run-as-principal-name> element specified in either place, the container will match the <run-as> role
to the first principal listed in the normal role mapping elements.

<weblogic-enterprise-bean>
<ejb-name>BandEJB</ejb-name>
...
<run-as-principal-name>jason</run-as-principal-name>

</weblogic-enterprise-bean>

You can use programmatic security checking in the business logic of an EJB. This can allow for busi-
ness logic with very specific requirements to test whether the current user should get certain types of
information. To get the currently authenticated user, use the getCallerPrincipal() method:

Principal currentUser = ejbContext.getCallerPrincipal();

To check whether the currently authenticated user has a specific role, use the isCallerInRole() method:

boolean isUserInRole = ejbContext.isCallerInRole("manager");

WebLogic EJBs also support using JAAS authorization policies in the weblogic-ejb-jar.xml
deployment descriptor to restrict the system-level resources an EJB can use. To do this, you
use the <security-permission> element, whose syntax is exactly the same as that of the
<security-permission> element in the weblogic.xml deployment descriptor entry. For the
same reasons, we caution you against trying to use JAAS authorization without first proving to yourself
that the benefits are worth the costs.

Securing J2EE CA Resource Adapters
J2EE Connector Architecture (J2EE CA) resource adapters access the resources of the container in the
context of an identity. This behavior is configured in the <security> element of the weblogic-ra.xml.
WebLogic Server provides the ability to the specify different identities for different aspects of the J2EE CA
life cycle:

1. An identity used when making connections (<run-as-principal>)

2. An identity for launching work instances (<run-work-as-principal>)

3. An identity for management operations such as startup and shutdown
(<manage-as-principal>)

A resource adapter can also specify a default identity to use (<default-principal-name>) if you don’t
specify the identity for a particular phase.

WebLogic Server also manages credential mappings for outbound resource adapters. A credential map-
ping allows the resource adapter to define the credentials that specific users and groups in WebLogic
Server should use when accessing the target system. You configure these credential maps at the connec-
tion factory or global level. Through the WebLogic Console, you can define credential mappings using
the Credential Mappings Security tab of a deployed resource adapter. WebLogic Server stores the
mappings for the resource adapter in the security store.

495

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 496

Chapter 11: Using WebLogic Security

Securing Enterprise Applications
One problem with defining roles in the web application and EJB components is that you may need to
define them in multiple places. Enterprise applications can define roles that apply to all of their contain-
ing components in their application.xml deployment descriptor. This allows application-scoped role
definitions using the same techniques as web applications and EJBs.

For enterprise applications, weblogic-application.xml is the WebLogic Server–specific deployment
descriptor used to define application-scoped configuration information. This descriptor provides the
ability to map roles in the application.xml to principals (users or groups). This is done with the
<security-role-assignment> element inside of the <security> element. This eliminates the need to
map application-level roles in component-level deployment descriptors.

Setting Up WebLogic Server Application Security
This section begins with a very brief discussion of how to create and manage WebLogic Server users
and groups because every application that uses application-level security will need to do this. Next, we
talk about roles, both application-scoped and global. From there, we explain setting up access control on
specific server resources and then forming a set of policies. We end this section with a brief explanation
of how to set up single sign-on across WebLogic Server domains.

Managing Users and Groups
If you are using the default configuration — which uses WebLogic Server’s embedded LDAP server as
the security store — you can manage users and groups using the WebLogic Console. By selecting the
Security Realms folder in the left navigation bar and clicking on the myrealm provider, you will see
the Users and Groups tab. Selecting the Users or Groups subtab displays pages that allow you to add,
delete, modify, and view different users or groups in the domain. Each user and group must be uniquely
identifiable in a WebLogic Server domain. Because users and groups are identified only by their names
and a WebLogic Server principal can refer to either a group or user, every user and group must have a
unique name.

Before moving on, we should mention WebLogic Server’s User Lockout feature. By default, a user has
five attempts to enter the correct password before being locked out of the server. You can adjust the user
lockout characteristics using the active security realm’s User Lockout Configuration tab. Anyone with
the Admin role can unlock the user prior to the timeout. To unlock a locked out user, use the domain’s
Unlock User Security tab, enter the username in the Unlock User field, and click the Save button.

WebLogic Server has a special type of group that cannot be managed through the WebLogic Server
console called a runtime group. There are two of these groups. WebLogic Server adds a caller to the
users group after they successfully authenticate. All callers, authenticated and not, belong to the
everyone group. Later on in the section, you see how WebLogic Server uses these groups to define some
of the default global roles.

Resources
A resource in WebLogic Server is anything that a subject is attempting to gain access to or perform an
action on. The following are some common resource types:

❑ Administrative Resources — file uploading, viewing domain logs, unlocking users

❑ Application Resources — access to a standalone deployment (EAR or standalone deployment of
an WAR, RAR or EJB JAR)

496

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 497

Chapter 11: Using WebLogic Security

❑ EIS Resources — connect to the resource adapter

❑ EJB Resource — invoke methods on EJBs

❑ JDBC Resource — connect to the JDBC data source

❑ JMS Resource — produce/consume messages to/from a JMS Destination

❑ JNDI Resource — modify, lookup, list elements in the JNDI tree

❑ Server Resource — boot, shutdown, suspend, or resume a server

❑ URL Resource — access a URL

❑ Web Service Resource — access a web service module or operation

Resources are hierarchical. When WebLogic Server evaluates if a user has access to a resource, the user
must have access to all of the objects in the hierarchy. For example, when accessing a web service that
uses an EJB implementation, the user needs access to the application, the web service module, the web
service operation, and the EJB method.

Working with Roles and Policies
WebLogic Server has the concept of global roles and root-level policies. Global roles, like Admin,
Anonymous, Operator, and Monitor, are available in the entire domain. Root-level policies define the
default access for each resource type. Additionally, WebLogic Server defines roles and policies for
individual resources. To view the security realm’s roles and policies, select the Roles and Policies tab.
The Realm Roles subtab allows you to manage both the global roles and resource-specific roles for any
resources in the domain. The Realm Policies subtab allows you to manage the root-level policies.

Table 11-8 explains the default roles and group mappings.

Each default administrative role has a mapping to a specific default group. If users are a member of that
group, they are in the matching role. As you can see, the default role names are all singular whereas the
default group names are plural. This is done solely to make it easier to differentiate which names are
roles and which names are groups.

Best Practice
Keeping role names singular and group names plural will help make security discus-
sions involving roles and groups less confusing.

You can also manage roles and policies for a resource outside of the security realm by selecting the
resource’s Security tab. A role or policy is created based on predicates. Predicates can include informa-
tion about the user (username, group, role), environment (server is in development mode, time of day,
day of the month), or about the context (values in the request, message signatures). The context that is
available depends on the resource being accessed. For a URL resource, the context includes HTTP head-
ers. For EJB resources, the context includes the EJB method parameters. You can use these predicates to
form very simple roles and policies (people in the Managers group are assigned the Manager role) or very
complex ones (if the server is in development mode then grant everyone access, or if it is after 5 pm only
people in the Manager role can have access unless the context value priority = "Urgent"). All of these
roles and policies are stored inside of the security store by the XACMLRoleMapper and XACMLAuthorizer
providers.

497

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 498

Chapter 11: Using WebLogic Security

Table 11-8: Default Roles and Groups

Default Global Roles Access Policy Default Groups

Admin All access to the console. This means
deploying applications, startup and
shutdown classes, web services, and J2EE
connectors. It can also modify server
configuration and edit deployment
descriptors.

Administrators

AdminChannelUser Access the administrative channel,
AdminChannel.

AdminChannelUsers,
Administrators,
Deployers, Operators,
Monitors, and AppTesters

Anonymous everyone

AppTester Access applications for testing purposes
that are running in Admin mode.

AppTesters

CrossDomainConnector Make inter-domain calls to foreign
domains

CrossDomainConnectors

Deployer May deploy applications, startup and
shutdown classes, web services, and J2EE
connectors. It may view the server
configuration.

Deployers

Operator Start, stop, and resume servers. It may
view the server configuration (except for
encrypted attributes).

Operators

Monitor View the server configuration. Monitors

No Matching Role Any authenticated user. users

The WebLogic Console will not allow you to create scoped roles and policies for URL and EJB resources
if the application security model does not allow it. If the security model is anything other than DD Only,
WebLogic Server uses resource-scoped roles. The security model must be Custom Roles and Policies or
Advanced to use resource-scoped policies.

Table 11-9 explains the default roles and group mappings.

Now that you know how to define both global and scoped roles and access control policies using both
the WebLogic Console and Java EE deployment descriptors, you need to understand the persistence
of this information. For deployment descriptors, it’s easy to see that the persistence mechanism is the
deployment descriptor itself. For Custom Roles and Custom Roles and Policies, WebLogic Server stores
them in the default security provider’s store.

498

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 499

Chapter 11: Using WebLogic Security

Table 11-9: Default Policy

WebLogic Resource Default Security Policy

Administrative resources Roles: Admin, Deployer, Operator, Monitor

Server resources Roles: Admin, Operator

COM resources None

EIS resources Group: everyone

EJB resources Group: everyone

JMS resources Group: everyone

JDBC resources Group: everyone

JNDI resources Group: everyone

MBean resources Group: everyone

Web service resources Group: everyone

In the Advanced mode, administrators can control the loading of roles and policies from the deploy-
ment descriptor. This is useful when initially installing an application and you want to load the poli-
cies from the deployment descriptors into the realm but then manage them from the WebLogic Con-
sole. To do this, first configure the realm in Advanced mode, with Check Roles and Policies set to
All Web applications and EJBs, and then toggle Initialize/Ignore roles and policies from DD to
Initialize. When the application is deployed, all of the information will be copied to the provider.
Next, toggle Initialize/Ignore roles and policies from DD to Ignore, and then modify the policies
via the WebLogic Console.

Another use for Advanced mode is to combine policies from the deployment descriptors and the
WebLogic Console. To do this, set the Initialize roles and policies from DD setting in the Advanced
mode. Then, configure two authorization providers but only one with Policy Deployment Enabled.
Once you have this set up, you can control how WebLogic Server combines the results via the
DefaultAdjudicator. Checking Require Unanimous Permit means that the user must be granted access
to the resource in the deployment descriptor and in the policies inside of WebLogic Server. Unchecking
Require Unanimous Permit allows users access if either the deployment descriptor or the WebLogic
Server policies apply.

If you are not careful, the complexity of the merging and storing of role and policy definitions can get you
into trouble. We recommend that you come up with a simple plan that specifies where the role mapping
and policy information will live and stick to it.

Best Practice
Define a simple set of guidelines for where you will define the roles and policies your
application needs and then stick to them to reduce confusion resulting from WebLogic
Server’s complex merging policies.

499

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 500

Chapter 11: Using WebLogic Security

To summarize, you have four different ways to restrict access to Web applications and EJBs:

Use only the Java EE Deployment Descriptors (DD Only) At deployment time, WebLogic Server
reads the role and policy information from the deployment descriptor and uses it throughout
the life of the application. Using this option, you define users and groups in the authentication
provider but define the roles, policies, and the mapping of roles to principals using Java EE
deployment descriptors or annotations. If you need to modify the access control information at
runtime, you typically do this by modifying the group membership of one or more groups that
are mapped to the relevant roles in the deployment descriptors. In WebLogic Server, the default
configuration uses roles and enforces policies only for web applications and EJBs that define roles
and policies in their deployment descriptors or annotations.

Configure the Policies in the Deployment Descriptors but Configure the Role-to-Principal
Mapping in the WebLogic Console (DD Only or Custom Roles) With this second option,
you use the ejb-jar.xml or web.xml to set up the access control policy for specific roles. Then,
you have two options for mapping the roles. First, you can the DD Only security model and
<externally-defined/> roles in the WebLogic Server–specific deployment descriptors to map the
application-defined roles to a global role. Second, you can use the Custom Roles security model to
define roles via the WebLogic Console and map them to the application-defined roles.

Use only the WebLogic Console (Custom Roles and Policies) When using Custom Roles and
Policies, you define all of the access control information using the WebLogic Console. To prevent
accidentally picking up any deployment descriptor information that might be present, you should
change the default setting on the realm. To do this for WebLogic Server, set the active realm’s
Security Model Default attribute to Custom Roles and Policies.

Seed the Roles and Access Control Policies with Values from the Deployment Descriptors and
Then Use the WebLogic Console to Modify them from That Point Forward (Advanced) Use
the Advanced security model to bootstrap the WebLogic Server security providers with roles and
policies that the application deployment descriptors define. Use the Advanced area of the active
realm’s General Configuration tab to set Check Roles and Policies to All Web Applications and
EJBs and make sure that When Deploying Web Applications or EJBs is set to Initialize roles
and policies from DD. Deploy the application and then set When Deploying Web Applications or
EJBs to Ignore roles and policies from the DD. From that point on, you use the WebLogic Con-
sole to manage all of the access control information, just like with Custom Roles and Policies.

Booting WebLogic Server
When you start a WebLogic Server, it needs a username and password for a user in the Admin role.
Because this username and password will authenticate a user in the Admin role, it is vital to keep this
information as secret as possible. There are several different ways to make the username and password
available to the server for booting.

The preferred way to provide the username and password is to use the boot.properties file, stored
in the server’s security subdirectory. This file contains the boot identity in an encrypted form. Both the
username and password are encrypted. If you set the weblogic.system.StoreBootIdentity Java system
property to true, the server will use the supplied boot information to create the file for you. The easiest
way to create the file, however, is simply to create a two-line text file that looks like the one shown here
for a server using the weblogic username with a password of weblogic1:

username=weblogic
password=weblogic1

500

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 501

Chapter 11: Using WebLogic Security

The WebLogic Configuration Wizard will automatically create this file for you when creating a new
domain that uses development mode. For more information about development mode, see Link 11-15.

After creating this file manually, simply start the server once and it will encrypt the values of the
username and password. If you want to rename the file to something less obvious, you can use the
weblogic.system.BootIdentityFile Java system property to specify the name of the boot.properties
file. Finally, you can tell the server to delete the file after it uses it. You might use this in conjunction
with a shell script that copies the file from a secure location to the local directory just prior to starting
the server. Setting the weblogic.system.RemoveBootIdentity Java system property to true will tell the
server to delete the file:

java -Dweblogic.system.RemoveBootIdentity=true ...

Best Practice
Use the boot.properties file mechanism to specify the server’s boot identity on
startup.

Another simplified technique is to specify nothing on the command line. This will cause the server to
prompt for a username and password in the shell. This may be acceptable for development purposes, but
it has an obvious drawback for production systems where you do not want to rely on human intervention
to start the server. You can also provide the username and password through Java system properties
specified either as command-line arguments, as shown here, or programmatically using a Java program
that wraps the call to weblogic.Server.main():

java -Dweblogic.management.username=someuser
-Dweblogic.management.password=password ... weblogic.Server

Of course, this is not an elegant solution for a production system either because the command-line argu-
ments may be seen by users having access to the operating system — for example, by using the UNIX ps
command to list the processes running on the machine. We do not recommend specifying the password
via command-line arguments.

Single Sign-On
WebLogic Server has rich capabilities when it comes to identity propagation; that is, passing identity
from one security domain to another. This type of identity propagation is often referred to as single sign-
on (SSO). This section starts by covering WebLogic Server’s uses of SAML for both web services and web
SSO. It continues by looking at two additional SSO models: the WebLogic Server–specific capabilities
around Cross Domain Security and WebLogic Server SSO with Microsoft Windows desktops. We con-
clude this section with a brief discussion of how you can extend WebLogic Server to achieve SSO using
other protocols by creating custom security providers.

Security Assertion Markup Language (SAML)
WebLogic Server makes extensive use of SAML. This section begins with a brief overview of SAML. Next,
it describes how the security framework provides the core building blocks for all of the SAML services

501

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 502

Chapter 11: Using WebLogic Security

on WebLogic Server. Finally, it ends by describing how WebLogic Server uses those building blocks to
provide Web SSO and support for using SAML to pass the user’s identity in a SOAP message.

Overview of SAML
SAML is a standard way of conveying identity on the Internet. The core concept of SAML is that it passes
security information between security domains using assertions. Parties make assertions; for example,
Server 1 asserts that User X authenticated at 10:00 AM using an X.509 certificate. Another party (known
as the relying party) gets the assertion. The relying party cannot 100% validate the assertion — How do
I really know that User X authenticated at 10:00 AM? The relying party has to trust the asserting party.
SAML defines a set of profiles. These profiles are mechanisms for asserting and relying parties to exchange
information in different situations in such a way that the relying party can decide whether to trust the
asserting party or not.

WebLogic Server uses SAML in two scenarios: web SSO and web services security. SAML is a very useful
standard in both of these scenarios because it allows systems to assert and trust users’ identities without
having the user’s credentials. This is especially useful in scenarios where the producer and the consumer
of a service are in different security domains (for example, a company portal calling an outsourced bene-
fits provider service). In this model, it is beneficial to both parties not to have to synchronize usernames
and passwords. It is simpler if the partner can just grant the user access to their service because they
received a SAML assertion from Company A that says this user is employee 12345.

SAML is not a replacement for PKI and X.509 certificates. In fact, much of the true trust of SAML relies
upon digitally signing SAML assertions and other SAML messages. One benefit of SAML over issuing
individual users X.509 certificates is that managing a large PKI can be very challenging. SAML does not
require certificates for users; it only requires them for the asserting and relying parties. This is typically
a much smaller number than the number of actual users. The other advantage is that SAML assertions
support arbitrary attribute statements. This means that when issuing an assertion the asserting party
can add unlimited additional information about the user. WebLogic Server uses attribute statements
to convey the groups to which the user belongs. Certificates are much less flexible when it comes to
attributes.

SAML Security Providers
WebLogic Server supports both SAML 1.1 and SAML 2.0. This section focuses on the SAML 2.0. The
configuration of SAML 1.1 in WebLogic Server is very similar, and the core concepts we cover in this
section are also applicable to the SAML 1.1 providers.

The core of SAML is the production and consumption of SAML assertions. As previously discussed in
this chapter, WebLogic Server supports both producting and consuming SAML assertions through the
security framework. WebLogic Server uses the SAML credential mapper to generate a SAML assertion
for a user, whereas the SAML identity asserter can consume (validate and parse) a SAML assertion. The
SAML authentication provider works in concert with the SAML identity asserter to support advanced
federated identity use cases.

Like other credential mappers, you create the SAML2CredentialMapper using the active security
realm’s Credential Mapping Providers tab. Make sure to create a SAML2CredentialMapper and not a
SAMLCredentialMapper (a SAML 1.1 provider introduced in WebLogic Server 9.0 and since deprecated)
or a SAMLCredentialMapperv2 (a SAML 1.1 provider introduced in WebLogic Server 9.2). Once you
create the provider, you should configure some of the provider-specific attributes. The Issuer URI is the
name of the party creating these assertions for the user — for example, http://saml.oracle.com. Use

502

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 503

Chapter 11: Using WebLogic Security

the Name Qualifier attribute to disambiguate users from the same issuer (for example, employees or
customers), if needed. SAML assertions are only valid for a certain period of time. Set this value using
the Default Time to Live attribute. While the two-minute default setting is reasonable, SAML assertions
for long-running asynchronous SOAP requests may require a longer timeout value. This value is only
the default. Individual partners may override this value with their own timeout value. If you are using
this SAML credential mapper for web services where the SAML assertions will be signed, you will also
need to provide the alias and passphrase for the signing key. We cover the specifics of how to configure
the signing key for SAML assertions used in web SSO later in this section.

Like other identity asserters, you create the SAML2IdentityAsserter using the active security
realm’s Authentication Providers tab. Make sure to create a SAML2IdentityAsserter and not
SAMLIdentityAsserter (a SAML 1.1 provider introduced in WebLogic Server 9.0 and since dep-
recated) or a SAMLIdentityAsserterV2 (a SAML 1.1 provider introduced in WebLogic Server 9.2).
Once you create the provider, there isn’t much else to do. The SAML2IdentityAsserter and the
SAML2CredentialMapper support the configuration of a custom name mapper class. The default name
mapper uses the JAAS principal name, but it’s conceivable that you might want to use other names (for
example, the subject’s email address). Also, you can configure name mappers on a per-partner basis.

Both the SAML2CredentialMapper and SAML2IdentityAsserter define a set of default values for the
realm. You can override these values for individual partners. For a SAML2CredentialMapper, Service
Provider Partners are relying parties; the entities that will consume the SAML assertions generated
by the credential mapper. For a SAML2IdentityAsserter, Identity Provider Partners are asserting
parties; entities that will generate the SAML assertions consumed by the identity asserter. You manage
the definitions for Service Provider Partners and Identity Provider Partners on the Management
tab of each of the providers. Both Identity Provider Partners and Service Provider Partners are
further specialized for web SSO and web services. Later in this section, we cover the details of configuring
partners while discussing web SSO and web services security configuration.

In addition to managing partners through the WebLogic Console, partners are manageable through
JMX/WLST. One notable difference between partners and security providers is that WebLogic
Server picks up partner changes in real time without requiring a server restart. Making changes to
security providers almost always requires a restart. Consequently, you manage partners through the
ServerRuntime MBean. The following WLST script demonstrates how to enable all the partners for a
SAML2CredentialMapper.

connect(’weblogic’, ‘weblogic1’, ‘t3://127.0.0.1:7001’)
cd(’serverRuntime:/ServerServices/RuntimeService/DomainConfiguration’)
cd(domainName)
cd(’SecurityConfiguration’)
cd(domainName)
cd(’DefaultRealm/myrealm/CredentialMappers/SAML2CM’)
partners_cursor = cmo.listSPPartners(’*’, 10)
while cmo.haveCurrent(partners_cursor):

partnerName = cmo.getCurrentName(partners_cursor)
cmo.advance(partners_cursor)
partner = cmo.getSPPartner(partnerName)
print partnerName
print partner.isEnabled()
partner.setEnabled(true)
cmo.updateSPPartner(partner)

cmo.close(partners_cursor)
disconnect()

503

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 504

Chapter 11: Using WebLogic Security

WebLogic Server also provides a SAML authenticator. The SAML authenticator is a special type of
authenticator that works in conjunction with the SAML identity asserter to provide some SAML-specific
capabilities. Most notably, the SAML authenticator enables support for virtual users. Virtual users are
users that do not exist in any of the locally configured authentication providers. This is a very com-
mon case in federated environments. The SAML authenticator will also create groups using any group
attribute statements defined in the SAML assertion.

Configuring Federation Services
Once you create either a SAML2CredentialMapper or SAML2IdentityAsserter, you can specify additional
information describing the SAML 2.0 service(s) running on WebLogic Server. You do this using the
server’s Federation Services Configuration tab and selecting the SAML 2.0 General subtab. Notice
that you configure the federation services on a per-server, rather than a per-domain or per-cluster, basis.

Best Practice
Configure federation services on the managed servers in the cluster — not on the admin
server. Configure all of them identically. If the SAML services are running on more than
one instance, using the RDBMS security store is highly recommended. Upgrading from
an LDAP security store to an RDBMS security store is difficult, so consider upfront if
the domain is going to use SAML Federation Services.

This information configured in the SAML 2.0 General subtab is common across all of the SAML 2.0 ser-
vices running on the server. This information includes contact information so that partners can contact
the appropriate people if they are having problems. In the Site Info section, there are two attributes that
bear some special mention. The Published Site URL is the base URL for federation services on the server.
This should be a public URL for the server or cluster. Typically, a server publishes the service at the rel-
ative URL /saml2 so the value of this attribute might be something like http://www.bigrez.com/saml2.
The other attribute of note is the Entity Id. It uniquely identifies this server to partners. All SAML cre-
dential mappers should use the value of this attribute as their entity id. The rest of the attributes specify
additional security measures required for partners’ communication: authentication requirements, artifact
and document signing restrictions, and associated configuration.

Tip to Remember
The myriad of security options for SAML 2.0 can provide very detailed security control
over access to the service, but with each additional option, there is more work and
complexity for partners — which could affect integration and adoption. Keep that in
mind when configuring these settings.

Once you configure the SAML 2.0 General settings, you configure the SAML 2.0 Identity Provider or
Service Provider services. This section describes how to configure those services. Later on in the section,
we will discuss how to manage the definitions of Web Single Sign-On Identity Provider Partners and
Web Single Sign-On Service Provider Partners. The partners are the users of the federation services. A
Web Single Sign-On Identity Provider Partner represents the metadata of a server accessing WebLogic
Server’s SAML 2.0 Service Provider. Likewise, a Web Single Sign-On Service Provider Partner defines

504

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 505

Chapter 11: Using WebLogic Security

the SAML 2.0 Identity Provider’s behavior when interacting with another server. Table 11-10 explains
the relationship among the federation service, security provider, and partner objects.

Table 11-10: Default Policy

Federation Service Security Provider Used Partner Definitions Managed

SAML 2.0 Service Provider SAML2IdentityAsserter Single Sign-On Identity Provider Partner

SAML 2.0 Identity Provider SAML2CredentialMapper Single Sign-On Service Provider Partner

A SAML 2.0 Identity Provider uses the SAML2CredentialMapper to generate the actual SAML assertions.
The role of the SAML 2.0 Identity Provider is to gather the user’s credentials, generate the SAML asser-
tion, and communicate with the relying party — the service provider — about the assertion over one or
more of three possible bindings. The SAML 2.0 specification goes into gory detail to define three differ-
ent bindings: artifact, redirect, and post. In summary, redirect and post are front-channel methods
where the identity provider passes the SAML assertion to the service provider via the user’s browser.
artifact is a back-channel binding. When the service provider receives an artifact — a unique identifier
for the assertion — it uses SOAP to communicate with the identity provider to retrieve the assertion.

By default, when the identity provider challenges the user for credentials, WebLogic Server uses HTTP
basic authentication. Configuring the identity provider to present the user with a custom HTML form is
also an option. To use a custom form, you must configure two parameters:

1. URI of the form: Path to the custom form.

2. Return parameter: The name of the query string parameter the identity provider should use
to pass the return URL to the form. The custom form must redirect the successfully authenti-
cated user to this URL to complete the SSO process.

Let’s look at an example. If the URI of the custom form is /myapp/login and the return parameter is
returnURLParam, the request will be something like the one shown here.

http://www.bigrez.com/myapp/login?returnURLParam=http://www.bigrez.com/sam
l2/idp/sso/login-return

The SAML 2.0 Identity Provider custom form is a separately deployed web application. When devel-
oping custom login forms, you may want to provide a customized authentication experience. This might
include gathering additional information or registering the user prior to redirecting the user to the ser-
vice provider. The standard Java EE form-based authentication does not support this functionality. To
realize this use case, you will need to programmatically authenticate the user using the WebLogic Server
security API. The following code sample is a servlet implementation of an identity provider custom login
form using the weblogic.security.servlet.ServletAuthentication.login() method.

import weblogic.security.servlet.ServletAuthentication;

...

protected void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{

505

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 506

Chapter 11: Using WebLogic Security

String user = request.getParameter("user");
String password = request.getParameter("password");
String returnURL = request.getParameter("returnURL");
try {

int rc = ServletAuthentication.login(new CallbackHandler() {
@Override
public void handle(Callback[] callbacks)

throws IOException, UnsupportedCallbackException
{

for (int i = 0; i < callbacks.length; i++) {
Callback c = callbacks[i];
if (c instanceof NameCallback) {

NameCallback nc = (NameCallback) c;
nc.setName(user);

}
else if (c instanceof PasswordCallback) {

PasswordCallback pc =(PasswordCallback) c;
pc.setPassword(password.toCharArray());

}
}

}, request);
response.sendRedirect(returnURL);

}
catch (LoginException le) {

le.printStackTrace();
response.sendRedirect("login.jsp?returnURL="+returnURL);

}
}

The role of the SAML 2.0 Service Provider is to redirect the user to the appropriate identity provider,
retrieve the SAML assertion from the identity provider, and validate it. The service provider uses the
SAML identity asserter to validate the SAML assertions it receives. The SAML 2.0 Service Provider has
some additional security options including signing authentication requests and requiring that assertions
be signed. It also has the option to force the identity provider to authenticate the user every time it asks
for an assertion. This means that even if the identity provider has the user logged in with a valid session,
the service provider wants the user to reauthenticate.

Managing SSO Partners
SAML 2.0 formalizes information about partners in a partner metadata document. This greatly simplifies
getting SAML 2.0 identity and service providers communicating. Once you configure WebLogic Server
with either a SAML 2.0 service provider or identity provider, WebLogic Server can generate the SAML
2.0 partner metadata. To do this, use the Publish Meta Data button on the SAML 2.0 General subtab
under the Federation Services Configuration tab.

This same partner metadata document provides the input for the first step in onboarding a Web SSO
partner. By importing this document, WebLogic Server uses it as the foundation for its partner def-
inition. You manage partners from the Management tab of either the SAML2IdentityAsserter or the
SAML2CredentialMapper.

When WebLogic Server is acting as a service provider, select the Management tab from the
SAML2IdentityAsserter and create a new Web SSO Identity Provider Partner. Import the metadata
file that the partner provided. Besides specifying additional security constraints around artifact

506

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 507

Chapter 11: Using WebLogic Security

signatures and identity provider credentials, the General tab of the Web SSO Identity Provider Partner
has some important functional attributes as well. The Redirect URIs are a list of URIs which, if hit by an
unauthenticated user, will cause a request to be redirected to the identity provider for authentication.
This allows you to specify individual identity providers on a per-application basis. However, simply
specifying the Redirect URIs is not enough to cause WebLogic Server to redirect requests to the identity
provider for authentication. You must protect the resource using WebLogic Server security; for example,
by specifying a <security-constraint> in the deployment descriptor. You can configure the service
provider to accept virtual users for a specific identity provider partner. For this feature to work, you
need to configure the realm to use a SAMLAuthenticator, allowing the service provider to authenticate
users not found in any of the authentication providers. You can even instantiate virtual users’ group
memberships by enabling the Process Attributes attribute. When enabled, the SAMLAuthenticator
uses the SAML attribute statements in the SAML assertion to populate the virtual user’s JAAS subject
with the groups.

When WebLogic Server is acting as an identity provider, select the Management tab from the
SAML2CredentialMapper and create a new Web SSO Service Provider Partner. Import the metadata
file the partner provided. If the identity provider requires the service provider partner to use two-way
SSL then import the service provider partner’s client certificate using the Transport Layer Client
Certificate tab. You can configure the identity provider to generate a SAML assertion with a different
Time to Live than the default or with attributes (attribute statements of the groups in the user’s JAAS
subject). A Service Provider Partner definition contains additional signing and transport level security
controls.

Managing Web Services Partners
In WebLogic Server, a web service partner is a configuration that defines how the container should
generate or validate SAML assertions that are included in SOAP messages. The SAML Token Profile is the
WS-Security specification that defines how to use SAML assertions with SOAP message-level security;
see Link 11-16 for more information.

WebLogic Server provides a number of WS-SecurityPolicy 1.2 policies for the SAML Token Profile. There
are four policies for SAML 2.0 covering the three confirmation methods defined in the SAML 2.0 spec-
ification. A confirmation method defines how the sender of the SOAP message containing the SAML
assertion can prove to the recipient (in a trusted fashion) that this SAML assertion is valid. The three
confirmation methods are:

Holder-of-Key In the holder-of-key (HOK) confirmation method, the SAML assertion includes
the public key of the user. The issuer signs the assertion to protect the integrity of the public
key. The sender signs the message using the user’s private key. If the recipient trusts the issuer
then the recipient trusts the public key in the assertion and can use the public key to validate
the message using the message signature. If the recipient is able to validate message using the
public key, this implies that the sender has the private key and therefore is the holder of (the
private) key.

Sender-Vouches In the sender-vouches confirmation method, the message contains the SAML
assertion and the message is signed by the sender. If the recipient trusts the sender then the recipi-
ent trusts the SAML assertion; the sender vouches for the validity of the assertion.

Bearer In the bearer confirmation method, there is nothing beyond the presence of the assertion
that is used to confirm who the subject is.

507

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 508

Chapter 11: Using WebLogic Security

You can easily associate the policies for the SAML Token Profile, like other web services security policies,
with a JAX-WS web service by using the @Policy annotation. The following values for the uri attribute of
the @Policy annotation represent the four SAML Token Profile WS-SecurityPolicy policies in WebLogic
Server.

❑ policy:wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1-Asymmetric.xml

❑ policy:wssp1.2-2007-Saml2.0-SenderVouches-Wss1.1.xml

❑ policy:wssp1.2-2007-Saml2.0-HolderOfKey-Wss1.1-Asymmetric.xml

❑ policy:wssp1.2-2007-Saml2.0-Bearer-Https.xml

In these policies, the reference to asymmetric in the name refers to asymmetric encryption, which
means the sender uses one key to encrypt/sign a message and the recipient uses a different key to
decrypt/validate the signature. When WebLogic Server applies these policies, it uses the sender’s
and recipient’s public and private keys. In the case of policy:wssp1.2-2007-Saml2.0-Sender
Vouches-Wss1.1.xml, WebLogic Server uses the same key to encrypt and decrypt the message. Even
though the message is secured with a symmetric key, WebLogic Server still encrypts the key itself with
the recipient’s public key asymmetrically — ensuring only the recipient can decrypt it. With the bearer
assertion, WebLogic Server sends the message over one-way SSL to at least ensure that the sender trusts
the recipient of the SOAP message before sending the SAML assertion.

Identity Provider Partners
Understanding what each of the WS-SecurityPolicy types does is important for configuring them in
WebLogic Server. First, securing a web service with any of these policies requires the configuration
of a SAML2IdentityAsserter, as described earlier. The next step is to create a Web Service Identity
Provider Partner for the requestors using the Management tab of the SAML2IdentityAsserter. The
partner definition defines which services to apply this definition in the Audience attribute. The values of
the attribute take one of the following forms:

❑ target:*:<URI>: a wildcard match

❑ target:-:<URI>: an exact match and does not include the target in the audience URI in the
SAML assertion

❑ target:+:<URI>: an exact match and does include the target in the audience URI in the SAML
assertion

❑ <URI>: an audience URI for the SAML assertion — always included in assertion, not used for
partner matching.

In SAML, the audience URI defines the scope of the assertion. In some cases, the assertion is only
intended for the specific target service whereas in others, the SAML assertion can be used more broadly.
The flexibility in configuring the Audience attribute covers both of these scenarios.

The Issuer attribute uniquely identifies this partner. The partner definition needs to be set to the appro-
priate Confirmation Method: Sender Vouches, Bearer, or Holder of Key.

WebLogic Server will not validate the SAML assertion if the identity asserter cannot locate a matching
partner definition. The identity asserter attempts to match the Audience attribute, the Confirmation
Method, and the Issuer of the SAML assertion it receives against its partner definitions. If it does, the

508

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 509

Chapter 11: Using WebLogic Security

identity asserter attempts to validate the assertion using the specified confirmation method in accordance
with the SAML 2.0 specification.

The Process Attributes and Virtual User attributes determine if the server should use the attributes
of the SAML assertion as groups and if the server should allow the user access even if it doesn’t exist in
any of the authentication providers defined in the realm, respectively. To use these features, you must
configure a SAMLAuthenticator in the active security realm.

For the policy:wssp1.2-2007-Saml2.0-Bearer-Https.xml policy, the caller must send the request
over one-way SSL so you must configure WebLogic Server for one-way SSL support (see the section
‘‘Configuring One-Way SSL’’ in this chapter). For the sender-vouches confirmation method, the sender
of the request must sign and encrypt the message; therefore, the server needs to trust the sender. To
accomplish this, configure the server to trust the sender’s certificate authority by adding the CA certificate
to the server’s trust key store. For the holder-of-key confirmation method, the SAML issuer signs the
assertion and the sender signs the message so WebLogic Server needs to trust both the sender and the
SAML issuer. You configure the server to trust the SAML issuer’s certificate by importing it from the
Assertion Signing Certificate tab of the Web Service Identity Partner Provider, and to trust the
sender’s signing certificate by adding the CA certificate to the server’s trust key store.

Service Provider Partners
The requestor also needs to understand what the web service expects so that it is properly config-
ured. In all cases, you need to configure the SAML2CredentialMapper. Next, create a new Web Service
Service Provider Partner from the Management tab of the identity asserter. WebLogic Server uses
these partner definitions to determine what type of SAML assertion to generate. WebLogic Server
provides the ability to configure specific SAML settings on a per-partner basis. Configuring a service
provider partner is very similar to configuring an identity provider partner. The differences are that the
audience attribute of the identity provider needs to include the URL for the web service (for example,
http://www.bizreg.com/WebService/HelloWorld) and that you cannot configure the issuer on a per-
partner basis. The issuer is set on the credential mapper itself and applies to all partners.

If the partner is using the confirmation method sender-vouches then the sender is going to sign the
SOAP request that will include the SAML assertion. In order to configure a signer’s identity, the first
step is to create a PKICredMapper. The PKICredMapper references a key store that contains the certificates
that the server uses to sign/encrypt messages. Once you configure the PKICredMapper, the next step is
to configure the credential mappings for the realm. The credential mappings define which key in the
PKICredMapper’s key store a user or group should use when making remote requests. This is not part of
SAML specifically, rather the SAML sender-vouches and holder-of-key policies provided by WebLogic
Server requires that the SOAP messages be signed. This process of configuring the PKICredMapper is
exactly the same as configuring any message protection scheme that requires digital signatures.

If the partner is using the confirmation method holder-of-key, the issuer of the SAML assertion includes
the sender’s public key in the signed SAML assertion. Then, the sender uses their private key to sign the
SOAP request, which contains the signed SAML assertion and the sender’s public key. In this case or
any other where the issuer signs the assertions, you must configure the SAML2CredentialMapper with
an identity to use for this purpose. The SAML2CredentialMapper uses the server’s configured identity
store. If there isn’t a separate identity for the SAML issuer, the SAML2CredentialMapper can use the
server’s certificate by simply entering the server certificate’s alias and private key passphrase, which
were previously defined on the server’s SSL Configuration tab in the WebLogic Console.

509

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 510

Chapter 11: Using WebLogic Security

Debugging SAML
WebLogic Server has a weblogic.security.saml2 debug category that you should enable when try-
ing to diagnose SAML2 issues. Also, it may be helpful to enable the weblogic.security.credmap
(when acting as an identity provider), weblogic.security.atn (when acting as a service provider),
and weblogic.security.ssl categories as well.

Most SAML issues occur when the server can’t find a matching partner definition. This will manifest
itself in a message like ‘‘Unable to generate credential for Identity’’ or ‘‘Invalid Token.’’ These messages
are deliberately vague; the logs have all of the details. When producing a SAML assertion, WebLogic
Server performs the search based on confirmation method and target. When validating the assertion, the
search is based on confirmation method, target, and issuer. Also, partners are not enabled by default so
make sure that the partner is enabled.

Tip to Remember
Most SAML issues occur when the server can’t find a matching partner definition. Also,
partners are not enabled by default, so make sure that the partner is enabled.

Setting Up Cross Domain Security and Single Sign-On
This section covers two additional scenarios for identity propagation or single sign-on. The first is identity
propagation between WebLogic Server domains. WebLogic Server has two models for inter-domain
identity propagation: Cross Domain Security and Global Trust. The second SSO scenario is from Microsoft
Windows desktops to WebLogic Server web applications. This scenario uses the Simple and Protected
GSSAPI Negotiation (SPNEGO) mechanism. Setting this up can be complicated, so this section contains
an overview of the process, and concludes with some best practices and troubleshooting tips.

Trust Between Domains
By default, a principal from one WebLogic Server domain will not be valid in another WebLogic Server
domain. This is because the keys used by one domain to sign the principal are different than the keys
used by the other domain to validate the principal. In previous versions of WebLogic Server, in order to
achieve cross domain trust, you simply needed to change the keys in the two domains to be the same.

This approach is fine except that it has some limitations. The first is that the trust is transitive. For
example, if domains A and B have cross domain trust established and domains B and C have cross
domain trust established, that implies that domains A and C will also have cross domain trust estab-
lished. The second limitation is that WebLogic Server will trust all users in this cross domain trust model.
For example, if Domains A and B have cross domain trust established and a user is an administrator in
Domain A, the user will also be an administrator in Domain B.

Recognizing these and other limitations, WebLogic Server 9.2 MP2 introduced two types of cross domain
security. The first type, known as global trust, is simply a new name for the older cross domain trust
previously described. It still has all the same limitations, which in many cases may not be relevant.
Global trust is far easier to use than the second model and is sufficient for many deployments. Global
trust is currently the only option for RMI/EJB. To enable global trust, simply change the credential under
the Advanced section of the domain’s General Security tab using the WebLogic Console.

510

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 511

Chapter 11: Using WebLogic Security

The second model is simply called cross domain security. This model is available for JMS, JTA, MDB,
and WAN replication subsystems. Using this model overcomes the limitations with the global trust
model. Trust is established pair-wise between domains, not transitively. In this model, if Domain A
trusts Domain B, and Domain B trusts Domain C, Domain A does not trust Domain C. You would need
to specifically configure Domain A and Domain C to trust each other. To enable cross domain security,
use the WebLogic Console to select the Cross Domain Security Enabled option on the domain’s General
Security tab.

You configure the domain-to-domain trust in two parts. In the Domain A, you need to create a user,
known as the cross domain user, and assign that user to the CrossDomainConnectors group. In Domain
B, you need to set up a credential mapping for Domain A. To do this, create a new credential mapping
entry using the New button on the security realm’s Credential Mapping tab. In the resulting wizard pages,
choose the Use cross-domain protocol option, enter the other domain’s name (for example, Domain A)
in the Remote Domain field, and then enter the cross domain user’s username and password for the other
domain in the Remote User and Remote Password fields. You will need to repeat these two steps on the
other domain as well by creating a cross domain user in Domain B and a credential mapping for that user
in Domain A. This process gives the domain administrator explicit control over which domains to trust.
The domain administrator can also explicitly exclude domains from being trusted by adding their names
to the Excluded Domain Names attribute on the domain’s General Security tab in the WebLogic Console.

Best Practice
If you need to establish trust between domains, use global trust. If transitive trust is
a concern, you can use cross domain security but only for JMS, JTA, MDB, and WAN
replication purposes. The EJB/RMI subsystems require global trust.

SSO from Microsoft Windows Desktops
Using the capabilities of WebLogic Server to achieve SSO from a Microsoft Windows desktop is not a
simple task. Conceptually, it is a very desirable feature — users log in to their workstation once and then
can access web applications without re-entering their username or password. In practice, getting this
to work requires changes to the user’s browser, to Active Directory, and to WebLogic Server. Under-
standing what needs to be done up front is important in planning and executing the deployment of this
feature. This section is essentially an outline of how to configure this capability but it is not meant to be a
comprehensive manual covering every deployment scenario and every conceivable issue. Please refer to
the Oracle Support web site for a more comprehensive troubleshooting guide (Link 11-17).

The first step is to configure WebLogic Server’s JVM to talk to the Kerberos Key Distribution Center
(KDC) for the Windows domain. You do this by creating a configuration file that the Kerberos libraries
inside of WebLogic Server use to exchange information with the Windows domain. On Windows, create
a file called %windir%\kbr5.ini; on UNIX, create a file called /etc/kbr5.conf. Use the following sample
as a template.

[libdefaults]
default_realm = BOOK.LOCAL
default_tkt_enctypes = rc4-hmac des-cbc-crc
default_tgs_enctypes = rc4-hmac des-cbc-crc
permitted_enctypes = rc4-hmac des-cbc-crc
ticket_lifetime = 600

511

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 512

Chapter 11: Using WebLogic Security

[realms]
BOOK.LOCAL = {
kdc = 123.45.67.89
admin_server = dc.book.local
default_domain = BOOK.LOCAL
}
[domain_realm]
.book.local = BOOK.LOCAL
[appdefaults]
autologin = true
forward = true
forwardable = true
encrypt = true

You’ll need the following three pieces of information to adapt this sample into your environment:

❑ Domain Name: The name of Windows domain (for example, book.local). Make sure to use the
same capitalization as the sample above does.

❑ Domain Controller IP address: The IP address of the domain controller for the domain (for
example, 123.45.67.89).

❑ Domain Controller Hostname: The hostname of the domain controller for the domain (for
example, dc.book.local).

The next step is to create an account in Active Directory and associate this account with one or more ser-
vice principal names (SPN). The Windows domain controller uses the service principal name to uniquely
identify the service (for example, http/www.bizreg.com) that it is communicating with, and to gener-
ate a request that only that service can understand. In most environments, create a single user in Active
Directory, and then add all of the SPNs for all of the machines in the domain/cluster to that user. This
can minimize the number of pseudo-user records created in Active Directory. In an environment where
there is a web server running a WebLogic Server web server plug-in in front of WebLogic Server, create
an SPN for that machine as well. If the SPN is incorrect, has the wrong case, or has multiple user accounts
mapped to the same SPN, the SSO will not work.

When working with Kerberos, case is very important. Make sure that realm names are in ALL CAPS,
and that the protocol of the services in the SPNs are in lowercase (for example, http). Be sure to cre-
ate an SPN for any web server machines used to proxy to WebLogic Server as well. Make sure that
there is only one account associated with the SPNs. If there are multiple user accounts associated with
the SPN, the browser won’t send the credentials to WebLogic Server. Remove the SPN from the other
accounts.

You must create the Active Directory user account with certain conditions. It should never expire the
password and it must not use Kerberos pre-authentication.

As of JDK 1.6, the Java GSS API supports RC4-HMAC encryption, which is the default Kerberos encryp-
tion type of Active Directory (see Link 11-18). This means that you no longer need to mark the user
account to Use DES Encryption.

Once you add the SPNs to the account, you will export the information into a keytab file that WebLogic
Server uses to identify itself to the Windows domain controller. If WebLogic Server is running on Win-
dows, perform the following steps to generate a keytab file for the user account.

512

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 513

Chapter 11: Using WebLogic Security

1. Use the setspn utility from Microsoft to create the following SPN:

setspn -a http/<machine name> <created account>

For example, if the machine name running WebLogic Server is wls and the Active Directory
user account is wlsuser, the commands would be:

setspn -a http/wls.book.local wlsuser

2. Next, create a keytab file for the user account. WebLogic Server uses the keytab file to iden-
tify itself to the domain controller.

ktab -k keytab-file-name -a account-name@REALM.NAME

Following the example, the command would be:

ktab -k wls.keytab –a wlsuser@BOOK.LOCAL

When prompted, enter the password for the Active Directory user account.

3. Copy the keytab file to the $DOMAIN_HOME directory of the WebLogic Server instance.

If WebLogic Server is running on UNIX, perform the following steps to generate the keytab file.

1. Use the ktpass command to both set the SPN and generate the keytab file.

ktpass -princ http/<weblogic-server-host-name>@<REALM-NAME>
-mapuser <account-name> -pass password -out <keytab-file-name>

Following the example, the command would be:

ktpass -princ http/wls.book.local@BOOK.LOCAL -mapuser wlsuser
-pass password -out wlsuser.keytab

2. Copy the keytab file to the $DOMAIN_HOME directory of the WebLogic Server instance.

Before we continue, we need to point out that running ktpass has a serious side effect — it changes the
name of the user in Active Directory from <accountname> to http/<accountname>. This is one reason
why Oracle recommends creating a separate account. Also under some circumstances, ktpass does not
update the user account to http/<accountname>. Make sure that the username change has occurred; if it
has not, manually change the username.

Running ktpass is supposed to change the name of the user in Active Directory
from <accountname> to http/<accountname>. Make sure that ktpass changed the
username and if not, make the change manually.

513

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 514

Chapter 11: Using WebLogic Security

Once you copy the keytab file to the WebLogic Server domain, use the JVM’s kinit utility to test that the
configuration to the Windows domain controller is correct and that the keytab file is working properly.
Set up the Java environment for the domain and run the following command:

kinit –k –t <keytab file name> <accountname>

Following the example, the command would be:

kinit –k –t wlsuser.keytab wlsuser

If the command is successful, kinit will return a message like ‘‘New ticket is stored in cache file
x.’’ If kinit returns an error, check the Kerberos configuration. Make sure that the IP address
of the KDC is correct, that the Windows realm name is capitalized, that the Windows domain
controller is available, and that WebLogic Server can connect to the Windows domain controller.
Other possible issues include clock skew (that is, time on the two machines is more than 5 minutes
apart) or some problem with the user account (for example, wrong password or mismatched
encryption type).

That completes the configuration of the Windows domain. The next step is to configure the client (in
most cases, Microsoft Internet Explorer) to trust WebLogic Server and send the user’s credentials. This
behavior is off by default so it needs to be turned on for each and every end user.

Configure the WebLogic Server and any web server proxy machines as members of the Local Intranet
Zone by doing the following:

1. Open the Tools ➪ Internet Options menu item.

2. Select the Security tab.

3. Select the Local Intranet Zone and click the Sites button.

4. Click the Advanced button and add the site. From the example, that would be
http://wls.book.local.

5. Back on the Security tab with the Local Intranet Zone selected, click the Custom Level
button and make sure that the Logon setting under User Authentication is set to Automatic
Logon Only in Intranet.

6. In Internet Explorer 6 only, back on the Internet Options page, select the Advanced tab and
make sure that Integrated Windows Authentication is enabled.

The final step is to configure WebLogic Server to use the keytab file and to challenge a properly config-
ured client for their credentials. This process starts with the creation of a file called krb5Login.conf in
the WebLogic Server $DOMAIN_HOME directory.

WebLogic Server uses the standard Kerberos JAAS Login Module to authenticate the WebLogic
Server instance to the Windows domain. The JAAS Login Module uses the login entry names to
identify the configuration to use for each of the two login phases. The initiate phase has a login
entry name of com.sun.security.jgss.initiate and is called when WebLogic Server authen-
ticates the SPN using the keytab file for the account. The accept phase has a login entry name of
com.sun.security.jgss.krb5.accept and is called when a browser sends a valid SPNEGO request
and that ticket is validated by WebLogic Server.

514

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 515

Chapter 11: Using WebLogic Security

Below is a template for the krb5Login.conf file containing the login entries for both the initiate and
accept phases of the process

com.sun.security.jgss.initiate {
com.sun.security.auth.module.Krb5LoginModule required
principal="<account>@REALM.NAME" useKeyTab=true
keyTab=<keytab-file-name> storeKey=true debug=true;

};

com.sun.security.jgss.krb5.accept {
com.sun.security.auth.module.Krb5LoginModule Required
principal="<account>@REALM.NAME" useKeyTab=true
keyTab=<keytab-file-name> storeKey=true debug=true;

};

Tip to Remember
If you are using a Java SE 5 JVM, the JAAS login entry name for the accept
phase should be changed from com.sun.security.jgss.krb5.accept to
com.sun.security.jgss.accept.

The next step is to modify the WebLogic Server domain’s setDomainEnv script to include the following
system properties:

-Djava.security.auth.login.config=krb5Login.conf
-Djava.security.krb5.kdc=<IP address of the KDC - Same as in krb5.conf/ini>
-Djava.security.krb5.realm=<Realm - Same as in krb5.conf/ini>
-Djavax.security.auth.useSubjectCredsOnly=false

Optionally, set the Java system property sun.security.krb5.debug to true for detailed debugging of
the calls WebLogic Server makes to the Windows domain controller.

–Dsun.security.krb5.debug=true

Finally, configure the security realm to use the NegotiateIdentityAsserter. The Forms Based
Negotiation Enabled option triggers WebLogic Server to attempt SSO for all applications that are
using form-based authentication. WebLogic Server enables this option by default. Once desktop SSO is
set up properly, consider turning this option on; but while trying to debug the configuration, set this
option to false. If not, then all applications with form-based authentication — including the WebLogic
Console application — will be affected. Assuming that this setting is disabled, SSO should now work for
any web application that is protected and has its <login-method> set to CLIENT-CERT. See the ‘‘Securing
Web Applications’’ portion of the ‘‘Managing Application Security’’ section of this chapter for the details
on how to protect the web application in this way.

Debugging the WebLogic Server environment is crucial to getting Desktop SSO to work. Turn
on the weblogic.security.atn and weblogic.servlet.security debug categories. Also set the
–Dsun.security.krb5.debug=true Java command-line option. The Kerberos debug logging informa-
tion is sent to standard out. The weblogic.security.atn debug logging is sent to the server’s log file. In
this situation, configuring the server to write debug information to standard out makes it easier to debug
the scenario because all of the information is available in standard out.

515

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 516

Chapter 11: Using WebLogic Security

One of the most common problems is that the browser does not send the user’s credential. Instead it sends
a request to use NTLM authentication. A proper response from the browser is an Authorize: Negotiate
<Base64 encoded bytes>, where the Base64 encoded bytes contain the service ticket authorizing the user
for the service. The size of this message is typically over 1,000 bytes. In contrast, an NTML response is
much shorter — about 50 bytes. There will also be a message in the server log — ‘‘Didn’t find any token.’’
In this case, double-check that the browser has the server configured in the Intranet Zone, and that the
SPN is correct. Once the browser is sending the credential, the issues are much easier to diagnose.

Custom Authentication Providers
WebLogic Server provides SSO support for the SAML and SPNEGO industry standards. There are a
number of other standard and proprietary SSO technologies that you might need to support. You can
integrate other SSO technologies into WebLogic Server by creating a custom authentication provider.
While all of the provider types support custom providers, custom identity asserters that work in con-
junction with WebLogic Server’s authentication providers or custom authentication providers is the most
common use case. There are several source code examples that you can use to get started. As we men-
tioned previously, the Oracle Technology Network web site contains an example authentication provider
(see Link 11-6).

At this point, we need to warn you about trying to use these examples as your production providers.
The code examples are meant to help you understand how to build your own custom providers — they
are not designed to be production-ready implementations. At a minimum, you should make certain
performance and fault-tolerance enhancements before trying to use them in a production environment.

The example security providers are intended to be used only as learning tools to
help you understand how to interface with the WebLogic Server Security Service.
These examples lack performance optimizations and fault-tolerance features
required in any production-ready security provider.

Also, the SimpleSampleIdentityAsserter uses only a clear text username to identify the user to
WebLogic Server. This is a security vulnerability exploitable by knowledgeable users who have direct
network access to WebLogic Server. By creating an HTTP request that contains this token (that is, the
username), it is simple to assume the identity of any user without their password.

It is strongly discouraged to use the SimpleSampleIdentityAsserter in a production environment with-
out modifications. Modifications include adding encryption to the token or using a connection filter to
restrict access to WebLogic Server from only the HTTP servers running the WebLogic Server plug-in.

The SimpleSampleIdentityAsserter allows access to WebLogic Server by simply
knowing the name of the user. This information can easily be obtained or guessed.
It is strongly discouraged to use this in a production environment.

516

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 517

Chapter 11: Using WebLogic Security

Servlet Authentication Filter
The Servlet Authentication Filter feature of the security framework enables support for authentication
methods other than those provided by the Java EE specification: basic, form, and X.509 certificate. The
authentication providers that WebLogic Server provides out of the box for single sign-on — negotiate
identity asserter and SAML identity asserter — use this feature. A servlet authentication filter is very sim-
ilar to a servlet filter, except that it is global for the domain and therefore doesn’t need to be configured
on a per-application basis. The servlet authentication filter gets invoked before the security framework
so it can interact with the user to get the appropriate credentials.

Tip to Remember
Consider using a servlet authentication filter instead of application-level servlet filters
for the purpose of providing authentication mechanisms other than those provided by
Java EE such as integration with SSO.

Chapter Review
In this chapter, we covered a large amount of information related to the WebLogic Server security fea-
tures. We started with an overview of the WebLogic Server Security Service. From there, we went on to
discuss the WebLogic Security Framework and its built-in providers. We touched on how to use external
authentication providers with WebLogic Server and followed that with a detailed discussion of how to
configure SSL/TLS support. After that, we talked about how to write different types of Java application
clients that use SSL. Then we discussed managing application security, starting with the use of Java EE
deployment descriptors to define access policies, discussing the use of WebLogic Security access con-
trol policies, and finishing with a brief discussion about server boot identity security. We finished off the
chapter with how to configure WebLogic Server for single sign-on across domains, using SAML and with
Microsoft Windows desktops. In the next chapter, we concentrate on WebLogic Server administration
and management.

517

Patrick c11.tex V3 - 09/18/2009 12:19pm Page 518

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 519

Administering and
Deploying Applications in

WebLogic Server

In this chapter, we discuss the finer points of WebLogic Server administration. If you are unfamiliar
with WebLogic Server administration, you should consult the WebLogic Server documentation at
Link 12-1, as listed in the online Appendix on the book’s web site at http://www.wrox.com, for more
information. We begin by reviewing the key WebLogic Server architectural concepts. The purpose
of this discussion is to give you a big picture understanding of how the WebLogic Server product
works. Next, we discuss WebLogic Server administration concepts. Finally, we end the chapter by
discussing WebLogic Server configuration, management, and monitoring.

WebLogic Architecture Key Concepts
In this section, we review some of the key concepts associated with the WebLogic Server deploy-
ment architecture. Before jumping into the details, we need to define a few terms that will be used
throughout the rest of this chapter. In this chapter, the terms server and instance are used to describe
a Java Virtual Machine process that is running the WebLogic Server software program. We use the
term machine to describe a computer with its own CPU, memory, and secondary storage that is run-
ning its own copy of the operating system software. Even though it is often possible to partition
large computers into several logical, smaller computers, we will not make a distinction between
multiple machines that, through logical partitioning, are part of the same chassis and those that are
not. Now, we are ready to review the WebLogic Server deployment architecture.

Domain Architecture
A WebLogic Server instance is the process responsible for receiving incoming requests from the user,
dispatching those requests to the appropriate Java EE application component(s), and returning
responses to the user. This server instance provides the Java EE containers necessary to deploy any

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 520

Chapter 12: Administering and Deploying Applications

Java EE–based application and handles all of the resource management for the application. We talk
more about the internal architecture of the server in the next section.

A WebLogic Server cluster is a loosely coupled grouping of WebLogic Server instances that provide a
cluster-wide naming service, load distribution, and fault tolerance to hosted applications. WebLogic
Server dynamically determines the membership of the cluster using heartbeat messages that are
periodically sent via the configured clustering protocol. WebLogic Server supports two clustering
protocols: TCP/IP-based unicast or UDP-based multicast. Multicast is still the default clustering
protocol, though the WebLogic Console defaults to unicast when creating new clusters. For simplic-
ity, we use unicast in our clustering protocol discussions for the rest of this section even though the
mechanisms described are the same for multicast-based clusters. Through these unicast messages,
each cluster member maintains its own cluster membership list. In a similar fashion, every server in
the cluster maintains a complete copy of the cluster-wide JNDI namespace. WebLogic Server uses
a reliable unicast-based protocol to propagate all changes to the JNDI namespace on any particular
server to the other cluster members. This loosely coupled clustering architecture allows each server
to function independently of any other WebLogic Server process.

Using the ability to define a machine in your WebLogic Server domain, you can tell WebLogic Server
which servers run on which machines. The in-memory replication feature of WebLogic Server clus-
tering uses this knowledge to locate the secondary copy of a particular object so that the primary
and secondary copies of an object reside on different machines, whenever possible. The adminis-
tration server also relies on this machine configuration information to determine how to contact a
particular WebLogic Server instance’s node manager. We talk more about clustering, in-memory
replication, and the node manager later.

A WebLogic Server domain is an administrative grouping of servers and clusters. You configure, man-
age, and monitor the domain from a central location; this central location is the administration (or
admin, for short) server. The admin server is just a WebLogic Server instance that runs some spe-
cial administrative applications like the WebLogic Console. Through these applications, the admin
server maintains a repository of configuration information for the domain, acts as a centralized loca-
tion for application deployment, and provides a browser-based administrative console application
that the administrator uses to configure, manage, and monitor all aspects of the domain. A managed
server is the term for any server in the domain other than the admin server. On startup, a man-
aged server contacts the admin server to obtain its configuration information and applications to
deploy. WebLogic Server optimizes this transfer of information to include only information that has
changed since the managed server was shut down. Once the managed server is running, it no longer
depends on the admin server to be able to process client requests. As you see later in this chapter,
the admin server introduces a centralized location for configuration, management, and monitoring
but does not significantly compromise the benefits of the loosely coupled cluster architecture.

The node manager is an optional daemon process that runs on each machine where managed servers
may be run. WebLogic Server uses the node manager to allow administrators to start servers on
remote machines from the WebLogic Console. As we discuss later, the node manager’s role also
includes server monitoring and automatic restart capabilities. It also plays a role in automatic service
and whole server migration, which we discuss in detail later in this chapter.

Figure 12-1 shows how all the pieces fit together. In this example, we have the admin server for the
mydomain domain running on machine m1. This admin server manages the configuration information
for two different clusters, abc and mycluster, and one standalone server, X. Each machine has a
node manager running on it; the configuration information would also specify which servers are
running on each machine.

520

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 521

Chapter 12: Administering and Deploying Applications

Machine m2

Domain mydomain

Node Manager

Server X

Server A

Server B

Machine m1
Admin Server

Configuration
& Application

Repository
Cluster abc

Cluster mycluster

Node Manager

Server Y

Machine m3

Node Manager

Server Z

Server C

Figure 12-1: WebLogic Server domain architecture.

WebLogic Server Architecture
A high-level understanding of the server’s internal architecture is important to understanding how
to design, build, deploy, and debug applications that will run on WebLogic Server. Although many
things have changed since the early versions of Tengah (the name of the server before the BEA
acquisition), the fundamental message processing architecture remains relatively unchanged. As
shown in Figure 12-2, the core components of the server are the listen threads, the socket muxer, and
the execute queue with its associated execute threads. When the server process starts up, it binds to
one or more ports and assigns a thread to each port to listen for connection requests. Once the
server accepts the connection request and establishes the connection, the server hands off con-
trol of the connection to the socket muxer, which waits for incoming requests. At a high level,
the socket muxer detects an incoming request, reads the request off of the socket, and places the
request along with any associated security or transaction context onto the appropriate execute queue
(typically, the self-tuning execute queue). Once a request appears on the execute queue, an idle exe-
cute thread takes the request off of the queue, assumes the identity of the user who submitted the
request, executes the request, returns the response to the caller, and goes back to wait for the next
request.

Execute Queues, Execute Threads, and Work Managers
Once an execute thread invokes the target component of the request, that execute thread will, under
most circumstances, process the entire request. Figure 12-2 depicts this fact by showing a single
execute thread spanning the servlet, EJB, and JDBC components in the application container. The
call to the servlet, its call to a method on an EJB, and the EJB’s use of JDBC to query a database will all
occur within the same execute thread. During the execution of a request, the execute thread will be
unavailable to process any other requests until the request processing code completes successfully
or throws an exception. This is an extremely important point to recognize.

521

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 522

Chapter 12: Administering and Deploying Applications

Listen Port

Listen
Thread

SSL Listen
Port

SSL Listen
Thread

Socket Muxer

Application
Container

Default Execute
Queue

Servlet

EJB

JDBC

Figure 12-2: WebLogic Server internal architecture.

If the application code blocks the execute thread for an extended period of time, the server will not
be able to use that thread to process other requests coming into the execute queue. While WebLogic
Server does some basic sanity checks during the execution of any request (for example, checking the
transaction timeout before dispatching an EJB method invocation), it is generally not possible for
the server to tell the execute thread to abort the processing of a request. If the application gets into
a state where every execute thread is blocked for an extended period of time, the server will either
become nonresponsive (for requests targeted to that execute queue) or have to spawn additional
execute threads to try to cope with the situation. Although the listen threads and the socket muxer
are able to accept new requests from clients and place them into the execute queue, no execute
threads will be available to process the request and return the response to the client unless the
server is able to spawn new execute threads. Of course, spawning new threads that end up blocking
on the first application request does not improve the overall situation.

When these long-running requests cause the execute threads to block, the incoming requests will
start to back up in the execute queue. Even if the condition causing the execute threads to block
goes away, it is very likely that the execute queue will end up with a relatively large number of
messages. This not only will cause degradations in response time but also may cause users to cancel
their requests (by clicking the stop button on their browsers) and to resubmit them. Typically, this
will only make the situation worse because WebLogic Server currently processes every message
on the execute queue in first-in-first-out order. In certain conditions (for example, reading HTTP
POST data associated with a web application request), WebLogic Server will detect that the client is
no longer waiting for the response and will short-circuit the request processing. Other conditions,
though, may cause WebLogic Server to process the request even if the client is no longer waiting for
the response. Fortunately, WebLogic Server provides a mechanism to limit the number of requests
it will accept to prevent this execute queue overload condition, which we discuss shortly.

Current versions of WebLogic Server use a single, priority-based, self-tuning execute queue that
increases and decreases the number of execute threads dynamically based on historical perfor-
mance data. When the server receives a request, it determines the request class to which the request
belongs, either implicitly based on the application or explicitly based on an applicable work man-
ager configuration. Using the request class information, the server assigns the request an internal
priority and places it on the execute queue, with higher priority requests going closer to the front of
the queue. The closer to the front of the queue, the faster the request will be assigned to an execute

522

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 523

Chapter 12: Administering and Deploying Applications

thread for processing. WebLogic Server determines the internal priority of each request using the
work managers you create to manage your applications.

Work managers provide a way for administrators to describe how they want the server to partition
its resources across applications. To describe resource partitioning, WebLogic Server work managers
contain four component types:

1. Request Class

2. Minimum Threads Constraint

3. Maximum Threads Constraint

4. Capacity Constraint

All four components are optional.

Think of a request class as a mechanism to define the runtime behavior of the set of requests to which
it is associated. All requests that share a runtime behavior should share a request class. For example,
if all of the HTTP requests within your web applications are equally important, you should associate
your web applications with the same request class so that they get equal runtime prioritization
when being dispatched by the server. By default, each application belongs to its own request class.
WebLogic Server supports three request class types:

Fair Share Request Class A fair share request class specifies the relative thread usage time of an
application as compared to other applications running in the same instance. Imagine a managed
server with two applications deployed, A and B. Application A uses a work manager with a fair
share of 50 and Application B uses a work manager with a fair share of 150. When the server is
receiving a steady stream of requests from both applications that exceed the number of execute
threads, the server will assign Application A’s requests to 25% of the available threads and Appli-
cation B’s requests to 75% of the available threads, assuming that requests for both applications, on
average, take the same amount of time to execute. The allowable values of a fair share request class
are 1 to 1000. Each application that uses a work manager that does not explicitly reference a request
class gets an exclusive fair share value of 50.

Response Time Request Class A response time request class specifies the target response time in
milliseconds. Using our previous example, imagine that Application A uses a work manager with a
response time of 3000 milliseconds and Application B uses a work manager with a response time of
5000 milliseconds. When the server is receiving a steady stream of requests from both applications
that exceed the number of execute threads, the server will keep the average response times of the
two applications in a 3 to 5 ratio, where the actual response times will be some fraction or multiple
of the response time goal.

Context Request Class A context request class is a compound class that maps between the con-
text of a request and a fair share or response time request class. Currently, a context request class
supports using the authenticated user and group names to map to different fair share or response
time request classes. For example, a stock quote application might assign a higher fair share to
logged-in users (which implies that they have accounts) by routing all requests associated with the
built-in group name users to which all authenticated users belong to a higher fair share request
class, and all requests associated with the built-in user name <anonymous> to a lower fair share
request class.

523

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 524

Chapter 12: Administering and Deploying Applications

Constraints allow you to set limits on what a work manager can do. By default, a work manager
has no constraints. The minimum thread constraint has nothing to do with the minimum size of the
execute thread pool. Instead, it allows you to ensure that the server will have a certain number of
threads available for processing requests associated with work managers using this constraint. This
is really only useful to prevent deadlock in certain server-to-server callback scenarios. We provide
an example.

Imagine that Application A runs on Managed Server 1 and Application B runs on Managed Server
2. If Application A makes an EJB call to Application B and Application B calls back to Application A
(or any other application running on Managed Server 1) while processing the EJB call, it is possible
to deadlock the two managed servers. If all of Managed Server 1’s threads are waiting on the EJB call
to Application B to respond, Managed Server 1 will not have any threads available to process the
callback requests and the two servers will deadlock waiting on each other. To prevent this deadlock
situation, you might assign the callback requests from Application B a higher fair share than the
calls generating the EJB calls to Application B. You might also add a minimum threads constraint
for the callbacks to ensure that some threads will always be available for processing callbacks.

Best Practice
Only use minimum thread constraints when your application contains callbacks
that can cause server-to-server deadlock.

Maximum thread constraints are useful in a number of situations. For example, if a particular type
of request requires a database connection, you might want to set a maximum thread constraint to
a value equal to the maximum number of database connections available to your application so
that execute threads won’t block waiting for a connection to be available. This example is such a
common use case that the maximum thread constraint supports either specifying a numeric value
or the name of a WebLogic Server–defined JDBC data source. In the latter case, the maximum thread
constraint value changes as the maximum size of the JDBC data source’s connection pool changes.

Best Practice
Always specify a maximum thread constraint to prevent contention for JDBC or
other backend system connections.

Capacity constraints allow you to specify the maximum number of requests a server will accept.
The capacity constraint gives you a mechanism to prevent the execute queue overload condition
we discussed earlier in this section. When determining capacity, the server counts all requests
currently executing on an execute thread and all requests waiting in the execute queue. When a
capacity constraint is reached, the server takes overload protective action; for example, by return-
ing an HTTP 503 response to indicate that the server is too busy or returning a RemoteException
for RMI calls to allow the request to fail over to another server in the cluster. WebLogic Server
also provides a Shared Capacity for Work Managers parameter that limits the total capacity of the
server.

524

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 525

Chapter 12: Administering and Deploying Applications

Best Practice
Do not allow the execute queue to get so long that the response time for new
requests would be longer than most clients are willing to wait.

During certain types of failure conditions, execute threads may block for extended periods of time
waiting for slow backend systems or TCP/IP timeouts in the case of machine or network failures.
These conditions can cause execute threads to block for minutes at a time. If the server’s incoming
request load is high enough, all available execute threads will be blocked and the server will cre-
ate more execute threads in an attempt to continue doing useful work. Because the server does not
understand the nature of the problem or the applications it is servicing, it cannot make an intelli-
gent decision about whether creating new execute threads will in fact help. The real issue in these
situations is that the server is unable to process any requests because of this failure condition. Your
first thought might be to create a maximum thread constraint to prevent the server from creating
too many threads; however, this would be treating the symptom and not the root cause. The real
problem is that the requests keep piling up in its execute queue. As discussed previously, there is
no point in the server accepting work if the time it will take to process that work exceeds the time
for which the clients are willing to wait on the response. A better way to protect the server in these
situations is to define a capacity constraint so that the server starts rejecting work when it is unable
to keep up. By combining a capacity constraint with proper tuning of the stuck thread detection
capability (that we discuss later), you can protect the server from overloading itself during these
types of failures.

Best Practice
Combining capacity constraints and stuck thread detection will help protect the
server in certain types of failure conditions.

WebLogic Server allows you to define work managers, request classes, and constraints at the global,
application, and component levels. Request classes and constraints can either be shared across work
managers or be exclusive to a single work manager. All applications share any request classes and
constraints associated with their work manager. The only exception to this rule, which we will
discuss later, is for work managers that do not specify a request class and, therefore, use the default
fair share request class.

Use the Environment ➪ Work Managers page in the WebLogic Console to define global work man-
agers, request classes, and constraints. All globally-defined request classes and constraints are
inherently sharable — whether they are defined within or outside the context of a specific global
work manager. For example, if multiple work managers share the same capacity constraint, this
means that the sum total of all requests across all work managers sharing the capacity constraint
will never exceed the capacity value in each server instance. If multiple applications use the same
global work manager that defines an exclusive capacity constraint, this means that the sum total of
all requests across all applications sharing the work manager will never exceed the capacity value
in each server instance.

525

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 526

Chapter 12: Administering and Deploying Applications

WebLogic Server also supports defining work managers, request classes, and constraints at the
application and application component level by adding definitions to weblogic-application.xml,
weblogic.xml, or weblogic-ejb-jar.xml. When using deployment descriptors to define request
classes and constraints, you have the option to define them inside a specific work manager, as shown
in the following code.

<work-manager>
<name>mylowpriority_workmanager</name>
<fair-share-request-class>
<name>mylowpriority_requestclass</name>
<fair-share>20</fair-share>

</fair-share-request-class>
<max-threads-constraint>
<name>mylowpriority_maxthreadsconstraint</name>
<count>15</count>

</max-threads-constraint>
</work-manager>

Doing this implies that the request class or constraint is exclusive to the work manager in which it
was defined.

You can also define the request classes and constraints outside the context of a work manager and
then reference them by name from a work manager definition, as shown here:

<work-manager>
<name>mylowpriority_workmanager</name>
<request-class-name>
mylowpriority_requestclass

</request-class-name>
<max-threads-constraint-name>
mylowpriority_maxthreadsconstraint

</max-threads-constraint-name>
</work-manager>

WebLogic Server supports defining request classes and constraints outside the context of a work
manager at the global and application levels only. Work managers refer to these shared request
classes and constraints by name. The scope of these shared definitions is as you would expect.
Shared application-defined request classes and constraints are visible only to work managers
defined in the same application or application components within the application. Globally-defined
request classes, which are always sharable, are visible to any work manager on the targeted
servers.

If a work manager does not specify a request class, it gets a copy of the default fair share request
class whose fair share value is 50. Unlike with explicitly-defined request classes, all applications
using a work manager associated with the default fair share request class get their own fair share
of 50, rather than sharing the fair share. WebLogic Server defines a global work manager called
default that does not define a request class or any constraints. As such, each application that uses
the default work manager will have its own fair share of 50. You can modify the default work
manager by creating a global work manager definition with the name default.

526

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 527

Chapter 12: Administering and Deploying Applications

To configure a servlet or JSP to use a work manager, use the <wl-dispatch-policy> initialization
parameter to specify the name of the work manager in the web application’s web.xml deployment
descriptor:

<servlet>
<servlet-name>HighPriorityServlet</servlet-name>
<jsp-file>high_priority.jsp</jsp-file>
<init-param>
<param-name>wl-dispatch-policy</param-name>
<param-value>MyHighPriorityWorkManager</param-value>

</init-param>
</servlet>

To map the entire web application to a work manager, use the <wl-dispatch-policy> element in
the weblogic.xml deployment descriptor:

<weblogic-web-app>
...
<wl-dispatch-policy>MyHighPriorityWorkManager</wl-dispatch-policy>
...

</weblogic-web-app>

To map an EJB to a work manager, use the <dispatch-policy> element in the weblogic-ejb-jar.xml
file:

<weblogic-enterprise-bean>
<ejb-name>HighPrioritySessionEJB<ejb-name>
...
<dispatch-policy>MyPriorityQueue</dispatch-policy>

</weblogic-enterprise-bean>

WebLogic Server checks for stuck threads. Stuck threads are threads that have been processing
a particular request for more than the configured amount of time. If the server determines that
execute threads are stuck, it will take the configured action on the component specifying the stuck
thread detection behavior. WebLogic Server supports configuring stuck thread detection behavior
at the server, work manager, and application levels. We discuss stuck thread detection behavior in
detail in the ‘‘Server Self-Health Monitoring’’ section later in this chapter.

Socket Muxer
The socket muxer manages the server’s existing socket connections. The first thing it does is deter-
mine which sockets have incoming requests waiting to be processed. Then, it reads just enough of
the data to determine the protocol, packages the socket up into a protocol-specific data structure,
and dispatches the socket to the appropriate runtime layer. In this runtime layer, the socket muxer
thread reads the request off the socket, sets up any required context information, determines which
work manager to use, and places the request onto the execute queue.

WebLogic Server has two versions of the socket muxer: an all-Java version that currently has to poll
each socket to determine whether a request is waiting and a version that uses a small native library

527

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 528

Chapter 12: Administering and Deploying Applications

leveraging the more efficient operating system call to make that determination. The Enable Native
IO checkbox on the server’s Tuning Configuration tab tells the server which version to use; this is
on by default on most platforms. It is important to remember that in order to use native I/O, you
must make sure that the native library is in the server’s shared library path. The default scripts that
come with the server set this up for you. If the server fails to load the native library, it will throw a
java.lang.UnsatisfiedLinkException and then load the all-Java version, so you need to pay close
attention to the server output and log file to make sure that you are, in fact, using the native version.

With a small number of concurrent connections, the all-Java version tends to be faster; this is prob-
ably due to the huge overhead associated with making JNI method calls compared to making Java
method calls. As the number of concurrent socket connections grows, however, the native I/O
muxer quickly becomes more efficient. We recommend using the native I/O muxer in most produc-
tion environments if it is available on the target platform.

Best Practice
Always enable native I/O, if available, and check for errors at startup to make
sure it is being initialized properly.

WebLogic Server 8.1 added has a new socket muxer based on the non-blocking I/O (NIO) capabil-
ities introduced in JDK 1.4. Presumably this new muxer will eventually replace the native muxer
because the operating system calls used by the native muxer are now being surfaced in Java. At
the time of writing, the NIO muxer is still not officially supported by Oracle and still does not
support SSL. We expect both of these to change, so check the WebLogic Server documentation for
more information. To enable the NIO muxer, set the Java system property weblogic.MuxerClass to
weblogic.socket.NIOSocketMuxer on the Java command line. One advantage of the NIO muxer is
that it also works on the WebLogic Server client run time, unlike the native I/O muxer. Remember,
however, never to use an unsupported feature in a production environment.

The Java socket muxer steals threads from the default execute queue’s thread pool (on the
server side, this is the self-tuning thread pool). The Socket Readers parameter con-
trols the maximum number of threads the Java socket muxer can steal as a percentage
of the maximum number in the pool. When using the self-tuning thread pool there is no
maximum number of threads in the pool so the server uses the value returned by the
weblogic.management.configuration.KernelMBean.getThreadPoolSize() method, which has a
default value of 15. At this point in time, there is really no good reason to use the Java socket muxer
on the server. WebLogic RMI clients always use the Java socket muxer (or the NIO muxer).

By default, the Socket Readers parameter is set to 33, meaning that the socket muxer can take
up to 33 percent of the maximum number of execute threads from the default execute queue. For
example, if the default execute queue has 15 threads, we may have only 10 threads processing
requests and 5 threads reading incoming requests off the sockets. The Socket Readers parameter is
also configurable using the server’s Tuning Configuration tab.

The native I/O muxer uses its own execute thread pool (associated with the weblogic.socket
.Muxer queue) and uses n + 1 threads by default, where n is the number of CPUs. Note that multi-
core CPUs and hyper-threading also impact the CPU count for determining the number of threads.

528

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 529

Chapter 12: Administering and Deploying Applications

It is possible to change the number of socket muxer threads. WebLogic Server uses Java system
properties to control the number of threads used by the native I/O muxer. WebLogic Server uses
the weblogic.SocketReaders Java system property to control the number of socket reader threads
for the native I/O muxer. In our experience, the only reason we have ever increased the number of
socket reader threads was to allow Java application clients to be more responsive when talking to a
large cluster of servers, and even then, the change was made only on the Java application client and
not on the server. Changes in the client runtime have made even this unnecessary. On machines with
multi-core CPUs with hyper-threading enabled, you may end up with an artificially large number of
muxer threads. For example, 2 quad core CPUs with hyper-threading will cause WebLogic Server
to create 17 muxer threads. In most cases, it makes sense to reduce this number to eliminate the
double counting of CPUs caused by hyper-threading. We have observed cases where too many
native muxer threads had an impact on performance. In those cases, reducing the number of muxer
threads — even as low as 1 — may improve your application’s performance.

Listen Ports and Listen Threads
By default, WebLogic Server starts up listening on two ports. The plain text listen port accepts
connections for HTTP, T3, IIOP, COM, LDAP, SNMP, and WebLogic Server’s cluster-broadcast
protocols. The SSL listen port accepts connections for HTTPS, T3S, IIOPS, LDAPS, and WebLogic
Server’s cluster-broadcast-secure protocols. Each port has a listen thread associated with it. This
thread simply waits for connection requests, accepts the connection, hands the connection off to the
socket muxer, and goes back to listen for the next connection request.

WebLogic Server also has the concept of an administration (admin, for short) port, allowing admin-
istration requests to the server to be directed to a separate port and associated listen thread. When
using the admin port, WebLogic Server will reject all administrative requests that arrive at any listen
port other than the admin port. Use of the admin port also requires all administrative requests to
use SSL.

In addition to the default network configuration (also known as the default channel) described
already, WebLogic Server gives the administrator more flexibility and control over the server’s
network configuration. While the server still requires at least one enabled port on this default chan-
nel, it gives us the ability to turn off the default channel’s plain text listen port. We talk more about
these more advanced network configuration capabilities in the ‘‘Network Channels’’ section.

Application Container
The application container is simply the mechanism in which the server deploys applications.
WebLogic Server requires that all application components be packaged as some type of Java EE
application component. This packaging has multiple benefits that we discuss in other portions
of this book, but the main implication that affects administration is the ability to perform what is
known as hot deployment. Using hot deployment, we can deploy, redeploy, or undeploy an applica-
tion while the server is running without affecting other applications or requiring a server restart.

To support unloading an application and achieving hot deployment, WebLogic Server relies
on Java’s ability to define custom classloaders. The reason for using custom classloaders is
simple: Java does not provide any mechanism to unload or reload classes loaded by its default
classloader, known in the WebLogic Server documentation as the system classloader (the one that
uses the CLASSPATH environment variable for its search path). The system classloader simply loads
the class from disk the first time it encounters a need for that class and then never looks at the
class file on disk again. This means that once the system classloader loads a class, it will never pick

529

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 530

Chapter 12: Administering and Deploying Applications

up any changes to that class. Restarting the JVM is the only way to reload a class with the system
classloader. Fortunately, Java does provide the ability to define and use custom classloaders.
WebLogic Server deploys Java EE applications using custom classloaders so that you can unload or
reload an application without restarting the server. See the discussion in Chapter 8 or the WebLogic
Server documentation at Link 12-2 for more information.

WebLogic Server supports three models for redeploying applications in a running server: produc-
tion redeployment, in-place redeployment, and partial redeployment. Production redeployment
supports a side-by-side application versioning model through which you can deploy a new version
of an application, verify that it is working, and activate the new version — all without disrupt-
ing existing client requests using the old version of the application. We discuss the redeployment
models in more detail in the ‘‘Versioning Applications’’ section later in this chapter.

In this section, we have discussed the primary architectural features of WebLogic Server. A
thorough understanding of these features will go a long way toward helping application architects,
developers, and administrators make good decisions about application design, development,
debugging, configuration, management, and monitoring. Many problems with WebLogic Server
applications can be explained in terms of the concepts discussed in this section, so always keep
these concepts in mind when looking for the root cause of a problem. Next we take an in-depth
look at the WebLogic Server clustering architecture.

WebLogic Server Clustering Architecture
WebLogic Server clustering provides load balancing and failover capabilities to Java EE–based
applications. Through its clustering mechanisms, WebLogic Server loosely couples together a set of
server processes, distributed across one or more machines, so that they can share the responsibilities
of processing requests for the applications deployed to the cluster. Exactly what facilities WebLogic
Server clustering provides to an application depends on whether the application is web-based or
RMI-based. Before we get into the details of the application-level facilities provided, let’s look under
the hood to see how WebLogic Server clustering works.

As previously mentioned, WebLogic Server clustering provides a loose coupling of the servers in
the cluster. Each server in the cluster is independent and does not rely on any other server for any
fundamental operations. Even if contact with every other server is lost, each server will continue
to run and be able to process the requests it receives. Each server in the cluster maintains its own
list of other servers in the cluster through periodic heartbeat messages. Every 10 seconds, each
server sends a heartbeat message to the other servers in the cluster to let them know it is still alive.
Heartbeat messages are sent using TCP/IP unicast or UDP multicast technology built into the JVM.
Each server receives these heartbeat messages from other servers and uses them to maintain its
current cluster membership list. If a server misses receiving three heartbeat messages in a row from
any other server, it takes that server out of its membership list until it receives another heartbeat
message from that server. This heartbeat technology allows servers to be dynamically added and
dropped from the cluster with no impact on the existing servers’ configurations.

It is possible to change the number of missed heartbeats necessary to remove a server from the
cluster by changing the value of the Idle Periods Until Timeout parameter located in the Advanced
area of the cluster’s Messaging Configuration tab. Typically, you should leave this setting alone.
In cases where you can guarantee your network is reliable and the servers are able to process these
heartbeat messages in a timely fashion, you might want to experiment with a lower setting to speed

530

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 531

Chapter 12: Administering and Deploying Applications

up the time it takes to detect server death so as to speed up failover. However, we caution you from
changing this setting without careful consideration and thorough testing as it may cause servers to
leave and re-enter the cluster unnecessarily.

WebLogic Server also provides a cluster-wide JNDI namespace. Again, each server maintains its
own view of the cluster-wide JNDI namespace, and any changes to the cluster-wide JNDI names-
pace on one server are propagated to the other servers via a reliable TCP/IP unicast– or UDP
multicast–based protocol. This allows applications to have a global view of the cluster-wide JNDI
namespace from any server in the cluster. Recognize that this JNDI replication is designed for ser-
vice advertisement across the cluster, and not for replicating or sharing non-RMI-based objects
across the cluster. Any object bound into the cluster-wide JNDI tree is always associated with
the server that did the binding. If that server goes down, all JNDI references to the object will be
removed from every server in the cluster. Of course, this is what you want for RMI-based refer-
ences, but probably not what you would expect or want for cluster-wide sharing of non-RMI-based
objects.

At the time of writing, unicast-based clustering requires an explicit ListenAddress
to cluster across machines. There are two ways to accomplish this. You can simply
set each servers’ ListenAddress explicitly rather than leaving it blank. As an
alternative, you can define a custom network channel for unicast traffic and
explicitly set the ListenAddress for that network channel.

Clustering for Web Applications
For web applications, WebLogic Server clustering provides persistence mechanisms for
HttpSession objects. Through these persistence mechanisms, web applications that make use
of HttpSession objects to store temporary state information can transparently fail over when a
server in the cluster fails. Configuring the persistence mechanisms involves making changes to the
web application’s weblogic.xml deployment descriptor.

The most popular form of session persistence is in-memory replication. WebLogic Server uses
a primary-secondary replication scheme in this form of persistence. The primary copy of the
HttpSession object will be created by whichever server happens to be processing the user’s first
request requiring access to the HttpSession. At the end of that request, and before the response is
returned to the user, the server will create a secondary copy of the HttpSession on another server
in the cluster, encode the location of the primary and secondary copies of the HttpSession in the
session ID, and add a cookie that contains the session ID to the response (the server can use URL
rewriting if cookies are disabled). Typically, the primary server for a particular session will receive
all future requests for that session. If the primary server fails, the first request following the failure
will be routed to another server in the cluster. When the server receives a request for which it is not
the primary, it will become the new primary server and make sure that another server in the cluster
is holding the secondary.

Three burning questions may occur to you at this point:

❑ How is the routing accomplished?

❑ How does WebLogic Server determine where to place the secondary copy of a session?

❑ How does WebLogic Server detect changes to the primary copy and transmit them to the
secondary?

531

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 532

Chapter 12: Administering and Deploying Applications

Session-Based Routing
WebLogic Server supports two different mechanisms for accomplishing the routing of HTTP
requests. The first routing mechanism uses a web server plug-in to proxy requests from a web
server to the WebLogic Server cluster. Though Chapter 15 discusses deployment models in more
detail, Figure 12-3 shows a common deployment model for this architecture. Web server plug-ins
are available for Sun Java System Web Server, Microsoft IIS, and Apache-based web servers and
for WebLogic Server itself. It is important to note that the web server plug-in routing behavior
was changed in 2005 so that it now behaves like a hardware load balancer — that is, it ignores the
secondary session location information when routing a request for a session whose primary server
is down. This change was made to allow better distribution of a failed server’s load across the
remaining cluster members.

FirewallFirewall

Web Server
w/ WLS Plug-in

Web Server
w/ WLS Plug-in

Hardware
Load Balancer

Web Server
w/ WLS Plug-in

Clustered
WebLogic Server

Database

Clustered
WebLogic Server

Clustered
WebLogic Server

Clients

Figure 12-3: Web server proxy-based deployment model.

When the plug-in receives a request from the web server, the plug-in looks for a session ID associ-
ated with the request. If a request does not contain a session ID, the plug-in uses a round-robin load
balancing algorithm to determine the server to which the request should be sent. When a request
does contain a session ID, the plug-in uses information encoded in the session ID to determine the
location of the primary copy of the particular session. Whenever possible, the plug-in will route the
request to the server that contains the primary copy of the session. If the server holding the primary
copy is down, the plug-in tries to send the request to another server in the cluster. When a server
receives a request with a session ID for which it does not hold the primary copy of the session, it
will look at the location information in the session ID to determine the location of the session copies.

If both the primary and secondary servers still exist, the server will call out to the primary server
to tell it to send back a copy of the session and to give up its rights as the primary for this session.
Once it has the session data, the server processes the request. At the end of the request processing,
the server creates a new secondary copy of the session based on the new location of the primary,
rewrites the session ID to encode the new primary and secondary location information, and returns
the response to the caller. Choosing a new secondary location is necessary to try to keep the sec-
ondary on a different machine from the primary.

If only the secondary exists, the server will call out to the secondary server to tell it to send back
a copy of the session and invalidate itself as the secondary. At that point, the processing is exactly

532

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 533

Chapter 12: Administering and Deploying Applications

the same as previously described; the server processes the request, creates a new secondary copy,
creates a new session ID, and returns the new session ID along with the response.

If both the primary and secondary servers are down (or have been restarted), the server will treat
the request as if it did not contain a session ID and process the request, creating a new session,
secondary copy, and session ID. This is an inherent feature of the in-memory replication model and
is not a shortcoming of in-memory replication. WebLogic Server replicates only session data as the
result of a request for that session. Given that WebLogic Server does not attempt to keep cluster-
wide session-to-server mapping information (presumably for performance and scalability reasons),
the only way to locate a session is by the information contained in the session ID that is passed back
to the browser.

The plug-in also supports transparent retry logic so that if it fails to deliver a request successfully to
a WebLogic Server instance, it can resend the request to a different server in the cluster. If the plug-
in determines that the server never received the request, it will always try to resend the request to
another server in the cluster. In cases where the plug-in successfully sent the request to the server,
but never received a response, you can configure the plug-in either to retry the request (the default)
or to return an error to the caller. The two plug-in configuration parameters that control this behav-
ior are Idempotent and HungServerRecoverSecs.

If the Idempotent parameter is set to true (which is the default value), the plug-in will retry any
request for which it does not receive a response within the HungServerRecoverSecs timeout inter-
val. The default timeout value is 300 seconds; the accepted range of values is 10 to 600 seconds.
When using the Idempotent feature, applications must be able to handle duplicate requests prop-
erly because the server may have already processed the message (or may process the message later
if the server’s execute queue is backed up). For applications that are unable to handle duplicate
requests, set the Idempotent parameter to false. For the Sun Java System Web Server and Apache
web servers, these parameters can be set differently for different URLs and MIME types.

The second routing mechanism uses a hardware load balancer that routes directly to the cluster.
Figure 12-4 shows a common deployment model for this architecture. Because the hardware load
balancers generally do not understand the contents of the WebLogic Server session ID, WebLogic
Server has to be able to handle situations where requests not directed to the server holding the
primary copy of the session can be promoted to the primary. To accomplish this, it uses the same
mechanism described in the web server plug-in replication discussion. Though this mechanism is
general enough to work with all hardware load balancing schemes, the overhead of copying the
session between servers will dramatically compromise both the performance and the scalability of
the cluster. Fortunately, most hardware load balancers on the market today support one or more
sticky load balancing algorithms.

Using a sticky load balancing algorithm, the load balancer remembers where it sent the last request
for the particular user’s session and always tries to route all subsequent requests from that session
to the same server. The only time the load balancer will route the request to a different server is in
the event of a failure of the primary server. When this happens, the load balancer will remember
the new location and route all subsequent requests there until another failure happens. Clearly
this mechanism is highly desirable because it will prevent moving the session between servers
except when the primary server fails. We discuss this deployment model and its advantages and
disadvantages in more detail in Chapter 15.

533

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 534

Chapter 12: Administering and Deploying Applications

FirewallFirewall

Hardware
Load Balancer

Clustered
WebLogic Server

Database

Clustered
WebLogic Server

Clustered
WebLogic Server

Clients

Figure 12-4: Proxy-less deployment model.

Secondary Selection
WebLogic Server uses two mechanisms to help select the secondary server for in-memory replica-
tion: machine definition and replication group definition. If we choose not to use either of these
mechanisms, WebLogic Server uses a simple ring algorithm to select the secondary server (for
example, server 1 has primaries that are replicated to server 2, server 2 has primaries that are repli-
cated to server 3, and server 3 has primaries that are replicated to server 1). While constructing this
ring, WebLogic Server tries to determine which servers are running on the same machines and con-
struct the ring to keep primary and secondary session copies on different machines, where possible.
Provided WebLogic Server correctly determines the topology, this works fine as long as there are
no special circumstances that require more deterministic selection.

By defining machines and assigning server instances to machines, you can tell WebLogic Server
which server instances live on which machines so it no longer needs to guess. In addition, you
can use replication groups to gain even more control over the secondary selection process. By
grouping servers into replication groups, you can tell WebLogic Server that a particular replication
group should use another replication group as its preferred secondary replication group.
If replication groups are in use, the secondary selection algorithm changes to the following
sequence:

1. Is there a server in the preferred secondary replication group?

2. Is there a server in any other replication group that is located on another machine?

3. Is there a server in any other replication group that is located on the same machine?

Although specifying machines and replication groups is completely optional, we recommend spec-
ifying the machine information in all environments given the fact that some of the node manager
configuration information is set at the machine level. Replication groups, on the other hand, are
something that you should use only if you have a specific purpose in mind because, by default,
WebLogic Server will make every effort to replicate objects across machines even without the use of
replication groups.

534

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 535

Chapter 12: Administering and Deploying Applications

Best Practice
Always specify the machine information for servers in a cluster when using in-
memory replication. Define replication groups only if you need more control over
the secondary selection process.

WebLogic Server also supports two cross-cluster session replication models: metropolitan-area
network (MAN) and wide-area network (WAN) replication. MAN replication uses in-memory
replication to keep the primary and secondary copies of the session on different clusters. WAN repli-
cation uses in-memory replication within the primary cluster and asynchronous replication via
a database to keep a third copy of the session at the remote data center. See the ‘‘Cross-Cluster
Replication’’ section later in this chapter for a detailed discussion of these capabilities.

Change Detection and Propagation
The server detects changes to the HttpSession objects by trapping all calls to the methods
used to modify the objects bound into the session. WebLogic Server simply sets hooks in the
setAttribute() and removeAttribute() methods to detect attribute modification during
the course of processing a request. At the end of the request processing, but before returning the
response to the user, the server will synchronously update the secondary copy of the session
(or the persistence store) by propagating only the changes. This implementation has a couple of
implications.

First, objects that already exist in the session from a previous request will need to be rebound into
the session if we make changes to them during the current request processing. This is somewhat
unnatural to most Java programmers. When writing a servlet or JSP to access a previously created
object stored in the session, the HttpSession.getAttribute() method returns a reference to the
existing object. Because the session obviously already has a reference to the object, it seems like
an unnecessary step to reset the attribute with the same object’s reference, but it is critical because
this is how WebLogic Server identifies the modified attributes. We feel that the trade-off of having
to invoke setAttribute() explicitly every time you modify an existing object is better than the
alternative. Without the signal provided by setAttribute(), the server would incur more overhead
during session persistence, perhaps by copying the entire object every time or using before and after
images to determine what, if anything, has changed in the session.

WebLogic Server will persist the changes to the HttpSession object only when
using session persistence. The server detects changes to the HttpSession objects by
trapping calls to the setAttribute() and removeAttribute() methods. This means
that any objects previously bound into the session before the beginning of the
current request must be rebound into the session by calling setAttribute() if they
are modified. Failure to do so will result in changes not being persisted.

Second, the server propagates changes to objects bound into HttpSession at the HttpSession
attribute level. This means that the server propagates any change to an attribute by serializing

535

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 536

Chapter 12: Administering and Deploying Applications

the entire object associated with the attribute and sending it to the secondary server (or the
persistent store), regardless of the magnitude of the change to the object (or even if there is no change
at all) whenever you call the setAttribute() method for that object. This means that the size and
granularity of the objects bound into the HttpSession will directly affect performance and
scalability. We revisit this discussion in Chapter 13.

Clustering for RMI-Based Applications
In RMI-based applications (which include EJB applications), the client uses a stub to invoke a
method on the remote, server-side object. In standard, non-clustered RMI, this stub contains a sin-
gle reference to the server process where the server-side object resides. WebLogic Server clustering
introduces the concept of a replica-aware stub (also referred to as a cluster-aware stub) — a stub that
contains references to all servers in the cluster that have a replica of the particular object. The stub
load balances method invocations on the stub by distributing the requests across servers in the clus-
ter based on the load balancing algorithm in use. By default, WebLogic Server uses a round-robin
algorithm, but it also supports a couple of other load balancing algorithms as well as an extensible
mechanism, known as call router objects, whereby programmers can supply their own load bal-
ancing logic. The current interface for this extensible load balancing mechanism does not provide
access to the dynamic cluster list contained in the stub. This makes the mechanism of limited value
because without this, there is no dynamic way for the call router object to know which servers are
in the cluster and supporting replicas of the target object — at least, not without having the call
router make calls to the Java Management Extensions (JMX) APIs in the server to determine this
information.

Best Practice
Use one of the built-in load balancing algorithms rather than trying to use call
routers due to their limitation of not having access to the dynamic cluster list
maintained by the stubs.

By default, WebLogic Server uses a round-robin load balancing algorithm. It is important to note
that the load balancing state is per-stub instance. What this means is that each time the caller gets
a new stub (for example, via a JNDI lookup, calling a Remote interface method on an EJB remote
object, and so on), the first invocation on the stub will randomly pick a server in the list to use
to process the first request. All subsequent requests on that same stub will apply the chosen load
balancing algorithm. For example, if the stub’s replica list has servers s1, s2, and s3 in it and you
are using the default load balancing algorithm, if the first request is sent to s2, the next requests
will go to s3, s1, s2, and so on. If, however, the client gets a new stub for every request, the load
distribution will be somewhat random based on the fact that each stub instance selects a random
starting point in the list to begin applying its algorithm. Keep this point in mind when trying any
tests of WebLogic Server clustering to observe the load balancing behavior.

One side effect of this load balancing behavior is that remote RMI-based clients may end up with
socket connections to every server in the cluster. While this might be okay for small applications,
this limits the scalability of RMI-based applications. For example, 1000 RMI-based clients connecting
to a 10-node cluster would end up creating 10,000 socket connections. Many times it is sufficient to
distribute the load by simply distributing the client connections across the cluster and having each
client communicate with a single server until a time when that server fails. As such, WebLogic
Server provides server affinity–based versions of its load balancing algorithms that balance the load

536

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 537

Chapter 12: Administering and Deploying Applications

on the initial connection and then stick to the first server to which the client connects. A client will
not connect to another server unless the first server fails. These server affinity–based algorithms
scale linearly with the number of clients since each client typically only requires a single socket
connection into the cluster

Best Practice
Use one of the server affinity–based load balancing algorithms when you expect to
have many more remote RMI-based clients than you have servers in your cluster.

If a server fails, the stub provides retry logic under certain conditions. Much like the previous
discussion concerning the proxy plug-in, the stub will always retry requests that it knows never
reached the server. The stub, though, will not try to resend failed requests that may have reached
the server unless specifically told to do so. One important thing to remember is that if the stub and
the target are collocated, no load balancing will be done because it is almost always more efficient
to invoke the local replica of the object than it is to call out to another replica on another server.

RMI programmers have a great deal of control and flexibility when configuring the replica-aware
stub behavior. For example, the –methodsAreIdempotent switch to WebLogic’s RMI compiler
(weblogic.rmic) allows the programmer to tell the stub that the object’s methods have been written
in such a way that it is safe to retry failed requests whose state is unknown. Though this particular
option is also surfaced in the deployment descriptor for stateless session beans, the RMI compiler
has other options available. Fortunately, most of the important options are available to EJB pro-
grammers, and in many cases, the WebLogic Server default settings are often good enough for
configuring EJB clustering. Because most Java EE developers are using the EJB programming model
instead of the lower-level RMI programming model, we will spend the rest of our time talking
specifically about EJB clustering.

WebLogic Server provides a very robust clustering model for EJBs. By default, all EJB home objects,
stateless session beans, and entity beans use cluster-aware stubs when they are running in a clus-
tered environment. This means that even if your programmers are not developing in a clustered
environment, their deployed beans will generally become cluster-aware once they are put into
a cluster. Stateful session beans can also use in-memory replication, much like that previously
described for HttpSession objects. The load balancing and failover behavior of the stubs varies
depending on the types of objects in question.

All EJB home objects and stateless session beans use load balancing stubs by default. Whether the
stubs should be cluster-aware and what load balancing algorithm they should use is configurable on
a per-bean basis in the weblogic-ejb-jar.xml deployment descriptor. EJB home stubs for stateless
session beans are always set to use idempotent behavior; all other types of EJB home stubs are not.
By default, stateless session beans are not set to be idempotent, but they can be configured to use
idempotent behavior by setting a flag in the deployment descriptor. All EJB methods (home and
remote interface methods) can be configured to be idempotent using the <idempotent-methods>
element in the weblogic-ejb-jar.xml deployment descriptor:

<weblogic-ejb-jar>
...
<idempotent-methods>
<method>

537

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 538

Chapter 12: Administering and Deploying Applications

<ejb-name>TellerEJB</ejb-name>
<method-intf>Remote</method-intf>
<method-name>checkBalance</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</method>

</idempotent-methods>
...

</weblogic-ejb-jar>

By default, stateful session bean instances exist only on the server on which they were created.
They can be configured to use in-memory replication, just like the HttpSession object, using the
weblogic-ejb-jar.xml deployment descriptor, a topic discussed in Chapter 6. If a stateful ses-
sion bean is using replication, the stub will be aware of both the primary and secondary copy of the
bean but will always route the calls to the primary copy of the bean except in the case of failure.
Unlike HttpSession replication, stateful session beans do not require (or support) a routing layer
because the stub handles all the routing. Therefore, stateful session bean replication does not use the
machinery that redirects a misdirected request in the case of the HttpSession object requests. The
change detection mechanism for stateful session beans uses a serialized before and after image to
determine the changes that need to be sent to the secondary at the end of the transaction (or method
call for nontransactional invocations) because there are no methods by which the server can detect
changes to the bean’s internal state.

By default, EJB 2.x entity beans use stubs that are cluster-aware; however, entity bean stubs use a
sticky routing algorithm to route requests to the cluster. The primary reasons for doing this are to
improve the caching capabilities of the server and to reduce transaction propagation across servers
in the cluster to improve performance.

In this section, we discussed the details of the WebLogic Server clustering architecture and the
application facilities it provides. A thorough understanding of the architecture will help application
programmers make good decisions on application design to maximize the benefits of clustering.
Administrators should also understand the architecture and its implications when determining
production deployment configurations. The next section talks about the admin server and its critical
role for the application administrator.

Admin Server
WebLogic Server uses the admin server to configure, manage, and monitor the servers in a domain.
The admin server is simply a WebLogic Server with some internally deployed applications that
provide administrative capabilities for the entire domain. All servers internally deploy some admin-
istrative applications that allow the admin server to send administrative information to them.

The admin server maintains an XML repository of configuration information in the config direc-
tory. This directory contains the config.xml file and several subdirectories that can contain other
XML files with information about every server, every cluster, every application, and every ser-
vice deployed in the domain. Although you can edit the config.xml and related files by hand,

538

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 539

Chapter 12: Administering and Deploying Applications

we strongly recommend that you use the WebLogic Console or other JMX-based tools like the
WebLogic Scripting Tool (WLST) to change configuration information.

The typical application deployment model also uses the admin server as the application repository.
Under this model, you only need to place the Java EE application package(s) physically on the
admin server. You can use the WebLogic Server administration tools to deploy the applications
to any server or cluster in the domain. At startup, the managed servers contact the admin server
to determine their configuration and download any changes that may exist. In addition, you can
deploy applications to a managed server that is already running because the admin server will push
the applications out to the managed server and deploy it into the server.

One word of caution: the admin server has a feature known as auto-deployment that is enabled when
you create a domain using development mode. With this feature, the server watches the autodeploy
directory for changes and automatically deploys new or changed applications that it finds there. As
discussed in Chapter 5, this feature is useful during development, when the developers are using
a single server as both the admin server and the application deployment server. There are several
issues with this feature that make it undesirable for any environment other than a single server
development environment, however. Before discussing the issues with auto-deployment mode,
recognize that disabling auto-deployment mode does not disable hot deployment or redeployment
of applications. It only forces the administrator to tell the server when to hot deploy the application
via one of the WebLogic Server administration tools (for example, the WebLogic Console).

The first issue with auto-deployment mode is that the admin server will try to deploy a new applica-
tion only to the admin server. Although this is okay for development on a single server, it is almost
never the desired behavior in multi-server environments. The second issue is that there are sev-
eral limitations to auto-deployment mode, as described at Link 12-3. As such, Oracle recommends
that you use the other means to automate deployment, such as the split directory structure and the
wldeploy Ant task. We talk more about the split directory structure in Chapter 14.

Fortunately, it is very easy to disable auto-deployment by changing the domain to use production
mode. Note that the setDomainEnv scripts created by the WebLogic Configuration Wizard (to be
discussed later in this chapter) have an environment variable called PRODUCTION_MODE that controls
this feature; set it to true to disable auto-deployment mode.

The WebLogic Console also supports enabling production mode. Simply go to the domain’s General
Configuration tab, check the Production Mode checkbox, and restart the domain. However, be
aware that once you use the WebLogic Console to activate production mode, it adds an entry to
config.xml turning on production mode. Once this entry exists, the PRODUCTION_MODE environment
variable in the startup script has no effect. To change your domain back to development mode, you
must either use the JMX API (for example, by using WLST) or manually edit the config.xml file to
either change the value of the entry to false, as shown in the following code, or remove it entirely.

<production-mode-enabled>false</production-mode-enabled>

We recommend removing it entirely for development mode because that will re-enable the
PRODUCTION_MODE environment variable in the setDomainEnv script.

539

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 540

Chapter 12: Administering and Deploying Applications

Best Practice
Disable auto-deployment mode for any multiserver environment. Applications
can still be hot deployed using the WebLogic Server administration tools such as
the WebLogic Console even with auto-deployment mode disabled. Even in single
server environments, prefer other mechanisms to automate deployment such as
the split directory structure and the wldeploy Ant task.

WebLogic Server uses a two-phase deployment model. In phase 1, the admin server stages the
application by distributing the new application code to each of the target servers and having each
server prepare the application for deployment. Once all target servers complete phase 1, the
admin server tells each target server to activate the application in phase 2. If any failures occur,
the admin server rolls back the activation of the application, giving you the chance to fix the problem
without leaving the application running on some servers but not on others.

As described previously, managed servers typically contact the admin server when they boot to
gather their configuration and application information. In case of an admin server crash, the man-
aged servers will periodically try to contact the admin server until the connection is re-established.

If the admin server is unavailable when a managed server is starting, the managed servers will
start in managed server independence (MSI) mode. MSI mode allows a managed server to start up
using its cached copy of the configuration information and applications when the admin server
is not available. When the admin server restarts, the managed server will reconnect to the admin
server, as previously discussed. When this happens, the managed server running in managed server
independence mode will leave this mode and register itself with the admin server for future updates
to its configuration.

Best Practice
Production environments should always use managed server independence,
which is the default.

WebLogic Server supports a flexible deployment model that is configurable via the server’s
Deployment Configuration tab in the WebLogic Console. The Staging Mode parameter controls the
deployment model. The three possible values are:

❑ stage — With stage, you place the applications on the admin server, and it pushes the
applications out to the managed servers’ staging directories as part of phase 1 of the two-
phase deployment process.

❑ nostage — With nostage, the admin server assumes that the files are already available
to all managed servers via a shared directory. So the admin server does not push the files
out to the managed servers; rather, it simply tells them to deploy the application from this
shared directory without copying the files to their staging directory.

❑ external_stage — With external_stage, the admin server assumes that the files are
already available in each of the managed servers’ staging directories. You are responsible

540

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 541

Chapter 12: Administering and Deploying Applications

for making sure that the files in each managed servers’ staging directory are up-to-date.
At deployment time, the admin server tells each of the managed servers to prepare and
deploy the applications from their staging directories.

The default staging mode for managed servers is stage; for applications you deploy to the admin
server, it uses nostage.

Node Manager
The node manager provides a mechanism allowing you to start and force the shutdown of WebLogic
Server instances from the WebLogic Console. The admin server depends on the machine definitions
for each managed server to know which node manager to contact for a specific server.

WebLogic Server supports two versions of the node manager: a Java node manager and an SSH-
based node manager. The SSH node manager started out as a simplified version of the node man-
ager to address the challenges of the Java node manager’s requirement for using two-way SSL to
communicate with the admin server. In WebLogic Server 9.x and 10.0, the SSH version was the only
one that supported some more advanced features (for example, Automatic Whole Server Migration);
however, this changed in WebLogic Server 10.3. The SSH version is only supported on Unix-based
operating systems. Given that the Java node manager no longer uses two-way SSL, is feature com-
parable, and provides additional security, we will not discuss the SSH-based node manager in this
book. For more information on the SSH-based node manager, please see Link 12-4.

By running the node manager as a daemon process started at machine boot time, the admin server
is able to tell the node manager on a remote machine to start or kill a particular WebLogic Server
instance. In addition, the node manager monitors the health of the servers for which it is responsible
and can restart failed servers — including the admin server itself. This makes the node manager
a critical part of any production deployment. By default, WebLogic Server instances allow the
node manager to restart them should the JVM process terminate (either because the process dies
or because the machine reboots). The node manager can monitor and restart only those servers that
it starts. Currently to disable the restart capability of a particular server, you must use the JMX API
(or hand edit config.xml). The following WLST script shows how you do this.

connect(’weblogic’, ‘weblogic1’, ‘t3://127.0.0.1:7001’)
edit()
startEdit()
cd (’Servers/AdminServer’)
cmo.setAutoRestart(false)
activate()

Several additional parameters affect the behavior of this restart capability.

The Max Restarts Within Interval parameter tells the node manager the maximum number of
times it can automatically restart the server within a specified time interval. Currently, the time
interval parameter, formerly known as the Restart Interval, is not surfaced in the WebLogic Con-
sole so you must use WLST to modify the RestartIntervalSeconds attribute on the ServerMBean
if you want to use an interval other than the default of 3600 seconds. Restart Delay Seconds tells
the node manager to wait for a period of time before attempting to restart the server. This param-
eter comes in handy in cases where the underlying operating system does not immediately release

541

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 542

Chapter 12: Administering and Deploying Applications

TCP listen ports for reuse — a condition that prevents the server from re-establishing its listen ports
upon restart.

WebLogic Server instances monitor their health status by monitoring the status of their critical
subsystems. We discuss this in more detail in the ‘‘WebLogic Administration Key Concepts’’ section.
The node manager periodically checks the health status of its servers. If any server is in the failed
state, the node manager can kill and restart it. To enable the restart of servers in the failed state, use
the Auto Kill If Failed checkbox. The Health Check Interval controls the frequency with
which the server checks its own health as well as the frequency with which the node manager
queries the server for its health status. Remember that the node manager monitors the health of
only those servers that it starts.

In this section, we have discussed the important architectural features of the WebLogic Server archi-
tecture. This should give you a good fundamental understanding of how the product works and
how the pieces fit together. Next, we examine in more detail some important administrative con-
cepts that you will need to understand, before jumping into our discussion of how to administer a
WebLogic Server domain.

WebLogic Administration Key Concepts
In the previous section, we discussed the core components of the WebLogic Server architecture. Now,
we are ready to talk in more detail about some administrative concepts before jumping into the details
of WebLogic Server administration. We begin the discussion by talking about the server life cycle. From
there, we proceed to talk in more detail about server self-health monitoring, and we finish up with a
discussion of network channels.

Server States
WebLogic Server formally defines the server life cycle. In early versions of WebLogic Server, the server
was basically either running or not. This caused two problems for WebLogic Server administrators. First,
starting the server involved one long-running step. Depending on the number of applications in use and
the required preparation work the server would perform to prepare the applications and services for use,
the server could take a very long time to start up to a point where it could start accepting client requests.
Second, there was no way to guarantee that the server would process all in-flight requests before shutting
down. Other, less obvious problems also existed because the server did not rigorously define the boot
order of its subsystems.

Figure 12-5 shows the full server life cycle state transition diagram. The five primary states are shutdown,
standby, admin, running, and failed. A server is in the shutdown state when the JVM process for that server
does not exist. When a server first starts up, it initializes itself to a point where it deploys the applications
and listens on the administration port, but not on its external listen ports. In standby mode, the server
tries to keep its claim on shared resources to a minimum. This allows the server to act as a hot standby in
conjunction with a high availability (HA) framework.

For a server to exist in standby mode (rather than just passing through this state on the way to the shut-
down or running states), you must enable the domain-wide administration port. The reason for this is
simple: if the standby state does not claim the listen port resources, the only way to tell the server to
change from the standby state is if it is listening for administrative commands on its administration port.

542

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 543

Chapter 12: Administering and Deploying Applications

Shutdown

Standby

Admin

Running

Failed

StartingShutting
Down

ResumingSuspending

Start in
Standby

Start in Admin

Start

Resume

Suspend

Shutdown

Shutdown

Failed

(default)

(optional)

Resume

Figure 12-5: Server life cycle state transition diagram.

When a server is in the admin state, it only accepts requests from users in the Admin role. While the
WebLogic Console is accessible, all other applications are activated in ADMIN mode which means that
only users with the Admin or AppTester roles can submit requests to these applications. This is very
valuable in that it allows you to verify that your application is functioning properly before making it
available to process end user requests.

Use the resume command to change the state of a server from either the standby or admin state to a
running state. The graceful or forceful suspend commands allow you to transition from a running state
to the admin state and the graceful or forceful shutdown commands allow you to transition from any of
the other states to a shutdown state.

When gracefully shutting down a server, the server passes through standby mode but continues to shut
down. There is currently no way to go from running to standby without stopping and restarting the
server. When a server is told to shut down gracefully, the server will stop accepting new requests and
will continue processing in-flight requests until all requests in its execute queues are complete. Once
the server has reached a quiescent state, it will transition itself into the standby mode briefly before
continuing to shut itself down. Forcing a server to shut down will not allow any in-flight requests to
complete and will cause any in-flight requests to fail.

Once an initializing server reaches the standby state on its way to starting up, it is possible for the server
subsystems to fail. If enough of the critical subsystems fail, the server will transition itself into the failed
state. At this point, the server process is running, but it is not capable of doing any useful work. A server
in the failed state will try to change itself into a non-failed state. If the server fails before reaching the
admin state, it will shut itself down. If it fails after reaching the admin state, by default it will simply
change back to the admin state; you have the option of having the server shut itself down instead. Fortu-
nately, the node manager can restart servers whose state is failed. For more detailed information on each
of the states, please see the WebLogic Server documentation at Link 12-5.

543

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 544

Chapter 12: Administering and Deploying Applications

Server Self-Health Monitoring
WebLogic Server subsystems are responsible for monitoring their own status. The criteria each subsys-
tem uses to determine its health status is specific to the particular subsystem. For example, the core server
subsystem monitors the health of the default and user-defined work managers. At startup, each subsys-
tem registers itself with the server and specifies whether it is critical to the overall server’s operation.
Currently, the list of critical subsystems is not configurable and includes systems like RMI, JTA, and core.

The server monitors the health state of each registered subsystem and uses this information to determine
the overall health of the server. Currently, the server periodically polls each subsystem to ask for its cur-
rent health state. The frequency with which the server polls is controlled by the Health Check Interval
parameter on the server’s Health Monitoring Configuration tab. The health of the server’s subsystems
is displayed in the server’s Health Monitoring tab and available programmatically through the JMX
MBean APIs. If any of the server’s critical subsystems fail, the server changes its state to failed.

As discussed earlier, WebLogic Server has a notion of stuck threads — threads that have been processing
a particular request for longer than a configured amount of time. By default, the server considers a thread
stuck if it takes more than 600 seconds to process a single request. What a server does when it deter-
mines one or more threads are stuck depends on the server’s, its work managers’, and its applications’
configuration.

Prior to WebLogic Server 9.0, an administrator really had little control over stuck thread behavior. If the
server detected a stuck thread, it would log a warning message to its log file and if all execute threads
were stuck the server would change its state to failed. A server in the failed state would continue to run
until such a time that it was killed and restarted, either automatically by the node manager or manually
by an administrator. The Stuck Thread Max Time and Stuck Thread Timer Interval parameters on the
server’s Tuning Configuration tab are the only controls over this pre-9.0 behavior. Though this behavior
is still available, its use is discouraged in favor of the newer mechanisms we discuss next.

WebLogic Server 9.0 introduced more control over stuck thread behavior. Applications, work managers,
and servers all have the ability to specify their own stuck thread behavior. At the server level, the server’s
Overload Configuration tab controls its stuck thread behavior. Max Stuck Thread Time specifies the
length of time after which the server considers a thread stuck. If Stuck Thread Count threads become
stuck, the server transitions itself to a failed state. Once the server transitions to a failed state, the Failure
Action parameter controls what action to take to correct the situation.

Work managers can define how they want to handle stuck threads. At the highest level, a work manager
might choose to completely ignore stuck threads. Though this is not something we recommend, it can
be useful as a temporary means when porting applications to WebLogic Server that grab hold of exe-
cute threads and never release them (for example, for polling purposes). By configuring the offending
application component to use its own work manager that ignores stuck threads, you prevent the server
from logging these stuck thread warning messages for situations where the application is functioning as
expected. Of course, we recommend that you look for ways to restructure your application so it does not
grab and hold execute threads for extended periods of time (for example, by using the CommonJ Timer
API to schedule periodic work).

Work managers support defining stuck thread behavior using a shutdown trigger. A shutdown trigger
tells the work manager that it should shut itself down if there are <stuck-thread-count> threads execut-
ing requests on its behalf that are stuck for longer than <max-stuck-thread-time> seconds. At the time
of writing, WebLogic Server does not surface work manager shutdown trigger configuration through

544

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 545

Chapter 12: Administering and Deploying Applications

the WebLogic Console so you must either use other JMX-based tools or hand edit the appropriate work
manager definitions. The work manager definition shown here tells the work manager to shutdown if 5
threads are stuck for more than 300 seconds.

<work-manager>
<name>MyStuckThreadWorkManager</name>
<work-manager-shutdown-trigger>
<max-stuck-thread-time>300</max-stuck-thread-time>
<stuck-thread-count>5</stuck-thread-count>

</work-manager-shutdown-trigger>
</work-manager>

In an analogous fashion, enterprise applications support defining stuck thread behavior using an admin
trigger. An admin trigger tells the server that it should transition the application into admin mode if
there are <stuck-thread-count> threads executing requests on its behalf that are stuck for longer than
<max-stuck-thread-time> seconds. One important difference about the application admin trigger is
that it will automatically switch the application back from admin to running mode if the stuck thread
condition clears.

You define the admin trigger using the <application-admin-mode-trigger> element of the enterprise
application’s weblogic-application.xml deployment descriptor. The admin trigger definition shown
here tells the server to put the application into admin mode if 5 threads are stuck for more than 300
seconds.

<application-admin-mode-trigger>
<max-stuck-thread-time>300</max-stuck-thread-time>
<stuck-thread-count>5</stuck-thread-count>

</application-admin-mode-trigger>

Best Practice
Do not set the Max Stuck Thread Time so low that normal requests during peak process-
ing times will be mistaken for stuck threads. Be sure, though, to set them low enough
to allow the server to take corrective action before it becomes overwhelmed. For many
applications, values on the order of 60 to 120 seconds will be sufficient.

Network Channels
Older versions of WebLogic Server did not support many network configuration options. Server
instances could listen on one plain text port and one SSL port. The IP address or DNS name had to
be the same across both ports. As a result, the network configuration options available were limited
by what the operating system provided naturally for a single TCP port environment. For example,
by not specifying a listen address, the server could receive requests sent to the specified port on that
machine, regardless of the IP address used to get there. This worked well for supporting machines with
a single network interface card (NIC) and one or more IP addresses but it broke down if you tried to
use machines with multiple NICs operating on different networks. The server was still able to receive
the requests, but it could not always determine the correct IP address to embed in the response data
to facilitate the next request reaching the right destination. More recent versions of WebLogic Server
support defining additional listen ports (and an associated listen thread) through something called a
network channel. WebLogic Server allows you to define as many network channels as you want. Use the
server’s Channels Protocols tab in the WebLogic Console to manage a server’s network channels.

545

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 546

Chapter 12: Administering and Deploying Applications

A network channel is a conceptual combination of a Listen Address, Listen Port, and Protocol
that must be unique within a server. Network channels can share the same address and port number
provided that their protocols are different. When this happens, WebLogic Server combines these
channels and creates a single listen thread and port that accepts all of the protocols with that address
and port number combination. The choice of protocols includes t3, IIOP, HTTP, COM, LDAP, SNMP,
t3s, IIOPS, HTTPS, LDAPS, cluster-broadcast, cluster-broadcast-secure, or admin. WebLogic
Server’s cluster-broadcast protocol supports routing unicast-based cluster messages between servers;
cluster-broadcast-secure does the same over SSL. The admin protocol is simply a network channel
that accepts only administrative requests and requires the use of SSL.

Network channels also support network address translation (NAT) firewalls directly by providing the
ability to specify the External Listen Address and External Listen Port attributes that WebLogic
Server should use when communicating with clients through this channel. In addition, each network
channel has its own TCP-related configuration parameters that you will find under the Advanced area of
the channel’s General Configuration tab in the WebLogic Console.

By providing the ability to define new network channels, WebLogic Server goes a long way toward help-
ing you support the more complex networking requirements often found in production environments.
Using network channels is completely optional, however. By default, the server still supports the old
model of a single plain text listen port, a single SSL listen port, and an optional domain-wide adminis-
tration port. This default model is sometimes called the default channel; the domain-wide administration
port is known as the administrative channel. WebLogic Server does not currently allow the default channel
to be completely disabled. The good news, though, is that it is possible to disable the plain text listen port
on this default channel if the SSL listen port is enabled. If you enable the domain-wide administration
port, you must use it or another admin channel instead of the default channel ports for all administrative
tasks; however, its use is completely optional.

In the past, WebLogic Server instances in a cluster communicated with each other using the default chan-
nel. This made it tedious to separate server-to-server traffic such as replication in its own network because
you either had to trick the server into doing this at the individual machines’ network configuration level
or you had to define network channels explicitly for all your external communications so that the only
thing using the default channel was server-to-server traffic. Fortunately, WebLogic Server now supports
creating internal channels for communication within a cluster.

To isolate unicast-based cluster heartbeats and JNDI replication traffic to its own network channel, simply
create a network channel on each server in the cluster that uses the cluster-broadcast protocol; each
network channel must have the same name. Then, use the name of the network channel to set the Unicast
Broadcast Channel property in the cluster’s Messaging Configuration tab. If you want to secure the
cluster’s network channel, select the cluster-broadcast-secure protocol instead to force the unicast
traffic to be sent over SSL.

Tip to Remember
Don’t forget that unicast clustering currently requires that you explicitly set the
ListenAddress on the network channel being used to broadcast cluster messages.

To isolate replication traffic to its own network channel, simply create a network channel on each server
in the cluster that uses the t3 or t3s protocol; each network channel must have the same name. Then, use

546

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 547

Chapter 12: Administering and Deploying Applications

the name of the network channel to set the Replication Channel property in the cluster’s Replication
Configuration tab.

We have barely scratched the surface of network administration using network channels. Further reading
is available on the Oracle web site at Link 12-6. In the next section, we show an example of using network
channels in a WebLogic Server cluster configuration.

In the next three sections, we show the highlights of how to configure, administer, and monitor a
WebLogic Server domain and discuss some of the important things to consider. This coverage is intended
to provide insights into best practices in WebLogic Server domain configuration, administration, and
monitoring, rather than a comprehensive, step-by-step coverage of all of the possible options. For more
comprehensive coverage of WebLogic Server administration, please refer to one of the WebLogic Server
Administration books available or the WebLogic Server documentation at Link 12-7.

Configuring a WebLogic Server Domain
Determining the best configuration for a particular set of applications requires careful analysis of the
applications’ resource requirements, service-level agreements, corporate policies, network policies,
security policies, and so on. Some of the best practices for choosing production system deployment archi-
tectures are covered in Chapter 15 and therefore are not covered here. This section focuses on configuring
a typical deployment architecture for a web-based application that also has some Java application and
web services clients. Where appropriate, we discuss the available deployment architectures and the
things to consider when choosing among the alternatives. The primary purpose of this section, though,
is to discuss WebLogic Server domain configuration.

The first thing to do when preparing to configure a WebLogic Server domain is to determine what appli-
cations we will need to deploy in the domain. Although there are many things to consider when making
this decision, probably one of the most important criteria is whether the same person or group within the
organization will be administering all of the applications. The reality is that a WebLogic Server domain
is just a logical grouping of WebLogic Server instances, clusters, or both that are controlled through a
single administration server. Though it is certainly possible to share a WebLogic Server domain among
different sets of administrators, it is typically better for corporate harmony not to do so. Other questions
to consider are these:

❑ Do the applications need to interact with one another?

❑ Do the applications share a common security model?

❑ Do the applications need to share critical, but limited resources (for example, connections to
legacy system)?

In this section, the example focuses on deploying a single application that has multiple client interfaces.
Because there are no other applications to consider, we will create a new domain. The example uses our
bigrez.com hotel reservation system as the basis for our discussion. Because the bigrez.com applica-
tion doesn’t include all features we need for this discussion, we have taken the liberty of assuming that
you have extended it to include these other features. In our reservation system, we must support Inter-
net bookings via a web browser–based interface, customer service agent bookings using a Java client
application, and web services–based bookings from global reservation systems bookings via a virtual
private network (VPN). Although this example certainly won’t cover every possible configuration issue,
it does attempt to provide a broad overview of common issues you might encounter while configuring a
WebLogic Server domain.

547

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 548

Chapter 12: Administering and Deploying Applications

Apache Web
Server w/

WebLogic Plugin

Apache Web
Server w/

WebLogic Plugin

Apache Web
Server w/

WebLogic Plugin

Apache Web
Server w/

WebLogic Plugin

Hardware Load
Balancer

Clustered
WebLogic Server

Clustered
WebLogic Server

Clustered
WebLogic Server

Oracle Database
Server

WebLogic
Console

Hardware Load
BalancerVPN Server

Customer
Service
Agents

WebLogic
Console

Corporate Network

Internet

Firewall(s)

Network
Address–Translating

Firewall(s)

Internet

DMZ 2

DMZ 1

WebLogic Admin
Server

Figure 12-6: bigrez.com deployment architecture.

Figure 12-6 shows the deployment architecture we chose for this example. The web browser–based
Internet requests come in through a firewall to a hardware load balancing device that distributes the
requests across the Apache web servers. Using the WebLogic Server Apache plug-in, the Apache web
servers proxy requests through a network address–translating firewall to the cluster of WebLogic Server
instances. Global reservation systems come into the network through a VPN server. From there, we
route the requests through a hardware load balancer and a network address–translating firewall before
they finally arrive at our cluster. Because customer service agents use computers connected to the com-
pany’s internal network, their EJB-based application accesses the servers directly through a network
address–translating firewall. The WebLogic Server administrator can also use the WebLogic Console
from inside the data center or from any computer connected to the company’s internal network through
that same network address–translating firewall.

548

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 549

Chapter 12: Administering and Deploying Applications

Our configuration assumes that all of the Apache web server and WebLogic Server instances are running
on separate machines. The machines running WebLogic Server managed servers have (at least) four
separate NICs, one for customers coming in through Apache, one for the global reservation systems
coming in through the VPN server, one for corporate users, and one for intra-cluster unicast, replication,
and admin traffic. For the purposes of our example, we really do not care which network the database
server is on as long as there is connectivity to that network from the application servers.

In Figure 12-6, the admin server is communicating with the managed servers on the same network as
the managed servers use for unicast clustering and replication. We could just as easily have separated
the admin traffic, the unicast cluster traffic, and the replication traffic each onto different networks. We
will use the administrative channel for server administration. We will configure an additional admin
network channel that our WebLogic Server administrators can use to access the admin server from the
corporate network. Having an administration port accessible from the corporate network may or may not
be acceptable in your environment. We believe that this is an acceptable risk given that the administrators
may need access to the system at all hours of the night and they already have secure remote access to the
corporate network but not to the data center. Now, let’s start walking through the process of setting up
this configuration and deploying our application.

Setting Up a New Domain
The first step in creating a new domain is to set up and configure the admin server. After installing the
WebLogic Server software on the machine where the admin server will reside, you need to create the files
that define the admin server. WebLogic Server provides a Configuration Wizard to help create the initial
directory structure and configuration files.

On Windows platforms, the WebLogic Configuration Wizard is available through the Windows Start
Menu; the $WL_HOME/common/bin directory contains the config scripts for Windows and Unix. Rather
than walking you through creating the domain via the WebLogic Configuration Wizard, we supply a
WebLogic Scripting Tool (WLST) script that automates the creation of our domain in the examples that
you can download from the book’s web site (http://www.wrox.com). We discuss WLST in detail in the
‘‘Using the WebLogic Scripting Tool’’ section later in this chapter. This script creates our bigrezdomain
with an admin server (running on the AdminMachine) and a cluster of three managed servers (Server1,
Server2, and Server3) running on three machines (Machine1, Machine2, and Machine3) in production
mode. In our example, the admin server runs on Windows and the managed servers run on Linux.
Though we easily could have included all of the necessary configuration changes we need in this domain
creation script, we think that there is value in walking through some of the more important configuration
changes. As such, the rest of this section discusses the configuration changes to our domain in detail.

Once the admin server setup is complete, it is time to install the WebLogic Server software and create
the configuration files for the managed servers. WebLogic Server provides two command-line utilities,
pack and unpack, that help you create a new managed server directory on a remote machine. These util-
ities use the same domain templates that the Configuration Wizard uses so they can tailor the managed
server’s directory contents to different machines with different directory structures, if needed. For more
information on these utilities, see Link 12-8.

Most of the time, it is easier just to copy the files needed from the bigrezdomain directory from the
admin server to the managed servers and edit them as needed. The primary directory of importance
for the managed servers is the bin directory containing the setDomainEnv, startManagedWebLogic, and
startWebLogic scripts — the managed server will create everything else it needs the first time it boots.

549

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 550

Chapter 12: Administering and Deploying Applications

Even if you never plan to start or stop the managed server manually using the scripts, you still need
to use them to initialize the managed server’s directory structure. If you are using a different platform
for the managed servers and the admin server, you may need to edit the scripts more extensively. For
example, we chose to use the JRockit JVM for the admin server so if the managed servers ran on a plat-
form that does not support JRockit, you would need to edit the scripts to refer to the correct JVM for that
platform. Once this process is complete, the next step involves starting the admin server and configuring
the domain to match our desired deployment environment.

To make it easy to start the admin server, the Configuration Wizard creates startWebLogic shell script
files in the admin servers’ root directory. Because our admin server will run on a machine using a
version of the Microsoft Windows operating system, the relevant shell script file is startWebLogic.cmd.
Before starting the admin server, we want to configure the server so that you don’t have to type
in the username and password of the administrative users every time the script is run. The best
way to accomplish this is to create the boot identity file; use a text editor to create a two-line
$DOMAIN_HOME/servers/AdminServer/security/boot.properties file, like the one shown here:

Initial contents of the boot.properties file
username=weblogic
password=weblogic1

The next time you start the server it will find the boot.properties file and encrypt the username and
password property values.

If you are planning to start managed servers using the command-line scripts, you can also create a
boot.properties file for the managed servers. From the managed server’s root directory, simply create
the unencrypted boot.properties file in the $DOMAIN_HOME/servers/<server-name>/security direc-
tory. Note that if your managed server’s directory does not yet contain the $DOMAIN_HOME/security/
SerializedSystemIni.dat file, you will need to start the managed server once to initialize its directory
structure before it will use the boot.properties file. As such, you should start the managed server twice,
once to initialize the directory structure and once to encrypt the boot.properties file.

Now, start the admin server and bring up the WebLogic Console using your favorite browser. At this
stage, we are not ready to go through the network address–translating firewall to our admin server’s
administration channel or to its admin port (because they have not yet been configured). Therefore, we
need to run the console from a machine inside the data center firewalls that can point directly at the
admin server’s plain text listen port (for example, http://192.168.1.40:7001/console). The first thing
to do is to obtain your X.509 certificate and configure SSL for the admin server. Because later we enable
the domain-wide administration port, the admin server’s SSL settings need to be configured properly
(actually, all of the managed servers’ SSL settings can be configured at this point as well). Don’t forget
that we need SSL certificates to use with the node managers so plan accordingly. Rather than our covering
SSL configuration again here, refer to Chapter 11 for more information on how to do this.

Before moving on to configuring the individual servers, you should configure the domain logging char-
acteristics. Use the domain’s Logging Configuration tab to verify the File Name attribute is set to
logs/bigrezdomain.log (this should be the default), the Rotation Type attribute to By Time, and the
Limit Number of Retained Log Files checkbox to checked. If desired, you can even tell the server to
move the old logs to a different location by setting the Log file rotation directory property. These
changes cause the admin server to place the domain log file in its logs subdirectory, rotate the domain
log file every day at midnight, and retain only one week’s worth of log files. Though in practice the

550

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 551

Chapter 12: Administering and Deploying Applications

domain log file does not typically grow very quickly unless you configure server log message propaga-
tion, it is still a good idea to use log rotation to prevent having to stop the server to remove a large log
file that is filling up the file system. In the next section, we enable log rotation for other log files that are
more likely to grow very large in a short period of time.

Best Practice
Always enable log rotation for the domain log file to prevent having to restart the
admin server should the log file grow too large.

Configuring Servers
Configuring a WebLogic Server instance is an important part of any WebLogic Server administrator’s job.
Out of the box, the server comes with a default configuration that will allow you to start it without any
additional configuration. Though this default configuration is convenient and contributes much to the
ease of use of the product, WebLogic Server has a large number of configuration parameters available to
tune the server’s behavior for almost any environment. Rather than attempting to cover all of the options,
we focus on those parameters that typically require changes from the default values to satisfy produc-
tion environment requirements. Fortunately, the reservation system example provides us with enough
complexity to be able to present these configuration changes in the context of a real-world example.

The first task is to make sure that we properly configure the default network channel. Because the admin
server and the managed servers will not be using their default channel SSL listen port, we did not enable
the SSL ports of any of the servers when creating the configuration. Check to make sure that the default
SSL ports are disabled on the server’s General Configuration tab. The Advanced area of the General
Configuration tab provides the Local Administration Port Override attribute that allows you to
override the domain-wide administration port number for a server. We will not need to do this for our
example.

The next item on our list is to configure some of the denial-of-service-related parameters that we discuss
more in Chapter 15. Because our example does not use the default channel, we simply set some reason-
able defaults for all channels to use. Later, we show you how to configure a channel to use these defaults
and how to override these server-level settings for a particular network channel. After talking to our
bigrez.com application architects, we know that our customer-facing web application never posts more
than a few kilobytes of data and our web service clients never send more than 750 kilobyte messages.
As such, we want to limit both the maximum amount of time to receive an entire request’s data and the
maximum allowable size of a request. Using the HTTP Protocols tab for each managed server, leave the
Post Timeout set to the default of 30 seconds and set the Max Post Size to 1,000,000 bytes for all three
managed servers. Because the application’s Max Post Size is limited to 1,000,000 bytes, limiting the total
HTTP message size to 1,200,000 bytes should provide more than enough space to allow all valid HTTP
requests to reach the application. Set the HTTP Max Message Size for each managed server to 1,200,000
bytes. Back on the General Protocols tab, you should leave the Complete Message Timeout set to the
default of 60 seconds for each of the managed servers. Also, set the Maximum Message Size to 1,200,000.

Several parameters on the server’s Tuning Connections tab are important. Accept Backlog controls the
length of the underlying TCP/IP listen queue. See Chapter 13 for more information on tuning the length
of the listen queue. For now, it is sufficient to understand that this parameter will limit the number
of concurrent connection requests to the server. Though the default value of 300 is sufficient for most

551

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 552

Chapter 12: Administering and Deploying Applications

purposes, you may need to increase this value for servers processing many concurrent HTTP requests to
prevent clients from getting ‘‘connection refused’’ errors.

Login Timeout is the amount of time the server allows for a newly established connection to start sending
request data. In high volume web sites, it may be necessary to increase this parameter to 10 seconds or
so to prevent clients from receiving login timed-out errors. Do not set this parameter too high, though,
because this could make the server more vulnerable to a denial-of-service attack. For our example, the SSL
Login Timeout is not important (because we are not using SSL on the default channel), but this parameter
serves a similar purpose for SSL connections.

The Maximum Open Sockets parameter controls the number of sockets the server can have open at any
time. As with the Accept Backlog parameter, this parameter provides a mechanism to set a limit that the
operating system also controls. A typical use for this parameter would be to limit the number of connec-
tions to a server to a number lower than the limit imposed by the operating system. This is one way of
throttling requests into the server to prevent overloading the server with so many concurrent requests
that the response time for processing a request cannot meet service-level agreements. As previously dis-
cussed, setting a capacity constraint on the work manager is probably a better way because doing this
will cause the server to return a more meaningful error to the client (for example, an HTTP 503 error
indicating that the server is too busy). For this example, we will increase the Login Timeout to 10,000
milliseconds (10 seconds). Later, we will create a capacity constraint to prevent server overload.

Because our customer-facing web site is using Apache web servers to proxy requests to our cluster
through a NAT firewall, you should set the WebLogic Plug-in Enabled attribute for each managed server
in the Advanced area of the server’s General Configuration tab. This causes WebLogic Server to return
the value of the WL-Proxy-Client-IP HTTP header when the application calls the getRemoteAddr()
method on an HttpServletRequest object. By doing this, the application is able to obtain the client
information reliably for requests being routed through one of WebLogic Server’s web server plug-ins.

Our next task is to configure server logging. Using the servers’ General Logging tabs, specify the location
and name of each server’s log file. The Advanced area of this tab also controls how verbose the server
output to the console window (that is, stdout) should be. For the example, the default log file names
and stdout settings will suffice. We will use the servers’ General Logging tabs to configure server log
rotation. As with the domain log, we will set up server log rotation for all four servers to rotate once a
day at midnight and to limit the number of old log files to keep only the log files for the past week. To do
this, set the Rotation Type to By Time and check the Limit Number of Retained Log Files checkbox.

Best Practice
Always configure the server and HTTP access logs to use rotation. This will prevent the
need to stop the server to remove large log files.

Now, we need to configure HTTP logging for all four of the servers. Using the HTTP Logging tab, you can
control the format, location, buffering, and rotation of the HTTP access log. The first decision you need
to make is whether to use common or extended logging format. Because we want to gather statistical
information about site usage, we are going to choose extended logging for the managed servers. The
HTTP access log files grow proportionally to the number of requests. This means that the log file sizes
can vary greatly depending on the amount of traffic to our web site. Because we hope that our web site
will be very popular, we will choose rotation by log file size rather than by time. Though this decision

552

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 553

Chapter 12: Administering and Deploying Applications

will make it harder to pinpoint a particular day’s entries, it will guarantee that you don’t end up with a
very large log file that could fill up the available disk space, leaving you with no other recourse than to
stop and restart the server. Set the Format to extended (under the Advanced area) and the Maximum Log
File Size to 10,000 kilobytes.

HTTP access log files grow proportionally to the number of requests. If you do not
configure log rotation properly, the access log file can grow to a very large size and
potentially fill up the disk, causing the application and the operating system to stop
working. Once this condition is reached, the only way to remove the log file is to
stop and restart the application server.

By default, WebLogic Server enables HTTP access logging. Some architectures route all HTTP requests
to the cluster through a third-party web server like Apache. Because the web server already creates
an HTTP access log, you might want to consider turning off HTTP access logging in WebLogic Server.
We will leave it on for our example because we will also receive web service requests that do not pass
through our Apache web server.

Tip to Remember
If your WebLogic Server web applications only receive requests from a third-party web
server, consider disabling HTTP access logging in WebLogic Server and use the web
server’s access log instead.

At this point, we are ready to move on to configuring our system for clustering. We have not attempted
to cover every possible server option. Some additional parameters are covered in the upcoming sections,
and others are covered elsewhere in the book. For a complete discussion of all possible configuration
options, refer to the online documentation at Link 12-9.

Configuring the Cluster
The first thing you need to do when setting up a cluster is choose a clustering strategy. As we discussed
earlier, WebLogic Server supports both UDP multicast–based and TCP unicast–based clustering with
unicast being the WebLogic Console’s default for new clusters starting in WebLogic Server 10.0. Multicast
clustering is extremely efficient because it leverages low-level network technology to broadcast a message
to the entire cluster with a single message send by a WebLogic Server instance. The downside is that
multicast requires the operating system and network devices to be properly configured and tuned. If
a cluster spans subnets, the routers between the cluster nodes must support UDP message forwarding
and the WebLogic Servers must specify a time-to-live (TTL) greater than the number of routers each
message must cross using the Multicast TTL attribute under the Advanced area of the cluster’s Messaging
Configuration tab. Debugging multicast clustering issues can be challenging because many system and
network administrators are not familiar with the configuration and tuning parameters for UDP multicast.

When choosing a multicast address and port, it is important to make sure that no other programs on
your network are using the same multicast address and multicast port number combination. Although
WebLogic Server allows different clusters to share the same multicast address and port number, it is

553

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 554

Chapter 12: Administering and Deploying Applications

much more efficient, from a server processing standpoint, if they do not. Every server in a cluster must
use the same multicast address and multicast port number. Multicast addresses can range from 224.0.0.1
to 244.255.255.255. The general recommendation is to avoid the 224.0.0.x and x.0.0.1 ranges of addresses
because these are typically reserved for multicast routing.

Unicast clustering uses TCP/IP sockets to pass cluster messages between members. The benefit of using
unicast-based clustering is that it uses TCP/IP sockets; something that system and network adminis-
trators should already be very familiar with the details of configuration, tuning, and troubleshooting.
To avoid requiring each cluster member to have connectivity to every other cluster member, WebLogic
Server uses a group leader strategy whereby the oldest member of the group (in other words, the server
that was started first) is designated the group leader. All members of the cluster connect to the group
leader so that the group leader acts as the relay point for cluster messages between members. If the
group leader goes down, the next oldest member becomes the new group leader.

As you can imagine, the group leader strategy works well for small groups but becomes less efficient as
the number of members of the group grows large. As such, WebLogic Server uses a multiple group leader
strategy where it limits the number of members in a group to 10. If the cluster is larger than 10 members,
WebLogic Server splits into two or more groups, each with their own group leader. The group leaders
themselves are all interconnected to minimize the number of hops that a cluster message must traverse to
reach all cluster members. Figure 12-7 illustrates this concept, though it is not necessarily representative
of the actual group partitioning for a 20 node unicast-based cluster.

Do not try to add the admin server to the cluster. The admin server is not
clusterable. We discuss admin server failover later in this chapter.

Server 2

Server 1 Server 6

Server 11 Server 16

Server 3

Server 4 Server 5

Server 12 Server 13

Server 14 Server 15

Server 7 Server 8

Server 9 Server 10

Server 17 Server 18

Server 19 Server 20

Figure 12-7: Unicast cluster conceptual architecture.

The downside to unicast-based clustering is that as the size of the cluster gets very large, the number
of sockets grows large and the burden on the group leaders becomes much higher. If the group leaders
become overloaded, this can lead to cluster members dropping out and rejoining the cluster frequently.

554

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 555

Chapter 12: Administering and Deploying Applications

As such, we recommend that you consider using multicast-based clustering for very large clusters. As
always, you should test whatever clustering mechanism you choose in your environment with your
applications under realistic loads to ensure that you system behaves as expected. This is especially
important for large, high volume systems!

Best Practice
For very large clusters, prefer multicast-based clustering.

Next, we need to create definitions for the machines on which the managed servers are running.
Telling WebLogic Server which servers run on which machines serves two important purposes. First, it
lets WebLogic Server be smart about the location of in-memory replicated objects so that it tries to keep
copies of the same object on different machines. Because our configuration is currently running only one
WebLogic Server instance per machine, this particular aspect is not important in our example. Second, it
lets the admin server know which node manager to talk to when starting or stopping a particular man-
aged server. Because our domain configuration WSLT script already created the machines and associated
the servers with the machines, you don’t need to do anything else.

If we were configuring our system for disaster recovery, we might decide to spread our cluster across
two data centers, provided that both data centers were relatively close together and connected by one or
more high-speed network links. This type of configuration can support both data centers actively pro-
cessing requests and allow for failover between data centers. Of course, WebLogic Server clustering does
not handle all of the issues involved with setting up this type of environment, such as data replication of
backend systems; however, it can support replicating objects between data centers. To accomplish trans-
parent failover of in-memory replicated objects, you need some way to tell WebLogic Server to store the
replicated objects’ primary and secondary copies in different data centers. Replication groups give you
this type of control over how WebLogic Server selects the location of the secondary server.

In our example, we are not considering disaster recovery and do not have any need to control the sec-
ondary server selection process. Therefore, we will not set up any replication groups. Before we move on
though, let’s discuss alternative disaster recovery configurations that use two different clusters instead of
one.

Cross-Cluster Replication
In most disaster recovery situations, it is better to create two separate clusters — one in each data
center — to provide independent operation of each data center. Cross-cluster replication requires that
each cluster be in its own domain; this requirement is no burden. Such a configuration is very desirable
because it allows each data center to manage itself independently of the other. This greatly simplifies
the application server configuration and administration requirements so that you can adapt your
architecture to various levels of cross–data center connectivity. Of course, even this flexibility does not
remove all the backend system data replication challenges. As such, it is critical to design the cross–data
center application server and backend system architectures together.

As we mentioned earlier in the chapter, WebLogic Server supports two cross-cluster replication
models that can be used to replicate HTTP session data between data centers: MAN and WAN
replication. Oracle recommends that both domains be identical and have the same cluster and server
configurations — including the number of servers per cluster. MAN replication uses the normal
in-memory replication except that it always attempts to locate the secondary session on the remote

555

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 556

Chapter 12: Administering and Deploying Applications

cluster. If connectivity between the data centers is lost, the local cluster will replicate the session within
the cluster. On the first request for the session once inter–data center connectivity is restored, WebLogic
Server will relocate the session’s secondary to the remote cluster.

To configure MAN replication, you first need to set up and configure your local and global load balancers
with session affinity, as described in the ‘‘Using MAN Replication’’ section in Chapter 15. Next, you need
to enable cross-domain trust between the two WebLogic Server domains, as described in the ‘‘Trust
Between Domains’’ section of Chapter 11. Finally, you must configure the Cross-cluster Replication
Type attribute to MAN (Synchronous) HTTP Session State Replication and the Remote Cluster Address
to point directly to the remote cluster without going through a load balancer. A remote cluster address
will be either a DNS name that maps to multiple IP addresses or a comma-separated list of hostnames or
IP addresses, such as those shown here. See the ‘‘WebLogic Server Client URLs’’ section of Chapter 10
for a more complete discussion of the URL syntax.

t3://remotehost1:7001,remotehost1:8001,remotehost2:7001,remotehost2:8001
t3://remotecluster:7001

These attributes are set using the cluster’s Replication Configuration tab in the WebLogic Console.
Optionally, you can define the Replication Channel to use for all replication traffic. We talk more about
the setting up a replication channel in the ‘‘Configuring Network Channels’’ section.

WAN replication uses the normal intra-cluster, in-memory replication but adds an asynchronous,
database-backed replication mechanism to make the session data available to the other data center’s
cluster should data center–level failover occur. The local server buffers its primary session updates in
an in-memory buffer that is periodically flushed. The database-backed replication has two modes of
operation:

1. Local cluster periodically flushed the in-memory buffer to its local database. Cross–data cen-
ter replication is handled externally using some sort of database-level replication technology
of your choosing.

2. Local cluster uses RMI to push updates periodically from the in-memory buffer to the
remote cluster. The remote cluster writes these updates to its local database.

To configure WAN replication, you first need to set up and configure your local and global load balancers
with session affinity just as with MAN replication. If you are planning to use RMI-based data replication
(mode 2 in the preceding list), you need to enable cross-domain trust between the two WebLogic Server
domains. Next, you need to create the WLS_WAN_PERSISTENCE_TABLE in your database and ensure you
have a WebLogic Server–managed data source set up for this database.

CREATE TABLE WLS_WAN_PERSISTENCE_TABLE (
WL_ID VARCHAR2(100) NOT NULL,
WL_CONTEXT_PATH VARCHAR2(50) NOT NULL,
WL_CREATE_TIME NUMBER(20),
WL_ACCESS_TIME NUMBER(20),
WL_MAX_INACTIVE_INTERVAL NUMBER(38),
WL_VERSION NUMBER(20) NOT NULL,
WL_INTERNAL_ATTRIBUTE NUMBER(38),
WL_SESSION_ATTRIBUTE_KEY VARCHAR2(100),
WL_SESSION_ATTRIBUTE_VALUE LONG RAW,
PRIMARY KEY(WL_ID, WL_CONTEXT_PATH, WL_VERSION, WL_SESSION_ATTRIBUTE_KEY));

556

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 557

Chapter 12: Administering and Deploying Applications

Finally, you must configure the Cross-cluster Replication Type attribute to WAN (Asynchronous)
HTTP Session State Replication and the Data Source for Session Persistence attribute to point the
data source previously configured using the cluster’s Replication Configuration tab. At this point,
WebLogic Server will use WAN replication mode 1 and simply flush the session updates to its local
database, assuming that you are taking care of making sure that data is available in the remote cluster’s
database.

To use mode 2, you simply set the Remote Cluster Address just as you would if you were using MAN
replication. Optionally, you can define the Replication Channel to use for all replication traffic.

In the Advanced area of the cluster’s Replication Configuration tab, you control the flushing behavior
for the in-memory buffer. The Session Flush Interval controls the interval at which session updates are
flushed; the default is set to 180 seconds. To protect the server from memory overload, the server flush
updates sooner if the number of buffered session updates reaches the Session Flush Threshold value.

For more information on cross-cluster replication, see the WebLogic Server documentation at Link 12-10.
We discuss disaster recovery considerations and options in more detail in Chapter 15. At this point, we
are ready to move on and discuss configuring network channels.

Configuring Network Channels
Our application uses three distinct networks to segment different types of user traffic and one for internal
traffic. Using network channels, you can control the network resources, protocols, and tuning parameters
of each network independently. Our example is not using the default channel. So, we need to configure
three additional channels for user traffic: the bigrez.com web site (BigRez) channel, the global reservation
systems (GRS) channel, and the internal customer service agents (CSA) channel. To create a network
channel, you need to specify the name, listen address and port, cluster address, and protocol that the
channel will support.

In this example, the BigRez channel will support only the HTTP protocol because all requests on this
channel will be proxied requests from our Apache web servers using HTTP. Because we are using a NAT
firewall, we need to set the External Listen Address attributes on each managed server. We will use an
External Listen Port value of 80. The BigRez network channel listen addresses used by each server are
shown in Table 12-1.

Next, you will want to tune the settings of the BigRez channel using the Advanced area of the channel’s
General Configuration tab. You should make sure that the Accept Backlog, Login Timeout, Complete
Message Timeout, and Idle Connection Timeout attributes are set to reasonable values. For our example,
we will set all four attributes to –1, which tells the network channel to use the server’s (in other words,
the default channel’s) settings. Because server-to-server communication may use network channels and
multiple channels may be available, WebLogic Server uses the Channel Weight setting to define the pre-
ferred channel(s) between two servers. The Outgoing Enabled checkbox allows us to enable the initiation
of server-to-server communication over a particular channel. bigrez.com will not use the BigRez channel
for server-to-server communication (all server-to-server communication will use our internal channels)
so you should leave the Outgoing Enabled checkbox unchecked. Because the BigRez channel is not used
for EJB communication, the Cluster Address setting is not important. You should, however, adjust
the Maximum Message Size to a reasonable value based on the application’s needs. Because our BigRez
channel is transmitting HTTP requests from our public web site that we know to be very small, we will
override the server’s default channel setting to limit HTTP message sizes to no more than the maximum

557

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 558

Chapter 12: Administering and Deploying Applications

size expected from our customer web site. After consulting with our application architects, we know
that no request from customer web site will ever be larger than 5 KB, so you should set the maximum
message size to 10,000 bytes.

Table 12-1: Managed Servers’ BigRez Channel Listen Addresses

Server Name Internal Listen Address External Listen Address

Server1 192.168.155.41 10.10.1.41

Server2 192.168.155.42 10.10.1.42

Server3 192.168.155.43 10.10.1.43

Table 12-2: Managed Servers’ GRS Channel Listen Addresses

Server Name Internal Listen Address External Listen Address

Server1 206.168.1.41 10.12.1.41

Server2 206.168.1.42 10.12.1.42

Server3 206.168.1.43 10.12.1.43

Now, we need to create the GRS channel. Create the GRS channel using the internal and external listen
addresses from Table 12-2. We will use the same tuning recommendations we applied to the BigRez
channel except for Maximum Message Size. Because the GRS channel will carry web service requests from
our global reservation system partners whose size we already accounted for when setting the Maximum
Message Size for the default channel, set the GRS channel value to –1 to use the default channel setting.

At this point, we are ready to set up the CSA channel that our internal customer service agents will use.
Because the Java client application uses RMI to talk with the cluster, the CSA channel will need to support
only the t3 protocol.

Now that we understand what needs to be done to support our CSA channel, go ahead and set up the
network channel to support only the t3 protocol and deploy it to the cluster. Use the information in
Table 12-3 to configure the CSA channel for each managed server. Use the default value for all other
parameters.

Next, we want to set up our internal channels for unicast cluster messages and replication.
To create a channel for unicast messaging, simply create a channel with its protocol set to
cluster-broadcast. If you want to secure these unicast messages between cluster members, you
can use the cluster-broadcast-secure protocol. Be forewarned that using SSL to encrypt cluster
messages comes with a significant overhead and should be used only when security is more important
than performance and scalability. If you choose to use secure cluster messaging, you need to load test
your environment using your actual applications with realistic peak loads to ensure that the cluster
will hold together under stress with your existing hardware. Use the settings in Table 12-4 to create the
Clustering channel.

558

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 559

Chapter 12: Administering and Deploying Applications

Table 12-3: CSA Network Channel Configuration Parameter Values

Name Value

Name CSA Channel

Protocol t3

Listen Address 206.11.1.41 for Server1

206.11.1.42 for Server2

206.11.1.43 for Server3

Listen Port 7001

External Listen Address 10.11.1.41 for Server1

10.11.1.42 for Server2

10.11.1.43 for Server3

External Listen Port 7001

Cluster Address 10.11.1.41:7001,10.11.1.42:7001,10.11.1.43:7001

HTTP Enabled for This Protocol No (unchecked)

Maximum Message Size 100,000

To make WebLogic Server use a separate channel for replication, you must create a channel on each
managed server in the cluster with the same name and then configure the cluster to use that channel for
replication. Create the Replication channel using the settings in Table 12-5. Note that you can specify a
secure protocol for replication as well. Be forewarned that this will have a direct impact on user response
times because in-memory replication is done during the normal request processing. The expense of
encrypting replication is directly proportional to the size of your session updates that the server must
serialize to the other cluster member and the number of requests (since the server must update the last
access time on the other server even for read-only session access). Once the replication channel config-
uration is complete, use the cluster’s Replication Configuration tab to set the Replication Channel
attribute to the name of your replication channel.

The last step is to set up an additional network channel for the admin server that only supports the admin
protocol. Once we do this, all admin traffic must use SSL and we are not ready for this just yet. We define
this network channel in the ‘‘Administration Port and Channel Configuration’’ section.

At this point, our network channel configuration is complete and we are ready to move on to the node
manager. The configuration of the node manager is relatively simple but debugging problems with the
node manager can be tricky. In the next section, we try to point out all of the things to be aware of in
order to avoid such problems as well as try to describe the debugging process.

559

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 560

Chapter 12: Administering and Deploying Applications

Table 12-4: Clustering Network Channel Configuration Parameter Values

Name Value

Name Clustering Channel

Protocol cluster-broadcast

Listen Address 192.168.1.41 for Server1

192.168.1.42 for Server2

192.168.1.43 for Server3

Listen Port 7777

External Listen Address None

External Listen Port None

HTTP Enabled for This Protocol No (unchecked)

Table 12-5: Replication Network Channel Configuration Parameter Values

Name Value

Name Replication Channel

Protocol T3

Listen Address 192.168.1.41 for Server1

192.168.1.42 for Server2

192.168.1.43 for Server3

Listen Port 7778

External Listen Address None

External Listen Port None

HTTP Enabled for This Protocol No (unchecked)

Setting Up the Node Manager
The node manager is a daemon process that provides remote server start and stop capabilities, monitors
the health of its servers, and allows for automatic restart of failed servers. As such, we recommend
installing and configuring the node manager on all machines where WebLogic Server instances will run.
WebLogic Server provides two versions of the node manager: one is Java-based and the other is shell
script–based. The primary benefit of the script-based node manager is that it relies on SSH for security

560

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 561

Chapter 12: Administering and Deploying Applications

rather than requiring SSL configuration like the Java-based node manager. However, the script-based
node manager does not work on Windows and has several other limitations. As such, we focus our
attention on the Java-based node manager. For more information about configuring the script-based
node manager, see the WebLogic Server documentation at Link 12-11.

Typically, we recommend installing the node manager so that it starts up when the machine boots. On
Windows, this means installing it as a Windows service. On Unix, it generally means writing a boot script
to run the node manager start script as the correct user with the correct environment. The Java-based
node manager can work in conjunction with inetd on Unix-based platforms automatically to restart
the node manager upon first access.

Because the managed servers in our example all run in a Unix environment, we will focus primarily
on installing and configuring the node manager on a Unix-based operating system. We try to point out
places where the process is significantly different under Windows. Our downloadable example also has a
node manager set up for our admin server running on Windows. For more complete information, please
refer to the WebLogic Server online documentation at Link 12-12.

The first thing you need to do is determine the location from which the node manager will run. Because
the default location for the node manager is under the $WL_HOME/common/nodemanager directory, we
recommend creating a separate directory outside the WebLogic Server software install directory to run
the node manager. We will choose to create a directory called /powls/ch12/Machine#/NodeManager,
where # is either 1, 2, or 3, on each of the three machines where managed servers will run. Now, copy
the $WL_HOME/server/bin/startNodeManager.sh file (startNodeManager.cmd on Windows machines)
to the newly created NodeManager directory. Edit your copy of the startNodeManager script to set the
NODEMGR_HOME environment variable to the script’s current directory.

The startNodeManager script takes two arguments: the listen address and the listen port. We could
create completely customized scripts to invoke the startNodeManager script with proper arguments for
each machine. The node manager also looks for a property file called nodemanager.properties in the
NODEMGR_HOME directory for configuration information. If this file doesn’t exist, the node manager creates
it the first time it is started. By adding the following lines to each node manager’s property file, you do
not need to create three separate scripts. The nodemanager.properties file for Machine1 looks like this:

PropertiesVersion=10.3
ListenPort=5556
ListenAddress=192.168.1.41

Rather than do this for our example, we will start node manager using the command-line arguments.
Before you do that, let’s create another file that the node manager uses for other configuration informa-
tion.

The node manager optionally uses a nodemanager.domains file to specify the list of domains that it
controls and a mapping between the domain name and its root directory on the machine. As you see later,
this makes it easier for standalone clients (for example, WLST scripts starting the admin server) because
they no longer need to specify the domain directory. For our example, create a nodemanager.domains file
in the /powls/ch12/Machine1/NodeManager directory with the following contents.

bigrezdomain=/powls/ch12/Machine1/bigrezdomain

Now, start the node manager on Machine1 by running the following command.

561

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 562

Chapter 12: Administering and Deploying Applications

./startNodeManager.sh 192.168.1.41 5556

This should create a nodemanager.properties with all the proper settings for Machine1. Repeat the
process for Machine2 and Machine3. Once the node manager starts successfully, shut it down because we
have more work to do before we finish with the node manager!

The admin server can use either one-way SSL or plain text sockets to communicate with the node man-
ager. In a real production environment, you should always configure SSL and use real certificates tied to
each machine and configure the node manager to use its machine’s certificates and private keys. Rather
than our repeating the discussion of SSL configuration here, please refer to Chapter 11. Once you have
SSL configured, you can use the nodemanager.properties file to tell the node manager to use SSL and
point it to the identity keystore. For our example, you simply add the following lines to specify the node
manager’s SSL configuration for Machine1:

KeyStores=CustomIdentityAndCustomTrust
CustomIdentityKeyStoreFileName=Machine1_KeyStore.jks
CustomIdentityKeyStorePassPhrase=server_store_password
CustomIdentityKeyStoreType=JKS
CustomIdentityAlias=server_key
CustomIdentityPrivateKeyPassPhrase=server_key_password

The next time you start the node manager it will replace the clear text passwords in the property file with
encrypted versions.

Best Practice
Always obtain, install, and configure server-specific SSL certificates and enable SSL
hostname verification for node managers running in a production environment. Failing
to do so can compromise the security of your applications.

By default, the node manager requires authentication to start, stop, and restart servers. The first
time you start the node manager, it communicates with the admin server to download the username
and password that will be used by the admin server to authenticate to the node manager. You can
do this explicitly using WLST’s nmEnroll() command. This username and password are randomly
generated by the admin server. All node managers associated with the domain will use the same
username and password. The node manager stores a hashed value of this data in the domain directory’s
config/nodemanager/nm_password.properties file. To change the username and password, use the
Advanced area of the domain’s General Security tab to set the NodeManager Username, NodeManager
Password, and Confirm NodeManager Password fields for the entire domain. Setting these through the
console will synchronize the change across all of the node managers’ nm_password.properties files.

Next, you need to configure the node manager settings in the WebLogic Console. These settings are split
between settings that apply to the node manager on a specific machine and those that contain information
the node manager needs to start each individual server on the machine. Using the WebLogic Console,
navigate to the machine settings for Machine1 and select the Node Manager Configuration tab. You
should see that the Listen Address is set to 192.168.1.41 and the Listen Port is set to 5556. If not, set
these values appropriately for each of the three machines.

562

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 563

Chapter 12: Administering and Deploying Applications

The next step is to set the server-specific settings. There are two approaches to providing this informa-
tion: via the node manager environment or via the server’s configuration in the domain. For situations
where your node managers are managing one or more servers with identical configurations, customizing
the node manager’s environment to provide all of the configuration information might be a reasonable
approach. For any more complex environments, this quickly becomes unmanageable. Typically, different
servers require different JVM tuning parameters, classpath settings, and patch levels because of different
applications’ requirements.

Using the Server Start Configuration tab of each of the managed servers, you can tell the node man-
ager everything it needs to know to start the server with the proper configuration. Though most of
the remote start attributes are self-explanatory, we will take a minute to review them because debug-
ging problems with starting servers via the node manager can be frustrating. The server’s remote start
attributes are as follows:

Java Home The full path to the JDK installation directory on the node manager’s machine that
will be used to start the server. This parameter must be set such that appending /bin to the value
of this parameter will give the server the fully qualified directory path to the Java Virtual Machine
executable. Typically, this would be set to something like c:\Oracle\Middleware\jdk160_11 or
/oracle/middleware/jrockit_160_11_R27.6.3-40, depending on the operating system and
where you installed the WebLogic Server software.

Java Vendor The name of the company that makes the JVM. At the time of writing, the valid
settings are Oracle (or BEA for previous WLS versions) for JRockit and Sun, HP, IBM, and Apple
for their respective JVMs. To determine the current list of applicable values, please refer to the
setDomainEnv script in the bin subdirectory of domain’s root directory.

BEA Home The full path to the Oracle software installation directory on the node manager’s
machine. This directory is also known as the Oracle Middleware Home starting in WLS 11g. Typi-
cally, this would be set to something like c:\oracle\middleware or /oracle/middleware depend-
ing on the operating system and where you installed the WebLogic Server software.

Root Directory The full path to the domain’s root directory on the node manager’s machine. The
value of this parameter will affect the location of all relative directory and file names. For example,
if the root directory is set to /powls/ch12/Machine1/bigrezdomain and the server’s log file is set to
logs/Server1.log, the server’s log file will be /powls/ch12/Machine1/bigrezdomain/servers/
Server1/logs/Server1.log. Typically, this would be set to something that includes the WebLogic
Server domain name, such as /powls/ch12/Machine1/bigrezdomain.

Classpath The complete Java classpath that WebLogic Server requires to start your applications.
In most cases, the only things that need to be in the classpath are the JRE’s tools.jar, the
WebLogic Server’s weblogic.jar, and any JDBC driver’s classes or .jar files. You should always
question developers who require application classes in the server’s classpath because this will
prevent hot redeployment of these classes with the application.

Arguments The JVM arguments to use to start the managed server on the node manager
machine. Typical things to set here are the Java HotSpot Compiler options (for example, -server),
the JVM heap size (for example, -Xms32m -Xmx200m), garbage collection tuning parameters, and
any Java system properties required by WebLogic Server or your applications.

Security Policy File The fully qualified name to the Java security policy file to use to start the
managed server on the node manager’s machine. Typically, it is sufficient to use WebLogic Server’s
default policy file (for example, /oracle/middleware/wlserver_10.3/server/lib/
weblogic.policy).

563

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 564

Chapter 12: Administering and Deploying Applications

Username The administrative username to use to start and stop the server and perform other
administrative operations. In our examples, we use the username weblogic as the administrative
user because this has become the de facto standard for development environments. You should
always choose a different administrator name for your production environments.

Password The password of the administrative user that corresponds to the supplied Username
parameter’s value. In our examples, we use the password weblogic1. Always choose strong pass-
words for your production systems’ administrative users.

In general, explicitly configuring each server’s start parameters is preferred over the node manager
environment approach; however, there is one use case that requires some additional consideration.

WebLogic Server provides a feature called whole server migration. We discuss whole server migration in
detail later in the ‘‘WebLogic Server Failures’’ section, but this feature supports migrating a WebLogic
Server instance from one machine to another in case of machine failure. For servers configured to use
whole server migration, that means that their server start parameters have to work on more than one
machine. If all the machines involved are running the same operating system with the same directory
structures, this normally isn’t a problem. If the directory structures aren’t the same or the operating
systems are different, it may not be possible to provide a single set of start parameters that work across
the set of machines in question.

If you find yourself in this situation, there are a couple of approaches to address the issue. First, you
can combine two approaches such that you specify the machine-dependent configuration options in the
node manager’s environment. For example, if the JVM location is different for each machine, do not set
the Java Home parameter in the Server Start Configuration tab and rely on the JavaHome parameter
value in the nodemanager.properties file to get the right JVM location. Though this approach may
work for simple situations, anything more complex requires a different solution. Fortunately, the Java-
based node manager also supports starting and stopping the servers using scripts. Simply modify the
nodemanager.properties file to set the StartScriptEnabled or StopScriptEnabled property to true
and the StartScriptName or StopScriptName property to point to your script file. This allows you to
completely customize your start and stop configuration logic to fit the needs of your environment.

Best Practice
Explicitly configure all remote start attributes for a managed server rather than relying
on the node manager’s environment for a managed server’s configuration. If your
deployment environment is heterogeneous and uses whole server migration, have the
node manager use custom start and stop scripts tailored to your environment.

After doing the configuration work just described for each of the three machine’s node managers, you are
ready to start the node managers on the three machines by running the startNodeManager scripts on each
machine. When you first start the node manager on a particular machine, it will create a nodemanager.log
file in the node manager’s configured home directory. You should look through this file to make sure
that the node manager started up properly and that there were no warnings or errors. This file becomes
extremely important when running the node manager as a daemon process (for example, a Windows
service) where the stdout and stderr output streams are not visible.

Once the node managers start, you can use each server’s Start/Stop Control tab to start the managed
servers. Because the server runs in the background, you must use log files to troubleshoot any problems

564

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 565

Chapter 12: Administering and Deploying Applications

with the server configuration. Fortunately, when using the node manager, WebLogic Server captures the
stdout and stderr output streams of the server and writes them to disk. WebLogic Server creates this
file in the server’s logs directory with a name of <server-name>.out. This file allows you to determine
why the server failed to start if the server fails before it begins writing to its own log file. Note that there
is no way to limit the size of this file or automatically rotate it. To reduce the size of the file, you must
stop the server, remove the file, and restart. As such, it is important that your applications do not print
information to stdout or stderr. Also, you should set the Standard out logging destination’s Severity
Level to Critical (or higher) using the Advanced area of the server’s General Logging tab to limit the
amount of output to this file to only that which is required.

WebLogic Server instances started with the node manager redirect stdout and
stderr to $DOMAIN_HOME/servers/<server-name>/logs/<server-name>.out. It is
important for production applications to limit the amount of output to this file since
there is no way to reduce the size of this file without stopping the server.

WebLogic Server currently requires that the node manager start all servers that it monitors. Both the
admin server and WLST can tell the node manager to start or stop a server. Allowing WLST to talk
directly to the node manager to start a server has two primary benefits. First, it allows the node manager
to start, monitor, and, when necessary, restart the admin server itself. Second, it allows WLST to start
managed servers when the admin server is down; the managed servers will start in managed server inde-
pendence (MSI) mode. As discussed previously, MSI mode allows you to start a managed server with a
cached copy of its configuration when the admin server is unavailable. This is the preferred way of start-
ing managed servers in MSI mode because it allows the node manager to monitor them in MSI mode and
after the admin server comes back up and they switch to back to their normal mode of operation — all
without requiring you to restart the managed server.

To start the admin server using the node manager, we need to do two additional tasks above and beyond
what we have already done to set up the managed servers’ node managers. First, we need to change
the domain’s node manager username and password to something that we know. By default, WebLogic
Server generates a random username and password for the node managers; this works fine as long
as only the admin server needs to communicate with the node manager. To allow WLST to connect
to the node manager directly, we must supply the correct username and password. Using the domain’s
General Security tab, open the Advanced area of the page and change the NodeManager Username and the
NodeManager Password. Don’t forget to supply the same password in the Confirm NodeManager Password
attribute. For our example, we chose to use weblogic and weblogic1 as the node manager username and
password for simplicity; however, there is no requirement that the username and password match any
user defined within the WebLogic Server security domain.

Next, we need to tell WLST to trust the node manager’s X.509 certificate that it presents dur-
ing the SSL handshake. The easiest way to do this is to edit the WLST start script. Copy the
$WL_HOME/common/bin/wlst.cmd file to a convenient location (we chose c:\powls\ch12\AdminMachine\
NodeManager\wlst.cmd) and add the following arguments to end of the line that sets the JVM_ARGS
environment variable.

-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:\\powls\\ch12\cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit

565

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 566

Chapter 12: Administering and Deploying Applications

Now, we are ready to start WLST by running our edited wlst.cmd script file. To connect to the node
manager, we run the nmConnect() command shown here.

nmConnect(’weblogic’, ‘weblogic1’, ‘192.168.1.40’, ‘5556’, ‘bigrezdomain’)

The nmConnect() command above includes the administrative user’s username and password in clear
text. To eliminate this, WLST supports storing the user credentials in an encrypted file, known as the user
configuration file, and passing in its file name rather than the username and password.

After connecting to the node manager, tell it to start the admin server using the nmStart() command
shown here.

nmStart(’AdminServer’)

For more details on WLST and how to create and use the user configuration file, see the ‘‘Using the
WebLogic Scripting Tool’’ section later in the chapter.

Before we move on, create your customized WLST start scripts on each of the managed server machines.
Note that you don’t need to reset the node manager username and password again because all node
managers in the domain use the same credentials. Having these customized scripts available for each
machine prepares your environment should you need to start the managed servers in MSI mode.

Now that our node managers are configured and working, we move on to discuss configuring the final
pieces of our architecture. Namely, the operating system, JVM, and web server plug-in.

Operating System Configuration
Configuring the operating system is an important part of setting up any WebLogic Server deployment.
RMI-based applications feature long-lived connections between the clients and the servers, whereas
HTTP-based applications feature short-lived connections. Because operating systems represent each
connection as a file descriptor, the number of available file descriptors effectively controls the number
of client connections. To conserve resources, many operating systems have a default configuration that
supports only a relatively small number of file descriptors per process. Though this is fine for many types
of applications, it can prove to be a limiting factor with large, server-based applications. Fortunately, most
operating systems allow the system administrator to tune the maximum number of file descriptors per
process.

In addition to the actual number of file descriptors a process can allocate, processes that open and close a
lot of short-lived connections are vulnerable to another related operating system implementation detail.
Without going into the details of the TCP/IP protocol, the problem is that the operating system must
keep information about a closed TCP socket connection for some period of time. During this period of
time, the operating system still considers the file descriptor for this connection to be active and therefore
counts it in the process’s total number of file descriptors. As you might imagine, applications that open
and close a lot of connections in a relatively short period of time (for example, HTTP-based applications)
can quickly consume many more file descriptors than you would normally expect given the number of
concurrent connections. Fortunately, the period of time that the operating system holds on to these closed
connection file descriptors is tunable in most operating systems. Although the name of this parameter
varies across operating systems, it is generically known as the TCP time wait interval.

566

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 567

Chapter 12: Administering and Deploying Applications

From this short discussion of some fundamental operating system concepts and how they affect
server-based applications, we hope that it is clear why it is critical to verify the operating system
configuration before deploying a production application. Though the details of all possible tuning
parameters and operating systems are well beyond the scope of this book, we talk more about operating
system tuning in Chapter 13. We highly recommend consulting the WebLogic Server Performance
Tuning Guide at Link 12-13 for more detailed recommendations on tuning any particular operating
system.

Java Virtual Machine Configuration
Java Virtual Machine (JVM) tuning is another important configuration task for a WebLogic Server
administrator. Choosing the right JVM, selecting the right JIT or HotSpot compiler options, selecting the
appropriate heap size settings, and tuning the garbage collector are critical to the performance, scalability,
and reliability of WebLogic Server–based applications. Although an in-depth discussion of the options
is beyond the scope of this chapter, we recommend reading through the ‘‘Java Virtual Machine Tuning’’
section of Chapter 13, reviewing the recommendations on the Oracle and JVM vendors’ web sites, and
talking with other experienced developers and administrators on the Oracle public newsgroups (see
Link 12-14).

Web Server Plug-in Configuration
The final topic in this section is configuring the WebLogic Server web server plug-ins to proxy requests
to a WebLogic Server instance or cluster (see Figure 12-3). WebLogic Server supports web server proxy
configurations with several different third-party web servers (that is, Oracle HTTP Server, Sun Java
System Web Server, Microsoft Internet Information Server, and the Apache Web Server) as well as
from another instance of WebLogic Server itself. For the third-party web servers, the proxy support
uses a web server plug-in, written to the native extension API of the web server (for example, ISAPI
for Microsoft’s Internet Information Server), to proxy requests to WebLogic Server. A built-in servlet
class, weblogic.servlet.proxy.HttpClusterServlet, provides the functionality when using WebLogic
Server as the proxy. Though a full discussion of all of the configuration options across all of the different
supported web servers is beyond the scope of this book, we cover some of the important points in the
context of the Apache web server plug-in configuration. Although the configuration details for each plug-
in vary, the general concepts are similar across all web server plug-ins. We believe that the discussion
will still be useful even when not using Apache. For more complete and detailed coverage of web server
plug-in configurations, please see the WebLogic Server documentation on the Oracle web site at
Link 12-15.

In this example, we use the Apache web server, so we will focus on the details of configuring the Apache
plug-in. Some knowledge of Apache is useful when configuring the plug-in, but we will try our best to
cover the trickier aspects of plug-in configuration without assuming too much prerequisite knowledge.
For more complete information about the Apache web server, or to download a copy of the software,
please see the Apache web server web site at http://httpd.apache.org.

The first step in configuring any plug-in is to install the WebLogic Server plug-in’s native libraries and tell
the web server to load them. For Apache, this means copying the appropriate shared library to a directory
that Apache can find and adding the LoadModule directive to the Apache configuration file. Before you
do anything, you need to verify WebLogic Server plug-in support for your version of Apache and verify

567

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 568

Chapter 12: Administering and Deploying Applications

that your version of Apache includes support for Dynamic Shared Objects. Please refer to the WebLogic
Server documentation at Link 12-16 for more information on the versions of Apache that WebLogic Server
currently supports. To determine whether your version of Apache supports Dynamic Shared Objects, you
need to run the server with the –l option. Change directories to the $APACHE_HOME/bin directory and run
the apache2ctl –l command; the output should look similar to the following snippet and must include
mod_so.c. If it does not, please refer to the WebLogic Server Apache plug-in documentation (Link 12-
17) or the Apache web server documentation (http://httpd.apache.org/docs/) for procedures for
enabling this support.

> apache2ctl -l
Compiled in modules:

core.c
mod_authn_file.c
mod_authn_default.c
mod_authz_host.c
mod_authz_groupfile.c
mod_authz_user.c
mod_authz_default.c
mod_auth_basic.c
mod_include.c
mod_filter.c
mod_log_config.c
mod_env.c
mod_setenvif.c
prefork.c
http_core.c
mod_mime.c
mod_status.c
mod_autoindex.c
mod_asis.c
mod_cgi.c
mod_negotiation.c
mod_dir.c
mod_actions.c
mod_userdir.c
mod_alias.c
mod_so.c

Next, you need to locate the plug-in shared library for the operating system on which Apache is running.
The operating system–specific subdirectories under the $WL_HOME/server/plugin directory contain the
different plug-in shared libraries. The name of the plug-in varies depending on the version of Apache
it supports and the operating system, but it always begins with mod_wl and ends with a shared library
extension (for example, so or sl). Please consult the WebLogic Server Apache plug-in documentation for
the correct shared library name for a particular platform and version of Apache.

Our example will use Apache 2.2.11 running on 64-bit Linux. Copy the mod_wl_22.so file from the
$WL_HOME/server/plugin/linux/x86_64 directory to the $APACHE_HOME/modules directory, which, in
our case, is /usr/local/apache2/modules. Locate the httpd.conf file (in the $APACHE_HOME/conf direc-
tory) and add the following line at the end of the file:

LoadModule weblogic_module modules/mod_wl_22.so

568

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 569

Chapter 12: Administering and Deploying Applications

At this point, it is a good idea to save these changes and try to restart the server. Run the following
command to restart the server (replace restart with start if the server is not already running):

> Apache –k restart

To proceed further, you need more information about the application. The example reservation system
application will use the Apache web server only for customer self-service bookings. Although we won’t
be exploring the details of the application until the next section, we will assume that you know from
your development staff that you want to redirect all requests to your web site to your WebLogic Server
cluster. To do this, you use the Location directive in conjunction with the SetHandler directive to tell
Apache that all requests whose URLs match a particular pattern should be handled by the WebLogic
Server plug-in. Add the following lines to the end of the httpd.conf to accomplish this:

<Location /*>
SetHandler weblogic-handler

</Location>

Of course, this means that Apache will delegate every request to the WebLogic Server plug-in. In many
cases, you may not actually want this. For our example application, we simply want to proxy /user and
/admin to our cluster. To do this, we simply add the Location directives shown here:

<Location /user>
SetHandler weblogic-handler

</Location>

<Location /admin>
SetHandler weblogic-handler

</Location>

The plug-in also supports proxying requests by MIME type through the use of the IfModule directive
in conjunction with the MatchExpression directive. Because our use of Apache is simple, you won’t
need to do this, so we suggest reviewing the WebLogic Server Apache plug-in documentation for more
information on how to set this up.

At this point, you have configured Apache to send all requests that begin with /user and /admin to the
plug-in, but how does the plug-in know what to do with the requests once they arrive? You need to
tell the plug-in where to send the requests that it receives. To do this, use either the WebLogicHost and
WebLogicPort directives or the WebLogicCluster directive, depending on whether you are forwarding
to a single server instance or a cluster. We are forwarding requests to the cluster, so you must use the
WebLogicCluster directive. Before you do this, however, you need to remember that we are using a NAT
firewall between Apache and the WebLogic cluster. Therefore, we need to use the external IP addresses
of the firewall instead of the actual (internal) IP addresses so that the plug-in can reach the servers. Let’s
modify the Location directive to add the WebLogicCluster directive with the external IP addresses and
port number of our cluster.

<Location /user>
SetHandler weblogic-handler
WebLogicCluster 10.10.1.41:80,10.10.1.42:80,10.10.1.43:80

</Location>
<Location /admin>

569

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 570

Chapter 12: Administering and Deploying Applications

SetHandler weblogic-handler
WebLogicCluster 10.10.1.41:80,10.10.1.42:80,10.10.1.43:80

</Location>

This completes the basic setup of the Apache plug-in for our simple application. The WebLogic Server
plug-ins offer a wide variety of possible configurations and parameters to modify a plug-in’s behavior.
Though the WebLogic Server documentation covers these in great detail, we cover a few of the most
commonly used parameters. The first set of parameters is as follows:

PathTrim This parameter tells the plug-in to strip off a leading portion of the requested URL
before forwarding the request to WebLogic Server.

PathPrepend This parameter tells the plug-in to add to the leading portion of the requested URL
before forwarding the request to WebLogic Server.

DefaultFileName This parameter tells the plug-in what the default file name should be for
URLs that end with /.

The parameters should be self-explanatory, but let’s look at an example. Imagine that the request
coming from the browser is for http://www.oracle.com/wls/. If our PathTrim is set to /wls, our
DefaultFileName is set to index.html, and our PathPrepend is set to /weblogic, the plug-in will apply
the following steps, in order, to transform the URL before sending it on to WebLogic Server.

1. The plug-in applies the PathTrim value to convert the relative URL from /wls/ to /.

2. The plug-in applies the DefaultFileName value to convert the relative URL from / to
/index.html.

3. The plug-in applies the PathPrepend value to convert the relative URL from /index.html to
/weblogic/index.html.

Therefore, the plug-in transforms the original URL request of /wls/ to /weblogic/index.html before
sending the request to WebLogic Server. Though these parameters can be useful, they also can cause
unexpected problems you need to watch out for.

The plug-in’s PathTrim and PathPrepend operations are unidirectional. This means that although the
plug-in will intercept all requests and remove or add the specified values, it will not parse the HTML
responses created by WebLogic Server to fix up any of the embedded URLs by reversing the trimming or
prepending process. The browser will therefore see URLs representing the values returned by WebLogic
Server rather than the values expected by the plug-in. Though these parameters are useful for making
a set of pages appear available at a different URL, the application must modify any navigational links
within the pages to fit the new URL scheme. This behavior catches many administrators (and program-
mers) by surprise because you might expect any URL changes at the plug-in level to be completely
transparent to the application — they are not.

The DefaultFileName value must match the web application deployment descriptors’ welcome file val-
ues. The plug-in uses this parameter to append to any URLs that end with /. Therefore, the administrator
needs to make sure that the value set for DefaultFileName is the same as the welcome file setting the
web.xml deployment descriptor(s) to which the Location parameter is forwarding (because the Location
directive value might imply forwarding to multiple web applications).

570

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 571

Chapter 12: Administering and Deploying Applications

PathTrim and PathPrepend do not modify navigational URLs embedded in the
HTML returned to the browser. As a result, the application must be able to modify
these navigational URLs to match the values created by these two parameters.
DefaultFileName must match the value of the welcome file for all web applications
to which it applies.

The plug-in uses the next set of parameters to determine its behavior in the case of response time degra-
dations or failures:

ConnectTimeoutSecs The total amount of time the plug-in waits for a connection to be estab-
lished with a server. If the plug-in is unsuccessful, it returns an HTTP 503 (Service Unavailable)
response code to the browser. The default value is 10 seconds.

ConnectRetrySecs The amount of time the plug-in sleeps between connection requests to a
server (or other servers in a cluster). Although the plug-in will always try to connect at least twice,
the result of dividing the ConnectTimeoutSecs by the ConnectRetrySecs will determine the total
number of connection requests before the plug-in gives up. The default value is 2 seconds.

WLIOTimeoutSecs The amount of time the plug-in will wait for a response from WebLogic
Server. If the plug-in submits a request and the server does not respond within a certain time
period, the plug-in will declare the server as dead and fail over to another server, if appropriate
(see the following Idempotent parameter). The default value is 300 seconds.

Idempotent Whether the plug-in should try to resend a request for which it did not receive a
response within WLIOTimeoutSecs. The default value is ON (which means the plug-in will retry).

ErrorPage The absolute or relative URL to the page to display when the plug-in is unable to
forward a request to WebLogic Server.

The plug-in’s default values for ConnectTimeoutSecs and ConnectRetrySecs are usually sufficient for
most situations. The appropriate value of Idempotent depends on the semantics of the application. When
a request fails in such a way that the plug-in is unsure whether the server received the request, it is only
safe for the plug-in to resend the request if the application is idempotent. Essentially, this means that
the application state should be the same no matter if the server processes the request in question only
once or multiple times. WLIOTimeoutSecs controls the maximum amount of time for a server to process
a request. If the time exceeds this, the plug-in will retry the request (if Idempotent is ON) or return an
error to the user (if Idempotent is OFF or there are no more servers to accept the request). The ErrorPage
simply tells the plug-in what to send back to the browser if it is unable to forward a request to WebLogic
Server.

The last set of parameters controls the debugging features of the plug-in.

Debug The value of this parameter controls how much logging information about requests and
response the plug-in writes to the log file. By default, Debug is set to OFF so that no logging occurs.

WLLogFile This parameter specifies the name and location of the log file (see the Debug
parameter). If logging is on, the default log file location is either c:\temp\wlproxy.log or
/tmp/wlproxy.log, depending on the platform.

571

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 572

Chapter 12: Administering and Deploying Applications

DebugConfigInfo This parameter controls access to the plug-in’s configuration information by
supplying the ___WebLogicBridgeConfig query parameter on any URL the plug-in receives. By
default, this feature is set to OFF.

The WebLogic Server plug-ins support many levels of logging to help debug problems with proxied
requests. The valid values for the Debug parameter are

OFF The plug-in doesn’t log any information.

ON The plug-in logs only informational and error messages.

HFC The plug-in logs HTTP headers sent from the client to the plug-in.

HTW The plug-in logs HTTP headers sent from the plug-in to WebLogic Server.

HFW The plug-in logs HTTP headers sent from WebLogic Server back to the plug-in.

HTC The plug-in logs HTTP headers sent from the plug-in back to the client.

ERR The plug-in logs only error messages.

ALL The plug-in logs all of the information listed in the other settings.

The Debug parameter also supports combining any of the four individual HTTP header logging values
by using a comma-separated list. Of course, turning logging on in a production situation may result in
huge log files, so you need to keep this in mind. The WLLogFile parameter simply controls the name and
location of the plug-in’s log file if logging is enabled.

The DebugConfigInfo parameter offers a quick way of determining the configuration of the plug-in
via a browser. By setting the parameter to ON and sending a URL to the plug-in containing the
___WebLogicBridgeConfig query parameter, the plug-in will send back its current configuration
information. For example, turn DebugConfigInfo on for your configuration by modifying the Location
directive entry to look like this one:

<Location /user>
SetHandler weblogic-handler
WebLogicCluster 10.10.1.41:80,10.10.1.42:80,10.10.1.43:80
DebugConfigInfo ON

</Location>

Now, restart the Apache server. Enter http://www.bigrez.com/user?___WebLogicBridgeConfig in the
browser to ask the plug-in for the configuration information. The return page should look something like
the screen shown in Figure 12-8.

Now that we have the Apache plug-in working, all there is left to do is to enable the domain-wide admin
port and set up the admin channel to allow our WebLogic Server administrators to get through the
corporate firewall to the WebLogic Console.

Administration Port and Channel Configuration
Now that our domain, servers, clusters, network channels, SSL and X.509 certificate keystores, node
manager, and web server plug-ins are working, the only task left is to use the domain’s General
Configuration tab to turn on the Enable Administration Port setting. This change requires that all

572

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 573

Chapter 12: Administering and Deploying Applications

managed servers be shut down, but once you save and activate the change, the admin server opens up
port 9002 and the WebLogic Console is automatically redirected to the administration port — all without
restarting the admin server. That was simple, time to move on and start up the managed servers, right?
Not just yet!

Figure 12-8: Viewing plug-in configuration data.

Once you activate the domain’s administration port, all management traffic must use the administration
port, which means it must use SSL. That means when a managed server starts up and contacts the admin

573

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 574

Chapter 12: Administering and Deploying Applications

server for its current configuration it must open an SSL connection to the admin server. No problem
right? We already configured the identity and trust keystores for our admin and managed servers. Before
we declare victory, there is a bootstrapping problem we need to handle.

Remember when a managed server starts up, it does not yet have its configuration information from
the admin server. That means it doesn’t know what identity and trust keystores are configured. In this
case, it is the trust keystore that can be a problem because during the SSL handshake, the admin server
presents its X.509 certificate to the managed server. If the managed server doesn’t trust the admin server’s
certificate, it won’t establish the SSL connection and therefore, won’t be able to load its configuration to
know what trust keystore it should use. As you can see, we have a chicken and egg problem.

What the managed server does by default when it boots and needs to use an SSL connection to the
admin server is to load its standard trust keystores found in $WL_HOME/server/lib/DemoTrust.jks
and $JAVA_HOME/jre/lib/security/cacerts. If the admin server is using the WebLogic Server demo
certificate or a certificate signed by one of the well-known CAs whose root certificates are distributed
in the JVM’s cacerts trust keystore, the managed server will trust the admin server’s certificate and
everything works perfectly. However, if your admin server’s certificate is signed by a different CA or
self-signed, you have to do extra work to get the managed server to trust the admin server’s certificate.
There are a number of possible solutions to this problem should you encounter it.

Update the Standard Trust Keystore With this approach, you add your CA certifi-
cate to either the WebLogic Server DemoTrust.jks keystore (the store passphrase is
DemoTrustKeyStorePassPhrase) or the JVM’s cacerts keystore (the store passphrase is
changeit). This approach is simple and works well if you don’t mind the managed server trusting
the other CAs in these keystores. Of course, you could also remove the other CA certificates from
the keystore if only your application is using them.

Replace the Standard Trust Keystore A slight variation of the previous solution is to replace
one or both of the standard trust keystores. You could accomplish this by either replacing the key-
store altogether or simply adding your CA certificate and removing all the other CA certificates. If
you decide to replace the keystore, you must make sure that the keystore passphrase is unchanged
from the default.

Use Command-Line Arguments to Specify the Trust Keystore With this approach, you modify
the startup arguments so that you specify the trust keystore to use. To do this, you must specify the
trust store information using these Java command-line arguments to start the managed server:

-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=<keystore_file_name>
-Dweblogic.security.CustomTrustKeyStorePassPhrase=<keystore_passphrase>

You specify this information either in the shell scripts used to start the managed servers (for
example, the setDomainEnv script) or in the servers’ Server Start Configuration tab’s Arguments
attribute. Though this approach is the preferred solution, there is a potential disconnect that we
must point out.

While configuring SSL for the managed servers, most likely we have already configured the man-
aged servers’ Keystores attribute to Custom Identity and Custom Trust and specified these same
trust store details in the domain configuration. Though there is no specific problem with doing
that, you end up needing to maintain the information in two places. It probably isn’t a big deal
because it is likely that this information won’t change, but it is something you must remember if

574

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 575

Chapter 12: Administering and Deploying Applications

you ever need to change it. A better way to approach this might be to change the managed servers’
Keystores attribute to Custom Identity and Command Line Trust. That way, you no longer spec-
ify the trust keystore information in the server’s keystore configuration and only maintain it in the
server’s startup parameters.

For our example, we chose to use command-line trust for our managed servers and modified the man-
aged servers’ Arguments attribute in the Server Start Configuration tab to pass the trust store infor-
mation to the node manager. Now, we are ready to restart the managed servers.

Our final task is to set up an admin channel to get through the corporate firewall to the WebLogic Con-
sole. This allows our administrators to access the WebLogic Console from anywhere inside the corporate
network. To do this, simply create a network channel for the admin server by setting the Name to Internal
Admin Channel, the Protocol to admin, the Listen Address to 192.168.1.40, the Listen Port to 443, the
External Listen Address to 10.11.1.40, and the External Listen Port to 443.

At this point, we have finished with the general configuration of the bigrez.com production environ-
ment. Even though the complexity of the example may seem a little overwhelming, rest assured that
most production environments do not require this much configuration complexity. In fact, the simpler
you can make the production environment, the better. The whole purpose of choosing such a complex
environment was to demonstrate the flexibility of WebLogic Server for supporting almost any imagin-
able configuration requirement. Now, we are ready to move on to demonstrate how to take an application
from your developers and deploy and manage it in a WebLogic Server environment.

Configuring Applications for WebLogic Server
Application developers typically set up their development environment to make it easy to go through the
frequent compile, deploy, and test cycles of iterative development rapidly. This often means that when
you are ready to promote an application into a more controlled environment, you may want to do some
reorganizing and repackaging to make the production deployment environment simpler.

In Chapter 8, we discussed how to package the bigrez.com enterprise application into a self-contained
enterprise application archive (EAR) file. Though many administrators may not be responsible for appli-
cation packaging, an understanding of Java EE application packaging will help you identify certain types
of problems that may occur. Rather than covering application packaging again here, we suggest that you
review the discussion in Chapter 8.

Configuring Database Resources
Most applications depend on databases to read and write pertinent application data. As a result, con-
figuring database resources will be a common task of most WebLogic Server administrators. WebLogic
Server provides a database connection pooling framework that provides applications with an efficient,
standards-based mechanism for accessing databases without requiring them to optimize connection
usage to improve performance. This framework also provides some critical, behind-the-scenes func-
tionality to make sure that Java Transaction API (JTA) transactions have proper database transaction
semantics. If your application uses JTA (as most EJB applications do), you must use this framework.
Failure to do so can cause data consistency problems in event of rollbacks or failures. In this section, we
attempt to cover the important points of setting up a JDBC data source that provides the application with
standards-based access to the underlying JDBC connection pooling facilities.

575

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 576

Chapter 12: Administering and Deploying Applications

Best Practice
Always use WebLogic Server’s JDBC data source and underlying JDBC connection
pooling mechanisms rather than some other pooling mechanism. In addition to pro-
viding a robust pooling framework, JDBC connection pooling provides some critical,
yet hidden transactional semantics to ensure that JTA transactions have the correct
transactional semantics without any additional work on the part of the developer. Fail-
ure to use this may cause data integrity issues for applications that depend on JTA
transactions involving database access.

Selecting and Configuring a JDBC Driver
WebLogic Server supports making connections to any database management system for which a JDBC
2.0-compliant driver is available. WebLogic Server supports JDBC 4.0 so it will expose any JDBC 3.0 or
4.0 APIs that the driver supports. JDBC drivers are available from a number of sources, including the
database vendors, application server vendors, and other third-party companies. The quality, features,
and performance characteristics of JDBC drivers vary from driver to driver, and sometimes from release
to release of the same driver. All other things being equal (which, in our experience, is usually not the
case), we recommend using Type 4 drivers over Type 2 JDBC drivers because they do not depend on
loading native libraries into the application server (bugs or improper use of native libraries can cause the
JVM to crash). Typically, you will want to work with your development team to determine which JDBC
driver works best for your application. Remember that although WebLogic Server will support
any JDBC 2.0-compliant driver for general application usage, certain subsystems that depend on a
database (for example, the JPA provider) may support a more limited set of drivers. Be sure to choose a
supported driver for applications that use these database-dependent subsystems.

Once you know which JDBC driver to use, you will need to know a few things about the driver and a
few things about the database to which you are connecting. Because the purpose of this discussion is to
demonstrate how to configure a WebLogic Server JDBC data source, we are going to choose a database
and a JDBC driver and show the details of how to create a data source and its underlying connection
pool. For more specific information on a particular JDBC driver configuration, please refer to the JDBC
driver documentation and the WebLogic Server documentation.

For our example, we will use an Oracle database and the Oracle Thin JDBC Driver, a Type 4 driver avail-
able directly from Oracle. WebLogic Server includes a copy of the driver in the $WL_HOME/server/lib
directory that it automatically loads with the server. If you were to choose the Oracle OCI (Type 2) Driver,
you would have to install and configure the Oracle Client libraries and include them in the shared library
path of the WebLogic Server.

The first thing we want to do is to get the right version of the driver available to the server. As mentioned
earlier, WebLogic Server ships with a version of the Oracle Thin Driver ojdbc6.jar jar file. Although
WebLogic Server tries to include the newest version of the driver, bug fixes and enhancements for this
driver may mean that you may want to download a newer version from Oracle. Access to the drivers
is currently available from Link 12-18, though access to the drivers requires that you register with the
Oracle Technology Network.

Once the required files exist on each machine where WebLogic Server instances will connect to the
database, you need to make sure that each server’s classpath is set to include references to these files

576

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 577

Chapter 12: Administering and Deploying Applications

before the reference to the WebLogic Server classes (for example, weblogic.jar). Because WebLogic
Server 10.3.1 includes the latest Oracle 11g Thin Driver, we will use the included driver. If you want
to use a different driver, you must modify the servers’ Classpath attributes in their Server Start
Configuration tab (and restart the server if it is already running).

If you use a Type 2 driver, you either have to modify the node manager start scripts to put the shared
libraries in its shared library search path or add an argument to the Arguments entry in the server’s
Remote Start Configuration tab to define the java.library.path system property with the correct
shared library search path. Both of these mechanisms are somewhat problematic. The node manager
start script modification works fine, but it assumes that all servers started by the node manager on a
particular machine have the same shared library search path. In many situations, this might be okay, but
it can be problematic if different servers are using different software versions of these native libraries
(for example, different versions of the Oracle Client). We prefer to use the java.library.path system
property instead because it is server-specific rather than machine-specific. The only real issue with this
mechanism is that you must remember to list all of the directories that need to be in the search path,
including the ones that WebLogic Server scripts or your operating system profiles tend to set for you
behind the scenes (for example, the platform-specific directories under the $WL_HOME/server/native
subdirectory).

Now that the server has the necessary class files in the correct place in the classpath, we are ready to
move on to setting up the data source and its underlying connection pool.

Configuring JDBC DataSources
WebLogic Server’s JDBC connection pools rely on several attributes to determine how to connect to the
database:

Driver Class Name The fully qualified name of the class that implements the java.sql.Driver
interface. Your JDBC driver documentation should provide this information.

URL The URL that tells the driver how to locate the correct database. Your JDBC driver doc-
umentation should provide information on the expected format. Depending on the information
required, you may need some additional information from your database administrator (DBA).

Properties Properties that allow you to pass in driver-specific information. Every driver has a
core set of information that it needs to connect to the database. Some of this information may be
contained in the URL, whereas other information may have to be passed via properties. Please refer
to the JDBC driver documentation for more specific information on what is required.

Database User Name and Password Required for connection pools. Connection pools are a set of
connections that are functionally equivalent and shared by the application to process requests from
all users. Therefore, you will need a database username and password with sufficient permissions
to execute all the database work an application requires.

To simplify the process of creating the underlying connection pool, WebLogic Server provides a JDBC
Data Source Configuration Wizard in the WebLogic Console that has an underlying knowledge of numer-
ous JDBC drivers so that you don’t need to know the driver’s class name or the correct syntax for its URL.
By selecting from a list of known drivers and filling in the appropriate information, the wizard will popu-
late the Driver Class Name and URL fields appropriately. If your driver is not in the list of known drivers,
simply select Other from the Database Type or Database Driver drop-down menu and the wizard will

577

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 578

Chapter 12: Administering and Deploying Applications

prompt you for the Driver Class Name and URL fields on a subsequent screen. To create a data source, we
need to specify the following information:

❑ Name — The logical name of the data source used internally by WebLogic Server.

❑ JNDI Name — The JNDI name that applications use to locate the javax.sql.DataSource object
for this connection pool.

❑ Database Type — The database provider for the database.

❑ Database Driver — The specific JDBC driver to use for the database type selected.

❑ Transaction Option — This tells the server what type of transactional behavior you want for
this data source.

❑ Database Name — The name of the database (for example, the Oracle service name or SID).

❑ Host Name — The hostname or IP address of the server where the database is running.

❑ Port — The port where the database server is listening.

❑ Database User Name — The database user to connect as.

❑ Password — The database user’s password.

❑ Properties — Any extra database-specific properties you need to set.

❑ Test Table Name — The name of the table or SQL that WebLogic Server should use to test the
validity of a database connection.

❑ Targets — The set of servers or clusters on which to deploy the data source and its underlying
connection pool.

Using this information, the WebLogic Console will guide you through the process of creating, testing,
and deploying the JDBC connection pool to the cluster. We discuss the JNDI Name and Transaction
Option settings in more detail in the next two sections. Once the pool is deployed, use the data source’s
Connection Pool Configuration tab to set information about the connections in the pool. On this tab,
three main parameters control the number of database connections in the pool: Initial Capacity,
Maximum Capacity, and Capacity Increment. As you might expect, Initial Capacity defines the initial
number of connections, Maximum Capacity defines the maximum number of connections, and Capacity
Increment defines the number of connections by which to grow the pool when WebLogic Server deter-
mines it needs to increase the size of the pool.

Best Practice
Whenever possible, try to size database connection pools properly so that they never
need to grow the number of connections. Trying to grow the number of connections
during a peak load situation can aggravate the situation because database connection
creation is expensive.

If the application makes use of JDBC PreparedStatement objects, WebLogic Server can transparently
cache these objects and dramatically improve the performance of the queries whose PreparedStatement
object is in the cache. The Statement Cache Size parameter controls the size of the cache for each con-
nection in the pool (because JDBC prepared statements are scoped to an individual connection). A cache
size of zero disables prepared statement caching. By default, WebLogic Server uses a least-recently-used

578

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 579

Chapter 12: Administering and Deploying Applications

(LRU) caching algorithm to make room for new statements. It also supports a FIXED cache type that
simply fills each connection’s cache with the first n prepared statements it encounters while using that
connection, where n is the size of the cache. There may be memory, database resource, or other issues
associated with the use of this feature. See the ‘‘Usage Restrictions for the Statement Cache’’ section
of Link 12-19 in the WebLogic Server documentation for more details on the potential issues with this
feature.

Best Practice
Make use of prepared statement caching if the application can tolerate the restrictions.

Under the Advanced area of the Connection Pool Configuration tab, there are quite a few options that
allow you to tailor the way the pool behaves. Though we do not attempt to cover every option, we do
discuss several of the more important options. For more complete information, see the WebLogic Server
documentation at Link 12-20.

WebLogic Server’s Test Connections On Reserve feature validates connections as they are requested
from the pool by the application. To determine the validity of a connection, WebLogic Server issues a
query on the connection. The Test Table Name parameter allows the administrator to control the valida-
tion query. By default, the query is SELECT count(*) FROM <Test Table Name>. Most database systems
can optimize this query to avoid a table scan, but it is still a good idea to use a table with no rows just
in case. For Oracle, we recommend using the DUAL table for maximum performance. WebLogic Server
also allows you to use the Test Table Name attribute to specify a different validation query. If Test Table
Name begins with the characters SQL, WebLogic Server interprets everything that follows these characters
as the literal query to execute.

Because the test is done synchronously as part of the application’s request to get a connection, using this
option will add some overhead to the application. However, using Test Connections on Reserve makes
your application more resilient to network glitches that may close existing database connections. For
busy applications, the Seconds to Trust an Idle Pool Connection attribute allows you to tell the server
to skip testing a connection that was recently used. As you might imagine, this can significantly reduce
the overhead when the server is busy.

WebLogic Server also provides a mechanism to have the server periodically test unused connections
from the pool to make sure that they are still valid. The Test Frequency attribute defines the frequency
(in seconds) with which the server tests the unused connections.

Best Practice
If you can afford the overhead of testing connections as part of normal request process-
ing, always use Test Connection On Reserve to make the application more resilient.
Make sure to use an empty table (or DUAL if using Oracle) as the Test Table Name. Tune
the Seconds to Trust an Idle Pool Connection parameter so that the server will skip
testing frequently used connections.

Connection Reserve Timeout specifies the maximum amount of time an application request to get a
connection from the pool is allowed to block. By default, WebLogic Server sets this to 10 seconds. The

579

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 580

Chapter 12: Administering and Deploying Applications

Maximum Waiting for Connection attribute limits the number of threads that can block waiting for a con-
nection from the pool; by default, this is set to java.lang.Integer.MAX_VALUE. Though this functionality
helps applications deal with unexpected loads, never use this as a substitute for properly sizing connec-
tion pools. Any threads that have to block to get a connection are slowing down your application request
processing.

The last connection pool attribute we need to mention is Connection Creation Retry Frequency. If this
attribute is set to zero, it means that WebLogic Server data source creation will fail if the database is
unavailable. Although this doesn’t sound so important, what you must realize is that WebLogic Server
creates the data source every time it boots — not just when you create the definition using the WebLogic
Console. What that means is that if any data source for any application deployed on the server has a zero
value for this parameter, the server will fail to boot if the database is unavailable. If you do not want
the server to fail to boot, set this attribute to a non-zero value and the server will periodically retry to
establish the data source’s connection pool until it succeeds.

If a data source’s Connection Creation Retry Frequency is set to zero, WebLogic
Server will fail to boot if the database is unavailable.

Before we set up the two data sources for bigrez.com, we need to discuss the Transaction Options and
the JNDI Name settings.

Selecting Transaction Options for a Data Source
When creating a data source, WebLogic Server prompts you to specify the transactional behavior for
the data source if you select a non-XA JDBC driver. If you select an XA JDBC driver, WebLogic Server
automatically configures the data source to use XA (we talk more about what this means later).

The first choice is whether or not the data source supports global transactions. In earlier versions of
WebLogic Server, a data source that honors global transactions was known as a TxDataSource and one
that doesn’t was known as a DataSource. Many people do not understand the differences between the
two.

The primary difference is that data sources that support global transactions are JTA transaction-aware.
Realize that JTA transactions do not necessarily mean XA transactions and two-phase commits (2PC). JTA
transactions also allow two independently written components that modify the same database to partici-
pate in a transaction without having to know about each other. Non-XA database transactions require the
use of a single database connection to provide the proper transactional semantics. If you choose not to
use the Supports Global Transactions option, you need to write your application components in such
a way that they get a database connection from the pool at the start of every transaction and pass that
connection around to every component that participates in the transaction. This is clearly not desirable
and not even possible with certain types of components (for example, JPA managed entities).

A data source that supports global transactions will make sure that your components participating in a
JTA transaction get the proper transactional semantics whether or not they are using XA transactions.
When not using XA transactions, the data source accomplishes this by associating a database connection
with a JTA transaction context. Every time a component asks for a database connection using the data
source that supports global transactions, WebLogic Server will check to see if the current transaction

580

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 581

Chapter 12: Administering and Deploying Applications

already has a database connection, and if so, it will always hand back the same underlying database con-
nection. This allows non-XA transactions to maintain the proper database semantic guarantees without
having to worry about what database connection to use and what the transactional boundaries are for
the application.

What this means is that every application that uses JTA transactions, which includes most EJB applica-
tions and many JMS applications, must use data sources that support global transactions to access their
respective database connection pools. Failure to do so will expose the application to database consistency
problems during JTA transaction rollback or failures. Data sources that do not honor global transactions
will ignore any JTA transaction context. Therefore, unless your application is intentionally trying to do
database work outside the scope of a transaction, you must use the Supports Global Transactions
option. When in doubt, always use the Supports Global Transactions option.

Best Practice
When defining data sources you almost always want to use the Supports Global
Transactions option — even if you are not using XA transactions. By supporting
global transactions, WebLogic Server keeps any JTA transactional semantics in sync
with the underlying database transaction semantics. When in doubt, always use the
Supports Global Transactions option.

If the data source supports global transactions and you specify that the data source will use a non-XA
JDBC driver, you need to select the transaction commit protocol. The choices are:

One-Phase Commit This option tells WebLogic Server that your JTA transactions involving this
data source will never include more than one transactional resource so the normal single-phase
database commit protocol is sufficient. WebLogic Server will prevent any attempt by the appli-
cation to enlist more than one transactional resource into the same transaction. This is the right
setting for applications that only use a single database resource and do not use JMS.

Emulate Two-Phase Commit This option tells WebLogic Server that you want your non-XA JDBC
connections to participate in global transactions. With this option, WebLogic Server will allow at
most one non-XA resource to participate in the global transaction and will emulate the XA two-
phase commit protocol with this non-XA JDBC connection. Although WebLogic Server orders the
XA and non-XA resources during the transaction commit phase to minimize the chance of inconsis-
tency, this option does expose your application to a small window of failure. Because committing
the non-XA resource must be performed in a single step, a failure after the commit of the non-XA
resource and before writing the XA transaction recovery log will cause the server to forget the
global transaction so all XA resources will be rolled back by their respective resource manager
(while the non-XA resource has already been committed). The really bad part about this particular
failure scenario is that WebLogic Server doesn’t realize that the transaction was partially commit-
ted because it doesn’t remember the transaction.

Last Logging Resource Last Logging Resource is a twist on the Emulate Two-Phase Commit
option that eliminates the window of failure just discussed by writing the XA transaction recovery
log into the database using the non-XA JDBC driver. This ensures that once the non-XA resource
commits, the XA transaction recovery log entry is also committed. Even if the server fails imme-
diately after this non-XA resource commit, WebLogic Server will have a permanent record of the

581

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 582

Chapter 12: Administering and Deploying Applications

transaction so that it can attempt XA recovery on the transaction and warn you if it fails to return
the system to a consistent state.

Two-Phase Commit This isn’t an explicit option you choose. WebLogic Server selects this option
automatically if you choose to set up a data source with an XA JDBC driver.

As we alluded to at the beginning of this section, selecting an XA JDBC driver for a data source will
cause WebLogic Server to select the Supports Global Transaction option automatically and set the
transaction protocol to Two-Phase Commit. Before we go on to define our data sources for bigrez.com,
let’s talk briefly about the data source’s JNDI name.

Locating Data Sources in Java EE Applications
Java EE applications use javax.sql.DataSource objects to get access to database connections. As we
have been discussing, WebLogic Server allows you to define the data source objects administratively
to use application server managed database connection pools. Applications get a reference to the
javax.sql.DataSource object you create by looking them up in JNDI by the name you specify in the
data source’s JNDI Name attribute. There are several ways that an application might use JNDI to find the
data source.

First, the application might look up the data source using the global JNDI name you set for the data source.
Although this works, it tightly couples your application to a global JNDI name. If multiple applications
were to expect the same global JNDI name for different resources, this would prevent you from deploying
the applications in the same application server instance or cluster. The same is true for applications that
use resource injection against the global JNDI name using the mappedName attribute, as shown here:

@Resource(mappedName="bigrez.datasource.jta")
DataSource myDataSource;

A better way is for the application code to use a logical name specific to the Java EE component (for
example, a session EJB might use the logical name java:comp/env/jdbc/BigRezJTADataSource), and
the component’s deployment descriptor will map this logical name to the actual name that you should
specify in the WebLogic Console. For example, the ejb-jar.xml deployment descriptor for one of our
session EJBs declares the logical name the code is using by the following entry:

<resource-ref>
<res-ref-name>jdbc/BigRezJTADataSource</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

Notice that the java:comp/env/ prefix in the code tells WebLogic Server that the name is logical, so you
don’t see it here. Applications using dependency injection will use the name attribute of the @Resource
annotation to map to the value of the <res-ref-name> element in the deployment descriptor, as shown
here.

@Resource(name="jdbc/BigRezJTADataSource")
DataSource myDataSource;

582

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 583

Chapter 12: Administering and Deploying Applications

Then, this logical name is mapped to the actual global JNDI name with the following entry in the session
EJB’s weblogic-ejb-jar.xml deployment descriptor:

<resource-description>
<res-ref-name>jdbc/BigRezJTADataSource</res-ref-name>
<jndi-name>bigrez.datasource.jta</jndi-name>

</resource-description>

This means that our application is expecting to find the DataSource it needs by using the JNDI name
of bigrez.datasource.jta. The nice part about this is that you can easily change the JNDI name of the
DataSource objects without having to change the actual application code. Unfortunately, not all Java EE
application developers take advantage of this feature, so your application may be using the actual JNDI
names in the code.

Best Practice
Encourage developers to use logical JNDI names in their code and leverage the EJB
or web application deployment descriptors to map these logical names to the actual
names configured in WebLogic Server.

Configuring bigrez.com Data Sources
Let’s create our two data sources for bigrez.com. From Chapter 8, we know that our JPA provider needs
both a JTA and a non-JTA data source. Although we haven’t talked about configuring JMS yet, our
developers have informed us that they are using a persistent JMS queue and need to use XA transactions
for operations that involve both the JMS queue and our Oracle database. This means that we want to
make sure that our JTA data source uses an XA JDBC driver. Table 12-6 shows the configuration values
for our JTA data source. All values not shown should be left at their default values.

For our non-JTA data source, most of the values are the same as for our JTA data source. Table 12-7 lists
the values that are different for the non-JTA data source.

Configuring JMS Resources
Many applications use some sort of messaging. Common uses for messaging involve asynchronous
communication with other applications, store-and-forward situations where the external system may
not always be available, and even situations where you want to avoid the overhead of performing a
particular operation synchronously as part of processing a user request (for example, sending an email
confirmation). The Java Message Service (JMS) is the Java EE standard API for interacting with messaging
systems. WebLogic Server provides a robust, high performance messaging system that fully supports the
JMS specification. In addition, WebLogic JMS also supports plugging in external, third-party messaging
systems via their JMS APIs to support things like message-driven beans (MDBs) listening directly to
externally provided destinations for messages. For more information about WebLogic JMS, please see
Chapter 10 and the WebLogic Server documentation at Link 12-21.

583

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 584

Chapter 12: Administering and Deploying Applications

Table 12-6: BigRezJTADataSource Configuration Parameters

Name Value

Name BigRezJTADataSource

JNDI Name bigrez.datasource.jta

Database Type Oracle

Database Driver Oracle’s Driver (Thin XA) for Service Connections;
Versions: 9.0.1, 9.2.0, 10, 11

Database Name ORCL

Host Name 192.168.1.44

Port 1521

Database User Name Bigrez

Password Password

Targets BigRezCluster (All servers in the cluster)

Initial Capacity 60

Maximum Capacity 60

Capacity Increment 0

Statement Cache Type LRU

Statement Cache Size 100

Test Connections on Reserve Yes (checked)

Connection Creation Retry Seconds 30

Our example application uses two JMS queues. Internet customer bookings use a queue to buffer email
confirmations of interactions with the bigrez.com site. We also set up an error queue for email messages
that prove to be undeliverable. In this section, we walk through the steps for configuring the JMS services
needed for a production deployment of the bigrez.com application. We assume that you have read
Chapter 10, and therefore we do not spend much time describing particular JMS objects or features here.

Creating JMS Servers and WebLogic Persistent Stores
The first thing we need to do is set up the JMS servers. A JMS server is an administrative grouping of JMS
destinations that run on the same WebLogic Server instance and share a set of common characteristics.
One WebLogic Server instance can support multiple JMS servers. In the event of failure or maintenance,
we can migrate JMS servers from one WebLogic Server instance to another; this is known as service
migration in the WebLogic Server documentation. As part of JMS service migration, we may need to

584

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 585

Chapter 12: Administering and Deploying Applications

migrate the JTA service to recover any incomplete transactions involving the JMS server’s persistent
store, depending on whether we are using JTA transactions with persistent messages for any of the JMS
server’s underlying destinations.

Table 12-7: Non-JTA Data Source Configuration Parameter Changes

Name Value

Name BigRezNonJTADataSource

JNDI Name bigrez.datasource.nonjta

Database Driver Oracle’s Driver (Thin) for Service Connections; Versions: 9.0.1, 9.2.0, 10, 11

Transaction Options Supports Global Transactions = No (unchecked)

WebLogic Server also supports relocating the entire server instance, including any JMS servers it might
contain, to another machine; this is known as whole server migration. We discuss both whole server migra-
tion and service migration in the ‘‘Managing Failure Conditions’’ section later in this chapter.

Before we create our JMS servers, we need to determine if we need a JMS persistent store and, if so, what
type of store to use. WebLogic JMS supports two types of persistent stores: file-based and JDBC-based.
For the file-based store, JMS messages are persisted to disk. The JDBC-based store writes the messages to
a database using a WebLogic Server connection pool. In general, the file-based store is much faster than
JDBC-based stores. WebLogic JMS provides an XAResource interface to allow the file store to participate
in XA transactions. Because the file store is disk-based, migration support for a JMS server using a file
store depends on the file store being accessible from another machine.

Applications that choose to use persistent messages generally do so because they cannot afford to lose
any messages. Both the file- and JDBC-based stores give the application the persistence that they need.
If a WebLogic Server (or the machine on which it is running) goes down, the messages will remain in
the JMS store until either the server is restarted or the JMS server is migrated to another machine. The
need for migration varies with the application. For some applications, it may be sufficient to wait until
the failed server restarts to process the messages in the failed server’s JMS store; other applications may
be time-sensitive and require the ability to process the messages in the failed server’s store.

Best Practice
Don’t automatically assume that your JMS-based applications require support for JMS
service migration. Migration is typically important for persistent messages sent to a
queue where the processing of those messages is time-critical.

If you need to migrate JMS servers that are using file-based message stores, you need to invest in multi-
ported disks, a SAN, or other highly available disk-sharing technology. See the ‘‘Configuring Persistent
Stores’’ section of Chapter 10 for more information on what you should consider before using other
distributed file sharing mechanisms like NFS for persistent stores. For simplicity, we will use a JDBC-
based store to demonstrate JMS migration capabilities without requiring costly disk-sharing technology.

585

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 586

Chapter 12: Administering and Deploying Applications

Realize that we are making a trade-off here because a JDBC-based store is generally slower than a
file store.

Best Practice
High volume, performance-critical applications should use the file store rather than
the JDBC-based store. If migration is required, use a multi-ported disk array, SAN-, or
NAS-based solution for making the file store available across servers. Be wary of using
NFS to share a file store in a production system.

Before creating the JDBC-based store, you need to set up a JDBC data source for the store. Because
WebLogic JMS implements the XAResource interface to allow the file store to participate in XA trans-
actions, the JDBC-based store must use a non-XA connection to the underlying database. Because we
already created a non-XA data source, we will use the BigRezNonJTADataSource rather than creating
another data source for the JDBC store.

Use the WebLogic Console to create the JDBC-based persistent stores. You need a separate store for each
server in the cluster. Table 12-8 shows the values to use for creating the store for Server1. Create similar
stores for Server2 and Server3.

Table 12-8: Server1’s JDBC-Based JMS Store Configuration Parameters

Name Value

Name JDBCStore1

Target Server1 (migratable)

Data Source BigRezNonJTADataSource

Prefix Name Store1_

Finally, you are ready to create the JMS servers. Create three JMS servers with the names JMSServer1,
JMSServer2, and JMSServer3 using the persistent stores JDBCStore1, JDBCStore2, and JDBCStore3, and
target them to Server1 (migratable), Server2 (migratable), and Server3 (migratable), respectively.
Notice that each JMS server can be targeted only to one server instance. We select the migratable options
so that we can support JMS server migration, should a need arise.

Creating Distributed JMS Destinations
Each JMS server will contain one or more JMS destinations and will live on a particular server instance.
Because our application uses two uniform distributed JMS destinations, you can move directly to creating
the distributed destinations. WebLogic Server can create the individual member destinations for you
automatically. Because all JMS Servers will have the same configuration, create a single JMS module
called BigRezJMSModule and target it to the BigRezCluster.

586

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 587

Chapter 12: Administering and Deploying Applications

Within BigRezJMSModule, create the BigRezEmailQueue distributed queue with a JNDI name of
bigrez.jms.emailQueue. Like the JDBC data sources earlier, we want to decouple the JNDI names
that our application uses to look up the JMS queue from its actual JNDI name. This is just as easy
to accomplish using similar deployment descriptor mechanisms. For example, our ejb-jar.xml
deployment descriptor should have a reference like the one shown here to declare that the application
is using the logical JNDI name java:comp/env/jms/BigRezEmailQueue to look up the queue or an
@Resource(name="jms/BigRezEmailQueue") annotation to have the container inject the reference
automatically.

<resource-ref>
<res-ref-name>jms/BigRezEmailQueue</res-ref-name>
<res-type>javax.jms.Queue</res-type>
<res-auth>Container</res-auth>

</resource-ref>

A corresponding entry in the weblogic-ejb-jar.xml deployment descriptor will map this logical JNDI
name to the actual JNDI name.

<resource-description>
<res-ref-name>jms/BigRezEmailQueue</res-ref-name>
<jndi-name>bigrez.jms.emailQueue</jndi-name>

</resource-description>

This means that the application is expecting us to use the JNDI name bigrez.jms.emailQueue when
registering this queue.

Distributed queues must also specify a Load Balancing Policy that describes the way in which WebLogic
JMS distributes incoming messages across the distributed queue’s member queues, all other things being
equal. Remember that WebLogic JMS uses sophisticated algorithms to optimize processing of messages
so that the load balancing policy applies only when every queue has similar runtime characteristics. For
our example, we accept the default policy of Round-Robin.

Before we look at some of the settings for the BigRezEmailQueue, create another distributed queue called
BigRezEmailErrorQueue with a JNDI name of bigrez.jms.emailErrorQueue. Once this distributed
queue exists, let’s examine some of the settings on the BigRezEmailQueue.

Uniform distributed queues have a Forward Delay that specifies the number of seconds WebLogic JMS
will wait before attempting to forward messages from one member queue to another if the queue in ques-
tion has no active consumers. For our example, we accept the default of –1, which disables forwarding
of messages. Because all of our queues are using MDBs as consumers, we do not expect to ever have a
member queue available without any consumers for any extended period of time.

Using the Delivery Failure Configuration tab, you can control what happens when message deliv-
ery fails. The Redelivery Delay Override attribute allows you to specify how many milliseconds the
server will wait before attempting to redeliver the message regardless of the Redelivery Delay setting
on the connection factory or the consumer. By default, the destination does not override the settings
of the consumer or connection factory. Redelivery Limit controls the maximum number of times
WebLogic JMS will attempt to deliver each message before moving it to the Error Destination. If the
Error Destination is not configured, every undelivered message that reaches the Redelivery Limit
gets discarded.

587

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 588

Chapter 12: Administering and Deploying Applications

For our example, we know that our application uses a local MDB to consume messages from this queue
and that MDB uses each message’s contents to generate and send an email message. The only time
WebLogic JMS should ever fail to deliver the message is when the email server is down. As such, we
set the Redelivery Delay Override to 60,000 milliseconds, the Redelivery Limit to 5, and the Error
Destination to BigRezEmailErrorQueue.

Creating JMS Connection Factories
At this point, we are ready to set up the JMS connection factory. A JMS connection factory is the object
through which JMS applications obtain a JMS connection. Configuring a JMS connection factory allows
the administrator to customize the behavior of all JMS clients that use the connection factory without
requiring code changes. We will add a single JMS connection factory to the BigRezJMSModule for our
application.

Creating a JMS connection factory is simple: specify the Name and JNDI Name attributes and accept the
default targeting. As with JMS destinations, the JNDI name required during configuration should be
entirely dependent on the EJB or web application deployment descriptors. For bigrez.com, create the
BigRezConnectionFactory with a JNDI Name of bigrez.jms.connectionfactory.

Connection factories have a large number of configuration parameters you can use to control the JMS
application’s behavior. For many of these parameters, we will simply use the default values and skip
over detailed explanations of what they do. Refer to Chapter 10 or the WebLogic JMS documentation at
Link 12-22 for more information. The only thing we need to configure is the transactional semantics of
the JMS connection factory. Using the Transactions Configuration tab, you should set the Transaction
Timeout to 60 seconds for the connection factory. This tab also lets you enable the use of XA connection
factories. Because we are using XA transactions with our queues, you must check the XA Connection
Factory Enabled checkbox for the connection factory.

At this point, the configuration of our application’s JMS resources is complete. We only have to configure
our JavaMail session for our email confirmation service, set up and tune our application-specific work
managers, and deploy our application.

Configuring JavaMail Sessions
The bigrez.com application uses the JavaMail API to send email confirmations to our customers via a
mail server. To make that process more transparent to the application, WebLogic Server provides the
ability to define JavaMail sessions that applications can look up from JNDI and use without having
to understand where the mail server lives, how to authenticate, what protocols to use, and so on. For
our example, we will use a mail server on our network, mail.bigrez.com. Go to the Services ➪ Mail
Sessions folder in the WebLogic Console’s left-hand navigation bar and create a new mail session with
the name BigRezMailSession. As with our other resources, the JNDI name that applications use to locate
this session will be a logical name. The EJB or web application deployment descriptor will map the logical
name to the actual name that the session will use. Use the JNDI name bigrez.email.session to create
the mail session. The Properties attribute is simply the JavaMail properties to use when creating the
session:

mail.transport.protocol=smtp
mail.smtp.host=mail.bigrez.com

588

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 589

Chapter 12: Administering and Deploying Applications

mail.smtp.user=bigrez
mail.smtp.password=password

After creating the mail session, don’t forget to target it to all servers in the BigRezCluster.

Configuring Work Managers, Request Classes, and Constraints
For our application, we are going to define one additional work manager to guarantee that our internal
customer service agents’ requests get higher priority than our web site and partner web service requests.
In reality, what this means is that when the system is busy, requests from our agents on the phone with
customers will get a higher fair share of their requests scheduled for execution on an execute threads.
To accomplish this, we need to define the work manager and the request class and deploy them to all
servers in the cluster. Let’s walk through this process.

Using the Environment ➪ Work Managers folder in the WebLogic Console’s left-hand navigation
bar, create a new Fair Share Request Class whose Name is CSAFairShareReqClass and Fair
Share is 100 and target it to the BigRezCluster. Now, create a new Work Manager whose Name is
CSAWorkManager and target it to the cluster. Next, edit the CSAWorkManager and set its Request Class to
the CSAFairShareReqClass.

Because the default work manager’s Fair Share is 50, this means that when the server is busy with a
sufficient number of requests for each work manager, assuming that the average request execution time is
the same for both request classes, the server will schedule two CSA requests for every one request using
the default work manager from within the application. This last part is important! The default work
manager uses the default fair share request class so each application gets its own fair share of 50 rather
than sharing it with other applications. The CSAFairShareReqClass is not exclusive. If we deployed
another application that used the CSAWorkManager, the two applications would share the fair share of
100, rather than each getting its own fair share of 100. In our example, we only have a single application
so this configuration will have the desired effect.

We could stop there and have a reasonable configuration that would work well in most situations. How-
ever, we want to protect our site from being overwhelmed to the point where response time becomes
unacceptable. To do this, we need to create two constraints to protect the server from overload. First,
we know that every request coming into the server uses the database and this database access makes
up the majority of the request processing time. Therefore, we want to limit the number of threads the
work managers create such that we never have more threads processing requests than we have database
connections in the connection pool associated with our BigRezJTADataSource.

Because both work managers use the connection pool, we want to create a shared constraint to limit the
maximum number of threads across both work managers to be no larger than the maximum size of the
BigRezJTADataSource connection pool. To do this, create a Maximum Threads Constraint with a Name of
BigRezMaxThreadsConstraint and a Data Source of BigRezJTADataSource. Next, go back and assign
this constraint to our CSAWorkManager. To modify the behavior of the default work manager, we need
to create a new work manager with the Name set to default and target it to our cluster. Because the
default work manager already exists, this will simply give us the ability to modify the behavior of the
existing work manager rather than creating a new one. As the final step, assign the max threads constraint
to the default work manager.

589

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 590

Chapter 12: Administering and Deploying Applications

The second constraint we want to create is a capacity constraint to limit the total number of requests being
processed and waiting in the execute queue. After load testing of our application, we know that our appli-
cation response time starts to degrade to unacceptable levels when the total number of in-flight requests
per server exceeds 300. As such, we will create a shared capacity constraint to reject additional work
when the number of in-flight requests on a server exceeds 300. The process is identical to what we just did
for the maximum threads constraint. Create a Capacity Constraint named BigRezCapacityConstraint
with a Count of 300, deploy it to the cluster, and assign it to both work managers.

Now, let’s deploy the application.

Deploying Applications
Deploying the application is easy. As long as the EAR file is accessible from either the admin server
machine or the machine from which you are running the WebLogic Console, you can do everything
from the browser. Using the WebLogic Console, open the Deployments folder in the left-hand navigation
bar and click the Install button. If your application files are already on the admin server’s file system,
simply navigate the file system and locate your application. If not, select the upload your file(s) link
embedded in the help text, upload the files, and deploy them to the servers or clusters. Don’t forget to
start the managed servers before trying to deploy the application. If your managed servers are running in
production mode, don’t forget to start the application because this does not happen automatically upon
deployment unless the server is in development mode.

In addition to the WebLogic Console, WebLogic Server provides a rich set of command-line acces-
sible administrative functionality. The first tool we look at is the command-line deployment tool,
weblogic.Deployer. The weblogic.Deployer program allows an administrator to upload, deploy, start,
stop, undeploy, and get the status of deployed applications. We will not attempt to cover all of the
possible options with weblogic.Deployer, but we cover some basic features. For more information,
please see the WebLogic Server documentation at Link 12-23.

The first task we want to accomplish is making the deployment tool talk to the administration port
of the admin server. Remember that by enabling this administration port, the plain text port can no longer
be used to perform administrative functions, and all communication with the admin server requires SSL
communication. To accomplish this, you must define a few Java system properties to tell the deployer
tool where to find and how to use your trusted CA keystore (see Chapter 11 or Link 12-24 for more
information), as shown here.

-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=<keystore file name>
-Dweblogic.security.CustomTrustKeyStorePassPhrase=<keystore passphrase>

Note that these are the same command-line Java system properties we described for bootstrapping the
managed servers to talk to the admin port in the ‘‘Administration Port and Channel Configuration’’
section earlier in this chapter.

If you are using the demo certificates that came with WebLogic Server, you simply set
weblogic.security.TrustKeyStore to DemoTrust — the other two arguments are not needed
because WebLogic Server knows that information implicitly. You may also need to set
weblogic.security.SSL.ignoreHostnameVerification to true to tell the deployer tool to

590

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 591

Chapter 12: Administering and Deploying Applications

ignore the hostname in the server’s certificate. In our example, the first portion of every command you
invoke using the deployer tool will look like the following line:

java -Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:/powls/ch12/cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit weblogic.Deployer

When using the deployer tool, we also need to specify the URL to use to contact the admin server, a
username with sufficient privileges to invoke the command, and the user’s password. If you use the
weblogic account, that means that every time you invoke the deployer tool, the command line will
always begin with the following contents:

java -Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:/powls/ch12/cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit
weblogic.Deployer -adminurl t3s://192.168.1.40:9002

-username weblogic -password weblogic1

Of course, you also need to make sure that the PATH and CLASSPATH environment variables are set prop-
erly so that you find the JVM and the weblogic.Deployer class. To make this simpler, let’s create the
following script file called weblogicDeployer.cmd in the Chapter 12 example directory (for example,
c:\powls\ch12\):

@SETLOCAL
@set WL_HOME=c:\Oracle\Middleware\wlserver_10.3
@call %WL_HOME%\server\bin\setWLSEnv.cmd
java -Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:\powls\ch12\cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit
weblogic.Deployer -adminurl t3s://192.168.1.40:9002 -username weblogic
-password weblogic1 %*
@ENDLOCAL

Note that weblogic.Deployer also provides a more secure way of supplying the username and pass-
word. See Link 12-25 for more information about how you might modify this script to be more secure.

This script will allow us to run the deployer tool with a command of the form weblogicDeployer
<args>*. For example, let’s run the new script using the deployer’s listapp command to see what
applications are deployed:

> weblogicDeployer –listapp

bigrez
Number of Applications Found : 1

Using the deployer, you can also deploy new applications and undeploy or redeploy running appli-
cations. For example, let’s say that you just received a new copy of the bigrez.ear file from your
developers and want to deploy the new version into the BigRezCluster that is already running an older
version. You need to run the following commands to redeploy the application using the new EAR file.

591

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 592

Chapter 12: Administering and Deploying Applications

> weblogicDeployer –redeploy -name bigrez
-source C:\powls\bigrez\ear\output\bigrez.ear
–targets BigRezCluster

<Jun 3, 2009 9:36:16 AM CDT> <Info> <J2EE Deployment SPI> <BEA-260121> <Initiating
redeploy operation for application, bigrez [archive:
c:\powls\bigrez\ear\output\bigrez.ear], to BigRezCluster .>
Task 0 initiated: [Deployer:149026]deploy application bigrez on BigRezCluster.
Task 0 completed: [Deployer:149026]deploy application bigrez on BigRezCluster.
Target state: redeploy completed on Cluster BigRezCluster

Note that this command deploys the new version of the application by undeploying the old version and
deploying the new version, thus interrupting existing user sessions. We discuss how we can deploy new
versions of an application without disrupting existing user sessions later in the ‘‘Versioning Applica-
tions’’ section.

Deploying a new application is very similar to redeploying an existing one.

> weblogicDeployer –deploy –name bigrez
-source c:\ powls\bigrez\ear\output\bigrez.ear
-targets BigRezCluster

<Jun 3, 2009 9:38:39 AM CDT> <Info> <J2EE Deployment SPI> <BEA-260121> <Initiating
deploy operation for application, bigrez [archive:
c:\powls\bigrez\ear\output\bigrez.ear], to BigRezCluster .>
Task 2 initiated: [Deployer:149026]deploy application bigrez on BigRezCluster.
Task 2 completed: [Deployer:149026]deploy application bigrez on BigRezCluster.
Target state: deploy completed on Cluster BigRezCluster

You now have at least two ways to deploy an application: the WebLogic Console and the
weblogic.Deployer program. WebLogic Server provides the wldeploy Ant task that surfaces the
functionality of weblogic.Deployer for use from within your Ant scripts; see Link 12-26 for more
information. You can also deploy applications from WLST scripts. We favor the weblogic.Deployer
program, WLST, or their Ant-based equivalents because they lend themselves to scripting common
actions and provide a rich set of deployment options.

As we said at the beginning of this section, deploying an application is easy — provided that the appli-
cation is properly configured for the environment. As we discussed in Chapters 5 and 8, Java EE appli-
cations potentially contain some environment-specific configuration information in metadata packaged
inside the application itself, either in annotations, deployment descriptors, or both. Fortunately, Java EE
provides us a mechanism to reconfigure these metadata settings through the use of deployment plans.

Modifying Application Configuration Using Deployment Plans
Information in deployment descriptors often needs to be changed when an application or module is
deployed to a new environment. For example, a WebLogic Server administrator may wish to tune an
application’s work manager settings to make better use of the available hardware. Deployment plans
allow you to customize these details without the need to create a different version of an application for
each environment. Instead, the application archive is left unchanged and a deployment plan is created
for each target environment.

592

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 593

Chapter 12: Administering and Deploying Applications

Deployment properties that can be changed fall into two classes. First, there are references to external
dependencies; for example, the JNDI name of a JMS topic. These properties are usually declared in a
Java EE descriptor. If declarations are not mapped to a resource in a WebLogic Server descriptor, or the
supplied value is inappropriate, a deployment plan must be used. Second, there are configurable values
that control the application’s behavior or tune its performance; for example, a web application’s HTTP
session timeout. These can optionally be overridden with a deployment plan.

Not every item in a deployment descriptor can be changed with a deployment plan. For example, you
can’t override the name of an EJB.

Typically, only a few deployment properties need be customized. It is often possible and better to
include only logical references in deployment descriptors, and set the environment-specific values in
the WebLogic Server configuration. For example, the Foreign JMS feature can be used to provide the host
information of a JMS queue in the domain configuration, rather than in a deployment descriptor.

Why is modifying the configuration better than using a deployment plan? Simply put, the various tools
to change the configuration (WLST, JMX configuration MBeans, and the WebLogic Console) are eas-
ier to use than deployment plans. Some changes to configuration properties in the WebLogic Console
cause a deployment plan to be created. However, the WebLogic Console only allows a few settings to
be changed. Deployment plans are mostly maintained by hand editing their files, and the development
team or WebLogic Server administrators must maintain an appropriate plan for each application and
each environment. Oracle Enterprise Pack for Eclipse (OEPE) provides a deployment plan editor that
makes creating and editing deployment plans a little easier but avoid this complexity if you can.

Best Practice
Use deployment plans only if you need to override deployment descriptor properties
on a per-environment basis.

Minimize the number of deployment descriptor settings that are overridden for each
environment by using features such as Foreign JMS and Foreign JNDI. Often deploy-
ment plans are unnecessary.

If the application development team can predict in advance that a property is likely
to need to be overridden, a template deployment plan should be provided with the
application archive.

As you might expect, a deployment plan is an XML file. Currently, the easiest way to create a plan
is to use the WebLogic Console. To do this, navigate to the deployed application’s Application
Configuration tab, change one of the values (for example, the session timeout), and save your change.
If the application doesn’t already have a deployment plan, you will be prompted for a location to
save a new one. The WebLogic Server documentation recommends that you store your deployment
plans in a plan directory alongside the directory containing the application (or archive file). If you
follow this guideline, the WebLogic Server deployment tools will automatically look in that location
for a deployment plan file called plan.xml. However, you can save your deployment plan wherever
you like; WebLogic Server will record the location and associate the plan with the application in its
configuration.

593

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 594

Chapter 12: Administering and Deploying Applications

Using the WebLogic Console to change the session timeout for bigrez.com results in a deployment plan
similar to the one shown here:

<?xml version=’1.0’ encoding=’UTF-8’?>
<deployment-plan

xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan

http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd">
<application-name>output</application-name>
<variable-definition>
<variable>

<name>SessionDescriptor_timeoutSecs_12440079653010</name>
<value>600</value>

</variable>
</variable-definition>
<module-override>
<module-name>bigrez</module-name>
<module-type>ear</module-type>
<module-descriptor external="false">

<root-element>weblogic-application</root-element>
<uri>META-INF/weblogic-application.xml</uri>
<variable-assignment>
<name>SessionDescriptor_timeoutSecs_12440079653010</name>
<xpath>/weblogic-application/session-descriptor/timeout-secs</xpath>

</variable-assignment>
</module-descriptor>
<module-descriptor external="false">

<root-element>application</root-element>
<uri>META-INF/application.xml</uri>

</module-descriptor>
...

</module-override>
<module-override>
<module-name>bigrez-services.jar</module-name>
<module-type>ejb</module-type>

...
</module-override>
<module-override>
<module-name>bigrez-web-admin.war</module-name>

...
</module-override>
<module-override>
<module-name>bigrez-web-user.war</module-name>

...
</module-override>
<module-override>
<module-name>bigrez-webservices.war</module-name>

...
</deployment-plan>

A deployment plan is split into two parts. First, a <variable-definition> element that contains
one or more variable names together with the new value supplied by the plan. Variable names
are only used within the plan. As you can see from example plan, the console generates a unique
name SessionDescriptor_timeoutSecs_12440079653010. The second part of the plan is a set of

594

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 595

Chapter 12: Administering and Deploying Applications

<module-override> elements. We’ve removed much of this information in the interest of space.
There is a <module-override> element for each deployment descriptor in the application. In the
sample, the <module-override> element for the weblogic-application.xml descriptor has a
<variable-assignment> element that binds our variable to a specific element in the descriptor using
an XPath expression. As you can see from our simple example, deployment plans are very verbose and
somewhat cryptic. Writing one by hand is something you should try to avoid if at all possible.

The WebLogic Console allows you to change the deployment plan associated with an application. Both
weblogic.Deployer and WLST allow you to supply deployment plans when deploying or redeploying
an application, as well as providing a mechanism to update the existing deployment plan for a deployed
application. Use the following command to update the deployment plan we use to modify the session
timeout for bigrez.com.

> weblogicDeployer –update –name bigrez
-plan c:\ powls\ch12\plan.xml
-targets BigRezCluster

<Jun 3, 2009 11:16:35 AM CDT> <Warning> <WebLogicDescriptorWL> <BEA-2156000>
<"config-root" c:\powls\bigrez\ear\output\plan was not found>
<Jun 3, 2009 11:16:36 AM CDT> <Info> <J2EE Deployment SPI> <BEA-260121> <Initiating
update operation for application, bigrez [archive: null], to BigRezCluster .>
Task 4 initiated: [Deployer:149026]update application bigrez on BigRezCluster.
Task 4 completed: [Deployer:149026]update application bigrez on BigRezCluster.
Target state: update completed on Cluster BigRezCluster

Though we have only scratched the surface of all the possible deployment scenarios, it is time to move
on. For more information on the details of WebLogic Server deployment, see Link 12-27. During our
discussions of WebLogic Server configuration issues and options, we have covered a lot of ground. We
hit many of the high points that we feel are likely to be relevant to the largest percentage of applications.
However, we haven’t covered everything. Our hope is that we provided enough information to give you
a good head start on what you need to become an effective WebLogic Server administrator. From this
point on, we turn our focus to discussing how to monitor and manage WebLogic Server applications to
keep them running optimally and how to handle different types of failure conditions.

Monitoring WebLogic Server Applications
Before we discuss how to manage applications, we are going to cover some techniques for monitoring
WebLogic Server applications. Fortunately, WebLogic Server provides numerous tools and techniques for
monitoring different aspects of a distributed application. This section starts off by introducing another
administration tool, the WebLogic Scripting Tool (WLST). Next, we look into areas of the WebLogic
Console that allow you to monitor the runtime behavior of the server and your applications. We spend a
little time discussing the Java Management Extensions (JMX) APIs, which provide programmatic access
to most of the configuration and runtime monitoring capabilities; these are the same APIs that all of the
WebLogic Server administration tools use. We finish off the section by briefly touching on the SNMP
capabilities of WebLogic Server.

Using the WebLogic Scripting Tool
WebLogic Server offers access to most administrative functionality through an administration tool called
WLST. Through this tool, you can do almost everything from creating new domains and modifying

595

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 596

Chapter 12: Administering and Deploying Applications

WebLogic Server configuration, through deploying applications and telling the node manager to start
or stop servers, to collecting runtime statistics that allow you to monitor the health of your servers and
applications. Although we discuss this tool in multiple places throughout the rest of this chapter, we do
not attempt to cover every possible option exhaustively. For more information, see the WebLogic Server
documentation at Link 12-28.

WLST uses Jython as its scripting language. Jython is a Java-based implementation of the Python script-
ing language. See http://www.jython.org and http://www.python.org for more information on Jython
and Python, respectively.

WLST offers three modes of execution:

❑ Interactive Mode — This mode provides a command interpreter where you can enter commands
in an interactive shell and receive immediate feedback on their effect.

❑ Script Mode — This mode allows you to execute a Jython script from the command line.

❑ Embedded Mode — This mode allows you to create a WLST interpreter and execute WLST com-
mands from within a Java application.

In addition, WebLogic Server also provides the wlst Ant task that allows you to execute either an inline
script defined inside your Ant task definition or an external script stored in a file.

As with the deployer tool, WLST requires that the same Java system parameters be defined to
support using the SSL protocol to communicate with the administration port on the admin server
or a node manager. Because WebLogic Server provides shell scripts to start WLST already, we create
a simple script to automate the setting of the SSL-related properties and invoke the provided shell
script. Once again, we will place this script in the Chapter 12 examples directory (for example,
c:\powls\ch12\weblogicWlst.cmd):

@SETLOCAL
@set WL_HOME=C:\oracle\middleware\wlserver_10.3
@set WLST_PROPERTIES=-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:\powls\ch12\cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit
@call %WL_HOME%\common\bin\wlst.cmd %*
@ENDLOCAL

You’ll notice that our script does not provide connection or authentication information. That’s because
WLST has two operational states: online and offline. When you first start WLST, you enter the WLST
offline state. In this state, you can create new domains based on a template or extend existing, inactive
domains, much like you can with the WebLogic Configuration Wizard. The other thing that you do in
this mode is connect to a WebLogic Server instance or a node manager.

As discussed earlier, the nmConnect() command allows you to connect to a node manager so that you
can start and stop servers (most importantly, the admin server). However, the most common command
to run in offline mode is the connect() command to connect to a WebLogic Server instance, typically to
the admin server. Once connected, WLST is in online mode until you disconnect. To start up our admin
server and connect to it, we run the following WLST commands:

wls:/offline> nmConnect(username=’weblogic’, password=’weblogic1’,
host=’diablo.us.oracle.com’, port=’5556’, domainName=’bigrezdmain’,

596

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 597

Chapter 12: Administering and Deploying Applications

domainDir=’C:\powls\ch12\AdminMachine\bigrezdomain’, nmType=’ssl’)

Connecting to Node Manager ...
Successfully Connected to Node Manager.

wls:/nm/bigrezdomain> nmStart(’AdminServer’)

Starting server AdminServer ...
Successfully started server AdminServer ...

wls:/nm/bigrezdomain> nmDisconnect()

Successfully disconnected from Node Manager.

wls:/offline> connect(username=’weblogic’, password=’weblogic1’,
url=’t3s://192.168.1.40:9002’)

Connecting to t3s://192.168.1.40:9002 with userid weblogic ...
Successfully connected to Admin Server ‘AdminServer’ that belongs to domain ‘big
rezdomain’.

wls:/bigrezdomain/serverConfig>

Before we move on to show you the basics of WLST commands to get or modify data, we should discuss
WLST security. Your admin server’s configuration directory contains sensitive configuration files for
your WebLogic Server domain. Anyone with write access to these files can modify your domain, either
via a text editor or using WLST offline mode — regardless of whether or not they know the username
and password of an administrative user in your domain. As such, it is important to safeguard these
files and not allow everyone write access to them.

Many WLST commands require administrative privileges to run. As such, it is often necessary to supply
administrative credentials in your WLST scripts. To prevent needing to store the unencrypted username
and password in your WLST scripts, WLST provides a storeUserConfig() command that uses the
currently connected user’s username and password to create an encrypted credential store and key file.
To create the user configuration file for a server, use the following command:

wls:/bigrezdomain/serverConfig>
storeUserConfig(userConfigFile=’c:\powls\ch12\server-WebLogicConfig.properties’,
userKeyFile=’c:\powls\ch12\server-WebLogicKey.properties’)

Creating the key file can reduce the security of your system if it is not kept in a
secured location after it is created. Do you want to create the key file? y or n y
The username and password that were used for this WebLogic Server connection
are stored in c:\powls\ch12\server-WebLogicConfig.properties and
c:\powls\ch12\server-WebLogicKey.properties.

In the same way, you can create the configuration file and the key file for the node manager (when
connected to the node manager) by adding the nm=’true’ argument to the storeUserConfig()
command.

Both WLST and weblogic.Deployer provide options for using these files in place of the unencrypted
username and password. Even so, the key files are extremely sensitive in that they allow any user to use

597

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 598

Chapter 12: Administering and Deploying Applications

the configuration file to authenticate as the user stored in the configuration file. You should store the key
files in a secure location so that only the authorized users have access to them. To connect to the admin
server using the configuration file, use the following connect() command:

wls:/offline> connect(userConfigFile=’c:\powls\ch12\server-
WebLogicConfig.properties’, userKeyFile=’c:\powls\ch12\server-
WebLogicKey.properties’, url=’t3s://192.168.1.40:9002’)

Connecting to t3s://192.168.1.40:9002 with userid weblogic ...
Successfully connected to Admin Server ‘AdminServer’ that belongs to domain
‘bigrezdomain’.

Now that we know how to connect securely, we show how we can use WLST to get information from the
server. Once connected to the admin server, WLST provides a file system–like hierarchy of MBeans that
we can navigate by using the cd() command and list using the ls() command. To enable performing
operations on the current MBean, WLST automatically assigns the current management object to the
cmo variable. If we want to determine whether the admin server’s SSL listen port is enabled, we need to
navigate to its SSL MBean directory and execute cmo.isEnabled(), as shown here.

wls:/bigrezdomain/serverConfig> cd(’Servers/AdminServer/SSL/AdminServer’)
wls:/bigrezdomain/serverConfig/Servers/AdminServer/SSL/AdminServer> cmo.isEnabled()

0

Although interesting, this isn’t very useful by itself. However, because we have the power of the Python
scripting language at our disposal, we can define variables to hold the values, perform tests on those
values, implement condition logic, iterate over lists, and just about everything else you might expect out
of a full-fledged scripting language. Here is a simple example where we iterate over all the servers in our
cluster and print out the value of their ListenAddress attribute.

wls:/bigrezdomain/serverConfig> cd(’Clusters/BigRezCluster’)

wls:/bigrezdomain/serverConfig/Clusters/BigRezCluster> myServerList =
cmo.getServers()

wls:/bigrezdomain/serverConfig/Clusters/BigRezCluster> for server in myServerList:
... print server.getName(), ‘ has a Listen Address = ‘, server.getListenAddress()
...

Server1 has a Listen Address = everest.us.oracle.com
Server2 has a Listen Address = k2.us.oracle.com
Server3 has a Listen Address = lhotse.us.oracle.com

Note that unlike Java, Python uses indentation to demarcate blocks of code. Our for loop contains a
single line of code and starts with a tab character. We close the for loop in the interpreter with a
blank line.

In addition to looking at the Config MBeans, WLST also gives us the ability to view the Runtime MBeans
to get actual runtime statistics and current state of the running server to which WLST is connected. On
the admin server, WLST also has access to the domain runtime MBeans, which allow you to get the
actual runtime statistics and current state of every managed server in the domain. The serverConfig(),

598

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 599

Chapter 12: Administering and Deploying Applications

serverRuntime(), and domainRuntime() commands allow you to switch back and forth between views
into these three sets of MBeans.

Now that we understand the basics of how to navigate the MBean hierarchy, we need to know how to
make changes. The edit() command switches put you into the Edit MBean hierarchy. startEdit() locks
the configuration so you can safely make changes. Once we have the lock, we make whatever changes
we want. At any time during this process, the validate() command will validate our changes. We can
save our changes with the save() command or abandon any unsaved changes with the stopEdit() com-
mand, which also releases the configuration lock. Once we save any changes, the isRestartRequired()
command will tell us whether or not a restart will be required for all of our changes to take effect. We
use the activate() command to activate our saved changes, which also releases the configuration lock.
Here is an example of changing the BigRezCluster’s ClusterAddress property using WLST.

wls:/bigrezdomain/serverConfig/Clusters/BigRezCluster> edit()

Location changed to edit tree. This is a writable tree with DomainMBean as the root.
To make changes you will need to start an edit session via startEdit().

For more help, use help(edit)

wls:/bigrezdomain/edit> cd(’Clusters/BigRezCluster’)

wls:/bigrezdomain/edit/Clusters/BigRezCluster> startEdit()

Starting an edit session ...
Started edit session, please be sure to save and activate your changes once you are
done.

wls:/bigrezdomain/edit/Clusters/BigRezCluster !>
cmo.setClusterAddress(’192.168.1.41:7001,192.168.1.42:7001,192.168.1.43:7001’)

wls:/bigrezdomain/edit/Clusters/BigRezCluster !> save()

Saving all your changes ...
Saved all your changes successfully.

wls:/bigrezdomain/edit/Clusters/BigRezCluster !> activate()

Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.

The following non-dynamic attribute(s) have been changed on MBeans
that require server re-start:
MBean Changed : com.bea:Name=BigRezCluster,Type=Cluster
Attributes changed : ClusterAddress

Activation completed

Though we have barely scratched the surface of what you can do with WLST, it is time to move on.
You should explore the WebLogic Server MBean Reference at Link 12-29 to familiarize yourself with the
WebLogic Server JMX MBean structure, their attributes, and operations. WLST gives you access to all of

599

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 600

Chapter 12: Administering and Deploying Applications

these settings — even ones that are not currently surfaced in the WebLogic Console. Before we move on
to discuss the WebLogic Console, we need to briefly discuss a deprecated tool that is still an important
part of your arsenal.

Using the Deprecated Command-Line Administration Tool
WebLogic Server offers access to some administrative functionality through a deprecated command-
line administration tool called weblogic.Admin. Though WLST and other tools offer better access to the
functionality exposed by this tool, weblogic.Admin still offers one simple, yet valuable diagnostic feature
that we cannot find elsewhere — the PING command.

As with the other command-line tools, the admin tool requires that the same Java system parameters be
defined to support using the SSL protocol to communicate with the administration port on the server. In
addition, the admin tool requires certain command-line options for every command. Therefore, we will
create another script called weblogicAdmin.cmd to automate the process of invoking this program. Once
again, we will place this script in the Chapter 12 examples directory (c:\powls\ch12):

@SETLOCAL
@set WL_HOME=c:\Oracle\Middleware\wlserver_10.3
@call %WL_HOME%\server\bin\setWLSEnv.cmd
java -Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=C:\powls\ch12\cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit
weblogic.Admin -url %URL% -username weblogic -password weblogic1 %*
@ENDLOCAL

The PING command allows us to verify that a server is accepting connections and processing requests.
This command connects to the targeted server, sends one or more requests to the server, waits for the
server to respond to each request, and measures the round-trip time. These ping requests go through
the same mechanism as other requests in that they get placed onto the self-tuning execute queue and an
execute thread picks up the request and returns the response to the caller. Using the optional arguments
of the PING command that specify the number of requests and the size of each request (in bytes), you can
use this tool to measure server response time to these empty ping requests, as shown here:

> set URL= t3s://192.168.1.41:9002
> weblogicAdmin PING 1000 10000
Sending 1,000 pings of 10,000 bytes.

RTT = ∼1625 milliseconds, or ∼1 milliseconds/packet

The results indicate that the total round-trip time (RTT) was about 1.6 seconds, so, on average, the server
is processing these empty ping requests in about 1 millisecond. By looking at the latency of processing
these empty requests, you can determine whether the server itself is being overloaded during periods of
slower-than-normal system response time. This tool is an extremely important diagnostic tool because it
enables you to easily see if, and how quickly, the server is processing requests going to the self-tuning
execute queue.

Though this tool offers quick and easy access to other administrative functions, Oracle has deprecated it
so we recommend that you consider alternative tools such as WLST and weblogic.Deployer wherever

600

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 601

Chapter 12: Administering and Deploying Applications

possible. For more information about weblogic.Admin, please see the WebLogic Server 10.0 documenta-
tion at Link 12-30.

For now, let’s move on to the WebLogic Console to look at some of its monitoring capabilities.

Monitoring with the WebLogic Console
Most of our use of the WebLogic Console so far has focused on configuration. The WebLogic Console
also offers a rich set of monitoring capabilities. In this section, we highlight some of these capabilities
that provide insight into the behavior of the application, as well as WebLogic Server. Covering all of the
monitoring capabilities of the WebLogic Console in detail is beyond the scope of this book. Please refer
to the WebLogic Server documentation at Link 12-31 for more information.

Let’s start by discussing the most basic, yet one of the most important, monitoring features of the
WebLogic Console. When running a WebLogic Server application, you often need a glimpse inside
the server to get a feel for how well it is running. Use the server’s Threads Monitoring tab to get a
look at the request throughput, execute queue backlog, and other execute thread–related statistics.
Looking at Figure 12-9, you see that the average request throughput is currently 3 requests per second in
this example display.

Figure 12-9: Monitoring server performance.

The execute queue length is zero, which means that we don’t have more concurrent requests waiting
than we have available execute threads to process them. Although this is the optimal situation, it will not
always be achievable for actual production systems. The Performance Monitoring tab gives you a view

601

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 602

Chapter 12: Administering and Deploying Applications

into the state of the JVM. Because we are using JRockit, we have the power of JRockit Mission Control at
our fingertips should we need to analyze our application or JVM performance in more detail.

Much more runtime information about a server is available through the WebLogic Console. The clus-
ter’s Summary Monitoring gives information about the membership of the cluster, and the Failover
Monitoring tab gives information about replicated primary and secondary objects on each server. Using
the server’s Security Monitoring tab, you can view the statistics for failed logins, users that are locked
out due to too many authentication failures, and other related information. The JTA Monitoring tab gives
you access to transaction statistics and allows you to monitor the particular transactions and view in-
flight transactions. On the server’s General Configuration tab is a link to view the server’s JNDI tree. In
the Diagnostics ➪ Log Files folder, you can access all of the log files for all servers in the domain. Note
that by default, only entries from the last five minutes are shown. You will need to choose the Customize
this table link to change the information available.

Next, let’s look at monitoring JDBC data sources. Under a data source’s Monitoring tab, the WebLogic
Console provides a configurable view of each database connection pool’s runtime statistics. Three partic-
ular parameters are especially important in diagnosing the health of your WebLogic Server application:
Active Connections High Count, Wait Seconds High Count, and Waiting for Connection High Count.
These parameters are not shown by default, but you can add them by using the Customize this
view link.

Active Connections High Count tells you the maximum number of connections reached in the pool at
any time since the server started. By comparing this number with your pool’s Initial Capacity and
Maximum Capacity settings, you can determine if the pool is sized properly for the application load the
server has experienced. When all the connections in a pool are in use and the pool size is at its maximum
value, a thread requesting a connection from the pool will have to wait until one becomes available
or until it times out. The Waiting for Connection High Count value tells you the maximum number
of threads that were waiting (at any particular point in time) to get a database connection from the pool
because there were no connections available. Wait Seconds High Count tells you the longest time a thread
had to wait to get a connection. If you are using a non-negative value for Connection Reserve Timeout,
realize that Wait Seconds High will never exceed this value. If your database connection pool shows non-
zero values for Waiting for Connection High Count or Wait Seconds High Count, you should consider
increasing the size of your database connection pool.

WebLogic Server pools EJB instances. The weblogic-ejb-jar.xml deployment descriptor controls
the size of the pool. Because stateless session bean instances do not have any client-specific conversa-
tional state, the server assigns each request to a bean instance only for the duration of the method call.
Idle instances reside in a pool. Because the EJB specification prohibits two threads from using the same
bean instance at the same time, the container must synchronize access to each bean instance. This means
that if the maximum number of beans in the pool is too small, the container must block calling threads
until a bean instance becomes available. Obviously, this situation is undesirable because it will impact
performance. The EJB’s Running Monitoring tab provides you with statistics concerning the pool.
Timeout Total Count tells you the number of threads that have timed out waiting for a bean instance.
The Waiter Total Count tells you the cumulative number of times a thread had to wait for a bean
instance because none was available. At the time of writing Waiter Total Count is not accessible in the
WebLogic Console (it is still available via the EJBPoolRuntimeMBean). Fortunately for stateless session
beans, the default value of the <max-beans-in-free-pool> deployment descriptor element that controls
the pool size is 1,000, so in practice this problem will occur only if the value is explicitly set too small.

602

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 603

Chapter 12: Administering and Deploying Applications

For stateful session beans, the server does not pool idle instances, but it does maintain a cache of recently
used bean instances. As this cache starts to fill up, WebLogic Server will passivate bean instances to
make room for other instances by writing the bean’s state to disk, as discussed in Chapter 6. The next
time a request comes in for a passivated bean, the container must read the bean’s state in from disk
before dispatching the request to the bean. As you might imagine, this can have a significant impact on
performance. By default, the <max-beans-in-cache> deployment descriptor element that controls the
cache size is set to 1,000 instances. Whenever the container must activate or passivate a bean instance, it
updates internal statistics that can be seen using the EJB application’s Stateful EJBs Monitoring tab. For
stateful session beans, you should keep an eye on the Activation Count. The container passivates bean
instances when appropriate, but the cost of reactivating these beans can slow down your application
tremendously. If the Activation Count for a particular bean is high, you should consider increasing the
size of the cache.

WebLogic JMS also supports monitoring through the WebLogic Console. The JMS server’s monitoring tab
links to monitor JMS servers, destinations, and session pools. Two of the most important statistics to look
at for JMS servers and destinations are the Bytes Threshold Time and Messages Threshold Time. These
values will tell you how much time the JMS server or destination has spent controlling flow because
the upper threshold was crossed. For more information about JMS monitoring, see Chapter 10 and the
WebLogic Server documentation at Link 12-32.

At this point, we have touched on the most important monitoring features of the WebLogic Console.
These features provide a quick insight into the operation of your application so that you can determine if
configuration changes may help to improve performance or reduce resource consumption. Now, we are
ready to move on to talk about WebLogic Server’s JMX support.

Programmatic Monitoring with JMX
WebLogic Server implements the Java Management Extensions (JMX) specification and provides JMX-
based services to manage server and application resources. While the WebLogic Console can be thought
of as a user interface to JMX, the real power of JMX is the ability to programmatically manage resources
through either a Java program or from a script using one of the available administrative tools that support
JMX (for example, WLST and JConsole). A complete discussion of JMX and JMX programming is beyond
the scope of this book; please refer to the WebLogic Server documentation at Link 12-33 and the JMX
documentation at Link 12-34 for more information.

In this section, we show how to get the number of execute threads in the pool, the execute queue length,
the execute queue throughput, and total number of requests processed using WebLogic Server’s JMX
MBeans. In the interest of space, we do not list the entire WebLogicPerformanceMonitor class, but it is
available on the companion web site at http://www.wrox.com/. Let’s walk through the important parts
of this program that are related to JMX.

To execute JMX commands, you will need to obtain an MBeanServerConnection object. Remote
JMX client applications typically do through the JMXConnectorFactory.connect() and
JMXConnector.getMBeanServerConnection() calls. When connecting to WebLogic Server, you
have three different MBean servers to which you might want to connect:

❑ Edit MBean Server — This server provides access to modify the Configuration MBeans that con-
trol WebLogic Server configuration.

603

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 604

Chapter 12: Administering and Deploying Applications

❑ Runtime MBean Server — This MBean server provides access to the configuration and runtime
MBeans of the local server (that is, the server to which you connect). If you only want to monitor
configuration changes, connect to the admin server and use this MBean server.

❑ Domain Runtime MBean Server — This MBean server is only hosted on the admin server and
provides views of the runtime MBeans for all running servers in the domain.

Our example uses the Domain Runtime MBean Server because we are simply monitoring the statistics in
the servers.

import java.util.HashMap;

import javax.management.MBeanServerConnection;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import javax.management.remote.JMXServiceURL;
import javax.naming.Context;

...

JMXServiceURL serviceUrl =
new JMXServiceURL(protocol, hostname, port, "/jndi/" +

"weblogic.management.mbeanservers.domainruntime");
HashMap<String, String> props = new HashMap<String, String>();
props.put(Context.SECURITY_PRINCIPAL, username);
props.put(Context.SECURITY_CREDENTIALS, password);
props.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES,

"weblogic.management.remote");
connector = JMXConnectorFactory.connect(serviceUrl, props);
connection = connector.getMBeanServerConnection();

Once you connect to the proper MBean server, you use the MBeanServerConnection object to get or set
attributes, invoke operations, and add or remove JMX notification listeners. When accessing MBeans
via JMX, the biggest challenge is determining the correct ObjectName for the MBean you want. Two
approaches to locating the MBean exist. First, you can determine the ObjectName for the specific MBean
of interest and use it to issue calls directly on it. This works well if you can determine the ObjectName
format at the time you are writing your code. The second approach is to navigate the MBean hierarchy
at runtime to locate the MBean you want. Doing this is typically much easier because you only need
to know the attribute names containing the references since the getAttribute() call will return the
ObjectName (or an ObjectName array) for the referenced MBeans. We use the navigation method to locate
the ThreadPoolRuntimeMBean for each server in the domain, as shown here.

import javax.management.MalformedObjectNameException;
import javax.management.ObjectName;

try {
service = new ObjectName("com.bea:Name=DomainRuntimeService," +

"Type=weblogic.management.mbeanservers." +
"domainruntime.DomainRuntimeServiceMBean");

}
catch (MalformedObjectNameException e) {

throw new AssertionError(e.getMessage());
}

604

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 605

Chapter 12: Administering and Deploying Applications

...

ObjectName[] serverRuntimes =
(ObjectName[])connection.getAttribute(service, "ServerRuntimes");

int length = serverRuntimes.length;
for (int i = 0; i < length; i++) {

String serverName = (String)connection.getAttribute(serverRuntimes[i], "Name");

// Get the nested ThreadPoolRuntime that has the stats we want.
ObjectName threadPoolRuntime =

(ObjectName)connection.getAttribute(serverRuntimes[i], "ThreadPoolRuntime");

...

Once we locate the MBean, we use the same getAttribute() call to get the attribute values.

long completedReqCount =
(Long)connection.getAttribute(threadPoolRuntime, "CompletedRequestCount");

int executeThreadCount =
(Integer)connection.getAttribute(threadPoolRuntime,

"ExecuteThreadTotalCount");
int pendingUserReqCount =

(Integer)connection.getAttribute(threadPoolRuntime,
"PendingUserRequestCount");

int queueLength =
(Integer)connection.getAttribute(threadPoolRuntime, "QueueLength");

double throughput =
Double)connection.getAttribute(threadPoolRuntime, "Throughput");

That is really all there is to using JMX to read information. As you see later, the JMX code to modify con-
figuration information is a little more involved, though it is still relatively simple. You should download
the WebLogicPerformanceMonitor example before proceeding.

The WebLogicPerformanceMonitor program takes one argument, the name of the property file where
we pass in the relevant information. Once the program reads the information from the property file,
it instantiates a WebLogicPerformanceMonitor object, which uses JMXConnectorFactory.connect()
and JMXConnector.getMBeanServerConnection() methods to create an authenticated connection to
the MBean server. Finally, it goes into an infinite loop periodically calling the getPerfStats() method.
getPerfStats() gets the array of ServerRuntimeMBean objects and iterates over each one printing out
information from each server’s ThreadPoolRuntimeMBean. It is also caching the current values so that the
next time through the loop, it can print out information about what has changed since the last iteration.

To run this program, we need to create a property file that looks like the one shown here and pass the
name of the property file to the WebLogicPerformanceMonitor class as an argument:

interval_seconds=5
protocol=t3s
hostane=192.168.1.40
port=9002
username=weblogic
password=weblogic1

605

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 606

Chapter 12: Administering and Deploying Applications

As always, when using a Java client to talk to WebLogic Server using SSL, you need to add the appropri-
ate Java system property definitions to the command line. In our example, we use the property file name
perfmon.properties and create a script called perfmon.cmd, as shown here:

@SETLOCAL
@set POWLS_HOME=c:\powls
@set WL_HOME=C:\oracle\middleware\wlserver_10.3
@call %WL_HOME%\server\bin\setWLSenv.cmd
@set CLASSPATH=%POWLS_HOME%\ch12\classes;%CLASSPATH%
java -Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=%POWLS_HOME%\ch12\cacerts
-Dweblogic.security.CustomTrustKeyStorePassPhrase=changeit
professional.weblogic.ch12.example1.WebLogicPerformanceMonitor
%POWLS_HOME%\ch12\perfmon.properties
@ENDLOCAL

If you run the perfmon script while Server1 is under load, you will get results that look something like
the ones shown here:

> perfmon
AdminServer Stats at Time: Fri Jun 05 20:09:44 CDT 2009

528216 Total Completed Requests
9 Execute Threads
0 Pending Requests (0 User, 0 System)
7.000000 Total Throughput

AdminServer Stats at Time: Fri Jun 05 20:09:50 CDT 2009
528259 Total Completed Requests
9 Execute Threads
0 Pending Requests (0 User, 0 System)
2.500000 Total Throughput

In the last 6047 milliseconds:
43 requests were processed
0 Execute Threads created
Pending Requests increased by 0 requests

You can also use WLST to collect the same information from the server. See WebLogicPerformance
Monitor.py in the downloadable examples for a WLST script that provides similar statistics for the
servers. To invoke this script, run the perfmonWLST.cmd script file.

At this point, you have all the information you need to query WebLogic Server to get information via the
JMX interface. Of course, the JMX interface also gives us the ability to create new configuration artifacts,
to modify existing ones, and to monitor MBean attributes and receive notification when certain types of
changes occur. WebLogic Server also supports registering custom MBeans that your application might
create. A complete coverage of JMX is beyond the scope of this book. Please see the WebLogic Server
documentation and our downloadable examples for some additional JMX examples that demonstrate
some of these other use cases.

Before we move on to management, let’s have a quick look at WebLogic Server’s SNMP support.

606

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 607

Chapter 12: Administering and Deploying Applications

Monitoring via SNMP
WebLogic Server supports Simple Network Management Protocol (SNMP) versions 1.0, 2.0, and 3.0.
Starting in WebLogic Server 10, WebLogic Server supports two models for SNMP monitoring:

❑ Decentralized Model — As the name implies, this model allows the SNMP manager to commu-
nicate directly with SNMP agents within each server in the domain.

❑ Centralized Model — In this model, the SNMP manager communicates with an SNMP agent in
the admin server, whose domain MBeans provide the SNMP agent access to runtime information
about the entire domain.

Although the centralized model is convenient (and the only one available in earlier versions of WebLogic
Server), it has limitations. First and most obvious, when the admin server is down, the SNMP manager
loses visibility to the entire domain. Second, for larger domains you will have to filter a large amount of
data to find information on a specific resource. Finally, this model adds performance overhead because
the admin server’s domain MBeans must collect and store runtime information about every server in the
domain, thus increasing the load and memory footprint in the admin server. Therefore, we recommend
that you use the decentralized model.

Best Practice
Always prefer the decentralized SNMP model when configuring your domain for
SNMP monitoring.

With proper configuration, the WebLogic SNMP agent can act as a proxy for other SNMP agents on the
same machine (for example, an Oracle database agent). Though complete coverage of WebLogic SNMP
is beyond the scope of this book, we try to cover the basic information needed to communicate with
WebLogic Server using SNMP. For more information, please refer to the WebLogic SNMP Management
Guide at Link 12-35.

To use SNMP with WebLogic Server, you need to create each server’s SNMP agent. To do this
using the WebLogic Console, select the Diagnostics ➪ SNMP folder, create a new entry in the Server SNMP
Agents table of the Agents tab, and specify the agent’s Name. This creates a new agent that uses UDP port
161 and the server’s default Listen Port to receive SNMP requests over TCP. At this point, the agent is
not enabled or targeted to a server in the domain so we need to do some additional configuration.

On the SNMP agent’s General Configuration tab, the Enabled checkbox enables the agent and the SNMP
UDP Port allows you to specify what port you want to use for SNMP UDP traffic. The Master AgentX
Port attribute specifies which UDP port subagents use to communicate with the SNMP agent. Do not
confuse this with the proxy functionality we described earlier. If your server is running on a Unix-based
platform, don’t forget that you must start the server as root to use port numbers below 1024. Should you
want to change the TCP port that the SNMP agent uses, you must create a new network channel and set
the Protocol to snmp.

607

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 608

Chapter 12: Administering and Deploying Applications

For the SNMP agent to use its default UDP port of 161, WebLogic Server instances
on Unix-based platforms must be started as root.

By default, the SNMP agent uses the server’s default Listen Port. To change this,
you must create a network channel that supports the SNMP protocol.

At the time this book was written, the WebLogic SNMP agent only allows you to configure the UDP port
numbers used by the agent — there is no way to specify the IP Address or hostname. As a result, the
SNMP agent will bind to the UDP ports without specifying a listen address. This means that if you have
multiple agents running on the same machine (for example, one running inside of each managed server
on the machine), you should explicitly configure agents to use different port numbers — which means
creating individual agents for each server. If you don’t, the agent will silently look for the next available
port numbers and bind to them. We expect this to change in the near future so please check the WebLogic
Server documentation for more information.

This can lead to very insidious behavior. For example, when the SNMP manager sends a request to
managed servers on the machine using the configured port, all requests using that port will go to the
first server that was started (and found the configured port available). This means that while your SNMP
manager is sending a correctly targeted request to each managed server individually, all the requests
will actually be processed by the same managed server, thus leading to an incorrect view of your system.
Even if you take into account the behavior of the SNMP agents of selecting the next available port, this
doesn’t help you much because which agents get assigned to which ports really depends on the order
the managed servers are started. Always set the SNMP UDP Port and Master AgentX Port explicitly to
different values across SNMP agents hosted on the same machine. Remember to account for possible
server migration during failover when choosing these values!

The WebLogic SNMP agent does not specify a bind address when binding to its
UDP ports. By default, the SNMP agent will silently detect a port in use and select
the next available port. Even this is problematic because which managed server’s
agent gets assigned which port is determined purely by the order that the managed
servers are started.

When running multiple managed servers on a single machine, always create
separate SNMP agents for each managed server and always explicitly specify
different SNMP UDP Port and Master AgentX Port values for each agent.

Before restarting the server, let’s talk about some of the other parameters on this tab. SNMP v1.0 and v2.0
uses passwords known as community names to authenticate SNMP requests. SNMP v3.0 does not rely
on the community name and provides its own mechanisms to support a stronger authentication model.
As such, WebLogic Server uses the Community Based Access Enabled checkbox on the SNMP agent’s
General Configuration tab to enable WebLogic SNMP support for SNMP v1.0 and v2.0.

Because the admin server has much of the WebLogic SNMP MIB data available for every server in a
domain, you need some way for the SNMP manager to tell the admin server’s WebLogic SNMP agent
what data it wants. The way that WebLogic SNMP accounts for this is by piggybacking the server infor-
mation with the community name. WebLogic Server’s SNMP manager needs to send the community

608

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 609

Chapter 12: Administering and Deploying Applications

name in the form <community_name>@<server_name>. You tell WebLogic SNMP what community name
to expect from the SNMP manager via the Community Prefix parameter. To get information from the
entire domain, connect to the admin server and either replace the server name with the domain name or
omit the @<server_name> portion of the community name altogether. Note that only the admin server
supports this @<server_name> syntax because the managed servers only have their own information
anyway.

WebLogic Server does not provide an SNMP manager. For this purpose, we will use the WebNMS MIB
Browser and Trap Viewer that come with the WebNMS SNMP API 4 product (available from Link 12-36).
The MIB Browser allows us to interact with the WebLogic SNMP agent by sending SNMP GET requests to
retrieve WebLogic Server configuration and runtime information. This is the same information available
through the JMX APIs. WebLogic SNMP does not currently support the SNMP SET operation to make
changes to the WebLogic Server configuration.

To communicate with the WebLogic SNMP agent, you need to load the WebLogic Server manage-
ment information base (MIB) data into the MIB Browser. Using the MIB Browser application’s File
menu, select the Load MIB menu item, browse to the $WL_HOME/server/lib directory, and select the
BEA-WEBLOGIC-MIB.asn1 file. After expanding the BEA-WEBLOGIC-MIB folder on the left, you should
see a list of WebLogic SNMP MIB tables and attributes similar to those shown in Figure 12-10. Replace
the Community entry with the string public@Server1 and perform an SNMP GET operation targeted
to the admin server to get the names of the application deployed to Server1, as shown in Figure 12-10.

Figure 12-10: Viewing the WebLogic Server MIB.

All of this is interesting, but the main reason to use SNMP is to send unsolicited messages to the SNMP
manager whenever something happens. These unsolicited messages are called SNMP traps. WebLogic
SNMP can generate traps to notify the SNMP manager of certain types of events. WebLogic Server comes
with a set of predefined traps for server startup, server shutdown, cold start (admin server startup), and

609

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 610

Chapter 12: Administering and Deploying Applications

authentication failure. You can also set up three other types of traps: attribute change traps, log message
traps, and monitor traps. Before we talk about defining new traps, let’s configure the WebLogic SNMP
agent and the WebNMS Trap Viewer and verify that we are seeing traps propagate from WebLogic
Server to the Trap Viewer.

The first step is to configure the Trap Viewer to listen for traps. Using the MIB Browser’s View menu,
select the Trap Viewer menu item. Use the Trap Viewer’s Start button to tell it to start listening for traps
on its default port, port 162, with a Community of public. Now, you need to configure the WebLogic
Server side of things. For each SNMP agent, use the agent’s Trap Destinations Configuration tab to
create a new trap destination. Set the Name to WebNMSTrapViewer, the Community to public, the Host
to the IP address or hostname of the machine where Trap Viewer is running (for example, 192.168.1.40),
and the Port to 162. Because we are using SNMP v1.0–style traps, we don’t need to specify the Security
Name or Security Level attributes, which only apply to SNMP v3–style traps. Don’t forget to include
the SNMP agent on the admin server. Activate your changes once you have finished defining the trap
destinations — no server restart is needed.

Now, let’s test the trap mechanism by shutting down and restarting Server1. Trap Viewer eventually
receives two traps, one for server shutdown and one for server startup. The server shutdown trap has a
Generic Type of 6 (that is, an enterprise-specific type) and Specific Type of 70 (that is, server shutdown).
Note that if you are running a cluster of managed servers, you may receive multiple copies of each trap.
For example, the admin server and other managed servers may all generate a trap saying that Server1
was shut down. We are now ready to explore the other trap types that WebLogic SNMP supports.

WebLogic SNMP supports defining three types of traps. The first type of trap is an attribute change trap.
With this trap, the WebLogic SNMP agent generates a trap whenever a configuration value changes.
These traps work directly on the JMX MBeans. To define an attribute change trap, use the agent’s
Attribute Changes Configuration tab to define a new trap and specify the trap’s Name, MBean Type,
and Attribute Name. When you first create a trap, it applies to every MBean of the specified type. You
must create the new trap before you can limit the scope to a particular MBean instance by selecting the
desired MBean’s name from the Monitored MBean Name drop-down list. After changing the MBean name,
you have to restart the server for that change to take effect since the trap has already been initialized.

Before we move on, we need to discuss the Servers tab, also known as the Enabled Servers attribute of a
trap. Because a trap is now defined in the scope of an SNMP agent (that is already targeted at one or more
servers), the Enabled Servers attribute is actually a filtering mechanism for a trap executing on the admin
server. By default with no Enabled Server selected, the trap will consider MBeans from all servers in the
domain when executing a trap. If you want to limit the trap to a specific server or set of servers, select the
server or servers on the Servers tab. Remember, this only applies to traps running on the admin server!

Let’s create a trap to notify you if someone changes the Targets attribute of the BigRezJTADataSource
using the values shown in Table 12-9. Once you define the trap and restart the admin server, try changing
the targets for the BigRezJTADataSource to exclude Server3. Notice that Server3 is not included in the
Servers list, but you still get the trap because the JDBCSystemResource MBean is a configuration MBean
and all configuration is controlled by the admin server.

Note that WebLogic Server only supports attribute change traps on configuration MBeans. To monitor
attribute changes to runtime MBeans, you must use a monitor trap. Before we discuss monitor traps, we
will look at log filter traps.

610

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 611

Chapter 12: Administering and Deploying Applications

Table 12-9: BigRezJTADataSource Targets Attribute Change Trap Configuration
Parameters

Name Value

Name BigRezJTADataSource Targets Attribute Trap

Monitored MBean Type JDBCSystemResource

Monitored Attribute Name Targets

Monitored MBean Name BigRezJTADataSource

Enabled Servers <none>

A log filter trap generates a trap whenever an entry appears in the WebLogic Server log file matching
the filter. Log filters can specify several different parameters by which to filter log messages that should
generate a trap. Let’s examine a WebLogic Server log file entry.

####<Jun 9, 2009 12:14:29 AM CDT> <Info> <JDBC> <www1.bigrez.com> <AdminServer>
<[ACTIVE] ExecuteThread: ‘0’ for queue: ‘weblogic.kernel.Default (self-tuning)’>
<<WLS Kernel>> <> <> <1244524469593> <BEA-001156> <Stack trace associated
with message 001129 follows:

java.sql.SQLException: The Network Adapter could not establish the connection
at oracle.jdbc.driver.SQLStateMapping.newSQLException(SQLStateMapping.java:70)
at oracle.jdbc.driver.DatabaseError.newSQLException(DatabaseError.java:133)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:199)
at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:480)
at oracle.jdbc.driver.T4CConnection.logon(T4CConnection.java:413)
at oracle.jdbc.driver.PhysicalConnection.<init>(PhysicalConnection.java:508)
at oracle.jdbc.driver.T4CConnection.<init>(T4CConnection.java:203)
...

Each log file entry has the following format.

<Date/Time> <Severity Level> <Subsystem> <Machine> <Server> <Thread> <User Identity>
<Transaction ID> <Diagnostic Context ID> <Raw Time> <Message ID> <Message Text>

Imagine that you want to set up a trap every time this message appears (because this message alerts you
that the database is no longer reachable). You do this by defining a log filter trap using the settings listed
in Table 12-10.

The last type of trap to discuss is the monitor trap. Monitor traps are used to monitor an attribute
value of an MBean; they come in three types: counter, string, and gauge. A counter trap simply
generates a trap when a particular attribute value meets or exceeds the threshold value. For example,
you might want to define a counter monitor trap to let you know when a server is using all of the
connections in the BigRezJTADataSource JDBC connection pool. To do this, you need to use the

611

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 612

Chapter 12: Administering and Deploying Applications

ActiveConnectionsHighCount attribute of the JDBCConnectionPoolRuntime MBean with the Name of
BigRezJTADataSource on Server1, Server2, and Server3.

Table 12-10: Database Down Log Filter Trap Configuration Parameters

Name Value

Name Database Down Log Filter Trap

Severity Level Info

Subsystem Names JDBC

User IDs

Message IDs 001156

Message Substring

Servers Server1, Server2, Server3

A string monitor trap compares the attribute value against a string and can raise a trap when the string
matches or when it differs. A gauge monitor trap will alert you whenever the attribute value meets or
exceeds the Threshold High value and when it reaches or falls below the Threshold Low. If you had a
JDBC connection pool where the Initial Capacity and Maximum Capacity attributes were different, you
might want to create a gauge monitor to monitor the maximum and minimum number of connections.
By setting the Threshold Low value to be one less than the Initial Capacity, your gauge monitor trap
could monitor the ActiveConnectionsCurrentCount attribute of the JDBCDataSourceRuntime MBean
and alert you whenever the number of active connections are less than the Initial Capacity (which
might indicate database connectivity problems).

Before we move on, we should mention that although WebLogic Server does not provide an SNMP
manager, it does provide a Java command-line utility class that you can use to issue SNMP manager
commands like GET or GETNEXT. This can allow you to do simple sanity tests of your SNMP agent con-
figuration to make sure that it is working without needing to revert to your SNMP manager console. To
get the current number of threads in Server1’s thread pool, use the GETNEXT command to get the value
of the ExecuteThreadTotalCount attribute on the ThreadPoolRuntime table. Because GETNEXT accepts
relative object IDs (OIDs), we simply take the relative OID value for this attribute from the WebNMS
MIB Browser and execute the following command on the admin server machine.

java weblogic.diagnostics.snmp.cmdline.Manager SnmpGetNext –c public@Server1 –p 161
.1.3.6.1.4.1.140.625.367.1.25

enterprises.140.625.367.1.25.16.200.144.104.202.36.239.133.252.37.194.1.4.239.88
.180.207=6

612

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 613

Chapter 12: Administering and Deploying Applications

Notice that we set the community name to public@Server1 so that we get the value for Server1. Our
GETNEXT command also returned the absolute Object ID for this attribute. Given this attribute, we could
use the following GET command to periodically poll the value of this attribute.

java weblogic.diagnostics.snmp.cmdline.Manager SnmpGet -p 161
enterprises.140.625.367.1.25.16.200.144.104.202.36.239.133.252.37.194.1.4.239.88.180
.207

enterprises.140.625.367.1.25.16.200.144.104.202.36.239.133.252.37.194.1.4.239.88
.180.207=6

For more information in the WebLogic SNMP command-line tool, please see the WebLogic Server doc-
umentation at Link 12-37. At the time of writing, the documentation was pretty terse; however, the help
output of each command seems to be pretty good, as shown here.

java weblogic.diagnostics.snmp.cmdline.Manager SnmpGetNext -?

USAGE

java SnmpGetNext [-?|options] <objectID>+

DESCRIPTION

Performs a standard SnmpGetNext operation with the given
objectIDs.

OPTIONS

-v1|v2[c]|v3 : snmp version [v1]
-c[ommunity] <community>: snmp community to use [public]

-h[ost] <host> : snmp agent host [localhost]
-p[ort] <port> : snmp agent port [161]
-r[etries] <retries> : # of retries [3]
-t[imeout] <millis> : message timeout in millis [3000]
-maxvbs <max_vbs> : max # of varbinds in a single req.[no-max]

-metadata <filename> : metadata file to load [mib-2]
-m[ibs] <mib-list> : list of MIBs to load from mibdirs [mib-2]

(def: SNMPv2-MIB:IF-MIB:TCP-MIB)
-M|mibdirs <dir-path> : directories of precompiled MIBs [default]
-list : list available MIBs [false]

-log <logfile> : logfile to store debug output [none]
-d[ump] : dump debug info to stdout [off]

(note: will not work with -log)

-pkts : display data packets [off]
-O outopts : display output options [i]

613

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 614

Chapter 12: Administering and Deploying Applications

n: print OIDs in numeric format
l: print OIDs with resolved labels
i: print OIDs with formatted indexes

-tcp : use TCP rather than UDP [false]

NOTE: You may include a ‘dsnmp.conf’ file in your classpath or
filesystem containing default values for the following:

mibs=<mib-list>
mibdirs=<dir-path>
retries=<retries>
timeout=<timeout-millis>
host=<default-host>
port=<default-port>
community=<default-community>

This ‘dsnmp.conf’ file may be located in any of the following
directories or JAR file packages:

.
/
/monfox/toolkit/snmp/conf
/monfox/toolkit/snmp/appl
/etc/dsnmp/conf
/etc/dsnmp

SNMPv3 OPTIONS

-u[ser] <security-user> : USM username [none]
-A <auth-passwd> : Authentication password [none]
-a <auth-protocol> : Authentication protocol (MD5|SHA) [MD5]
-X <priv-passwd> : Privacy password [none]
-x <priv-protocol> : DES | AES128 | AES192 | AES256 [DES]
-l <security-level>: noAuthNoPriv|authNoPriv|authPriv [authNoPriv]
-e <sec-engine-id> : security engine id [none]
-n <context-name> : context name to use [""]
-E <context-eng-id>: context engine id [none]
-Z <boots>,<time> : engine boots, engine time [none]
-crypto <provider> : security provider class name [...SunJCE]

Hopefully, the documentation issues will improve by the time you read this book.

This ends our discussion of WebLogic SNMP. Although there are very few built-in traps, the ability to
define custom traps makes it possible to define most of the types of traps that you might want. Of course,
the real difficulty here is that you must know the JMX APIs, what the possible values of each attribute
are, what the expected and abnormal ranges of values are, and so on. We hope that future versions of
WebLogic Server will simplify this task so that it does not require so much system-level knowledge
of the JMX APIs to be able to define custom traps.

614

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 615

Chapter 12: Administering and Deploying Applications

Managing WebLogic Server Applications
We are finally ready to talk about the toughest part of a WebLogic Server administrator’s job — how to
manage WebLogic Server–based applications. This coverage is by no means comprehensive, but we hope
to cover the most common problems encountered while managing WebLogic Server applications. We
start off this section by discussing how to manage applications by touching on such topics as application
troubleshooting and versioning, and we finish with a discussion of handling failure conditions.

Troubleshooting Application Issues
Application troubleshooting can take many forms. Sometimes, you need to figure out why your appli-
cation is not performing as fast or scaling as well as someone thinks it should. At other times, the
application is not functioning properly and you need to determine the root cause of the problem. In a
distributed system, this means that you must consider the entire application environment from the client
application and hardware, the network and network devices, the server hardware and operating system,
the web and application servers, the JVMs, the database, and other backend server hardware and soft-
ware to the application itself. This can be a daunting task, and the possibilities are endless. Though we
cannot expect to cover all the possible problems or diagnostic approaches, we do hope to describe the
use of some of the tools that you have at your disposal to make it easier to narrow down the possible
causes of the problem.

When problems arise with a distributed system, people naturally suspect the component(s) of the system
for which they have the least knowledge or trust. In many cases, this means that WebLogic Server gets
the blame, and it is your job as WebLogic Server administrator to prove the problem lies elsewhere (if,
in fact, it does). When you encounter a problem, it is important to get as much information about the
symptoms of the problem as possible while trying to recognize that people’s biases for what they believe
to be the problem may cause them to lead you in the wrong direction. Although it is important to listen
to all the evidence, it is also important not to jump to conclusions that are not backed up by the facts.

In almost every situation where you suspect a problem might be related to WebLogic Server, you should
use either the WebLogic Console or some custom WLST scripts to determine the health of the server.
The previous section discussed many of the WebLogic Console’s most important monitoring capabilities.
Before doing anything, you should look at the relevant WebLogic Server log files to see if they contain
any errors that might indicate the cause of the problem. If the problem at hand is performance-related,
looking at the relevant server’s execute queue length and throughput as well as the JVM’s heap usage
profile should be one of the first pieces of evidence to examine. To view the server’s execute queue length
and throughput, use the server’s Threads Monitoring tab in the WebLogic Console. If the execute queue
is empty or no longer than normal (and garbage collection does not appear to be unusually frequent) even
though the clients are experiencing a significant degradation in response time, you need to determine
whether the problem is with the server or the components in front of or behind the server.

To narrow down the possible causes of a performance problem, the best solution is to invest in an
end-to-end application performance monitoring tool, such as CA Wily Introscope (see Link 12-38)
or Oracle Enterprise Manager Application Performance Management extensions (see Link 12-39).
Oracle JRockit Mission Control offers a lightweight solution that provides detailed information about
what is happening inside the WebLogic Server and the JRockit JVM. You may also want to consider

615

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 616

Chapter 12: Administering and Deploying Applications

instrumenting your production applications ahead of time using the WebLogic Diagnostic Framework,
which we discuss later.

Assuming you don’t have such tools in place, you may need to revert to some old-fashioned, though still
useful techniques. It is useful to be able to run your client application and the weblogic.Admin tool’s PING
command from various points in your application environment. For example, let’s say that your Internet
users are complaining of very slow response time. By being able to run a browser on one of the web server
machines, you can determine if the cause of the slowdown is between the users and the web server or
somewhere starting at the web server and going back into your application and database environment.
By again moving the browser to an application server machine, you can isolate or eliminate the web
server and the network environment between as potential causes. If the application is not available, the
admin tool’s PING command can serve a similar purpose.

If you determine through testing that the problem appears to be that WebLogic Server is taking too long
to process the requests (even though it is processing PING requests very quickly), the next step is to try
to determine what is causing the application request processing to be so slow. Create a series of thread
dumps over the span of a minute or so and look at the call stacks for the threads over time. There are a
number of ways to generate thread dumps, including sending a kill -3 signal to the process and using
the WebLogic Console or WLST to tell WebLogic Server to do a thread dump. This information will help
you understand what the execute threads are doing and may tell you where they are spending most of
their time. The optimum frequency and duration of the series of thread dumps depends on how long it
takes to process an application request. For example, if a request is taking 15 seconds to process once it is
picked up by an execute thread, taking thread dumps 60 seconds apart probably won’t help you as much
as taking them 5 seconds apart so that you can see if the same thread is in the same place in consecutive
thread dumps.

Resource contention is a common cause of performance problems and can occur at many levels. Use the
WebLogic Console monitoring tools to detect resource contention for things like JDBC connections and
EJB instances. For other types of application-specific resource contention, thread dumps may be your
only detection mechanism (outside of either a thorough understanding of how the application works
or the use of profiling tools). Data access contention inside the database is best detected by database
monitoring tools but may sometimes be seen in application thread dumps.

Best Practice
Configure your production environment with an end-to-end application performance
management tool to help troubleshoot performance problems and identify the root
cause quickly.

Oracle JRockit Mission Control offers a lightweight solution for gaining detailed insight
into what is happening inside the WebLogic Server and the JRockit JVM if you are using
the JRockit JVM to run WebLogic Server.

In lieu of proper tools, you can use a series of properly spaced thread dumps to gain
insight into the possible causes of long-running requests.

Garbage collection is another common problem. Though modern JVMs have much better garbage col-
lection algorithms than their predecessors, these new garbage collectors can require much more tuning
to get optimum, or even reasonable, performance. Most JVMs now have multiple garbage collection

616

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 617

Chapter 12: Administering and Deploying Applications

algorithms that allow a properly tuned JVM to minimize the number of full garbage collection cycles it
runs. Typically, these full garbage collection runs must stop all other activity while the garbage collector
scans the heap for unreachable objects, removes unreachable objects, and relocates reachable objects to
compact the heap (which packs the reachable objects together so as to maximize the contiguous free
memory space within the heap). By looking at the JVM heap usage profile (for example, by turning on
the –verbosegc switch to the JVM or better yet by using JRockit Mission Control), you can detect how
often these full garbage collection scans are occurring.

Whenever the heap usage reaches a certain percentage of capacity, the garbage collector will perform a
full GC to reclaim as much free memory as possible. The result is that users will see that requests that
are in-flight during a full GC take longer to process. In extreme situations, full GC sweeps can occur
multiple times in the life of a single request. Because most server-side Java applications tend to create a
lot of transient objects (ones that are used for a very short time and thrown away), it is often possible to
reduce the number of full GC sweeps significantly by tuning the garbage collector. For more informa-
tion about garbage collector tuning, and performance tuning in general, see Chapter 13, the WebLogic
Server documentation at Link 12-40, and your JVM documentation (for example, the Oracle JRockit JVM
documentation at Link 12-41).

Best Practice
Frequent spikes that indicate high JVM heap usage can have a significant effect on the
user’s experience. Adjusting the heap size and garbage collection tuning parameters can
significantly reduce the frequency of full GC sweeps and improve the user experience.

To diagnose application errors, you often need the ability to turn on more verbose logging in targeted
areas of WebLogic Server. WebLogic Server has an extensive debug logging framework that allows
you to enable entire subsystem-level debugging or drill down to a very specific component to enable
debugging output. To modify the default settings, use the server’s Debug tab to change the debug scope
settings. What makes this so convenient is that you can turn on and off these debug settings at will
without interrupting your applications or restarting the server. For example, enabling debugging at the
weblogic.security.ssl scope level will make troubleshooting SSL handshake issues immensely easier.

Earlier, we demonstrated how you can define custom SNMP log filter traps to monitor WebLogic Server
log files for specific errors. Wouldn’t it be nice if you could use this facility for your own application logs?
Guess what, you can!

Using WebLogic Server’s Logging Services
WebLogic Server provides logging services that allow your developers to write application log mes-
sages to the WebLogic Server log files. By having your applications use this service, your applications
automatically get access to log-related features like automated log rotation and archiving, support for
internationalization and localization, distributed log viewing via the WebLogic Console, severity-based
log filtering, and custom JMX- or SNMP-based log filter notifications.

By default, the logging service uses standard Java logging so that developers can get access to the
java.util.logging.Logger object that the server uses for logging. With access to the server’s Logger
object, developers can take full advantage of the Java Logging APIs to add their own custom handlers,
filters, and formatters. See the Java Logging API documentation at Link 12-42. WebLogic Server also
supports using the Apache Log4J logging service to replace the default Java logging implementation.

617

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 618

Chapter 12: Administering and Deploying Applications

Doing this allows the developer to use the Log4J APIs to define their own Log4J loggers, appenders, and
layouts.

To produce messages to the log, WebLogic Server provides three mechanisms in which applications
can integrate application logging with the WebLogic Server Logging Service: message catalog logging,
non-catalog logging, and Apache Commons logging. Let’s look at each option now.

Message Catalog Logging
WebLogic Server provides a catalog framework by which you can create a catalog of log messages,
internationalize them, and generate Java classes that your application can use to generate these
messages to the server log. The process of creating a message catalog logger is simple.

First, you need to create your message catalog. Though the message catalog is just an XML file
that could be hand crafted, WebLogic Server provides a simple standalone Java program called
weblogic.MsgEditor for creating and editing a message catalog. To create a new message catalog, use
the File menu’s New Catalog option and provide the values listed in Table 12-11.

Table 12-11: BigRezCatalog.xml Creation Data

Parameter Value

Message catalog C:\powls\ch12\MessageCatalog\BigRezCatalog.xml

Catalog Type Log Messages

i18n Package com.bigrez.logging.i18n

l10n Package com.bigrez.logging.l10n

Subsystem bigrez.com

Prefix BigRez

Base id 500001

End id 501000

Loggables unchecked

After creating the new catalog, you need to enter some messages. When creating a new message, the first
attribute you must specify is the Message ID. This is the numeric value that identifies the log message;
its value must be unique and fall within the range specified by Base id and End id (inclusively) when
the catalog was created. The actual log message ID printed in the server log will be a combination of the
Prefix and Message ID fields separated by a hyphen.

The Method field lets you define the method name and arguments that your application uses to create the
log message. The arguments to your method can be referenced in the Message Body field. You refer to

618

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 619

Chapter 12: Administering and Deploying Applications

arguments positionally using a {#} syntax, where the number is a zero-based index of which argument
value you want to insert. Note that the Message Details, Probable cause, and Action fields are only
used internally by the WebLogic Server Development team to generate the ‘‘Error Message Catalog’’
section of the WebLogic Server documentation.

If you simply want to collect the log information and write it out later, you can enable the Loggables
option. This will cause each logging method to return a weblogic.i18n.logging.Loggable object con-
taining the log message data. Whenever you are ready to write the log message, you simply invoke the
log() method on the Loggable object.

Once you complete the base catalog, you may want to add localized versions of the catalog
messages for other locales. Again, WebLogic Server provides a standalone Java program called
weblogic.MsgLocalizer for creating the localized versions of the message catalog. When you start this
tool, locate your Master catalog file, choose the Locale you want, and create the new localized catalog.
One thing we found a little confusing is that you need to select the All messages option from the View
menu to get a list of the messages in the master catalog. Selecting a message from the master catalog will
populate the localized message editor that will allow you to localize the specific message. Use this tool
to create as many localized versions of the catalog as required.

Once you finish creating the message catalogs, you need to run compilation tools over them to gen-
erate the Java classes and property files required to make the catalog logger work. First, you generate
compile the master catalogs using the following command:

java weblogic.i18ngen –build –d classes MessageCatalog\BigRezCatalog.xml

In the output directory, the i18ngen tool will generate and compile the Java class containing the catalog
logger and the property file containing the English text for the master catalog. If you examine the gener-
ated Java source file, you will see each catalog entry’s method has been mapped to a static method on the
logging class. For example:

BigRezCatalogLogger.logComplete("this is my test message");

If you created any localized catalogs, you can run the l10ngen tool to create the property files for localized
catalogs, as shown here. Don’t forget to add the output directory of the i18ngen tool to your CLASSPATH
first!

C:\powls\ch12>set CLASSPATH=c:\powls\ch12\classes;%CLASSPATH%

C:\powls\ch12>java weblogic.l10ngen -d classes MessageCatalog\BigRezCatalog.xml

All that is left to do now is write your application code using the catalog logger and make the generated
logging class and property files available to your application at runtime. You can use the catalog logger
from a standalone Java client. By default, it will log the messages to stdout instead of to a file. If you
want the messages written to a file, set the Java system property weblogic.log.FileName to the name
of the log file to use. If you want some subset of log messages to go to stdout, set the Java system prop-
erty weblogic.log.StdoutSeverityLevel to one of these values: Debug, Info, Notice, Warning, Error,
Critical, Alert, Emergency, or Off.

For more information on the catalog logger, see Link 12-43. For more information on the message editor,
see Link 12-44. For more information on the i18ngen and l10ngen utilities, see Link 12-45.

619

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 620

Chapter 12: Administering and Deploying Applications

Non-Catalog Logging
If you don’t need internationalization support and don’t want to take the extra steps to create message
catalogs, WebLogic Server provides the weblogic.logging.NonCatalogLogger class that your appli-
cations can use to write application messages to the server log. Note that all messages logged via the
non-catalog logger will have the message ID set to 000000.

NonCatalogLogger logger = new NonCatalogLogger("bigrez.com");
logger.info("We are using the WLS NonCatalogLogger");
...
logger.error("Error loading property file", exception);

The NonCatalogLogger interface supports methods whose names map directly to the different severity
levels supported by the logging service. Each severity level maps to two methods of the form:

void severity(String message)
void severity(String message, Throwable error)

Like the catalog logger, the non-catalog logger can also be used by client applications running outside the
server to write to client-side log files. The same client-side Java system property settings apply to both
the catalog and non-catalog loggers.

Commons Logging
If desired, your application can use the Apache Commons Logging API instead of either the cat-
alog or non-catalog logging interface provided by WebLogic Server. WebLogic Server does not
distribute a version of the Commons Logging classes for use by applications so you will need to
download the commons-logging.jar from the Apache web site. Once downloaded, you will need
to make both commons-logging.jar and the WebLogic Server–specific Commons classes (located in
$MIDDLEWARE_HOME/modules/com.bea.core.weblogic.commons.logging_1.3.0.0.jar) available to
your application in any of the standard ways that you would make any other utility classes available to
an application (for example, placing them in the enterprise application’s library directory).

To use this interface, set the org.apache.common.logging.LogFactory Java system property to
weblogic.logging.commons.LogFactoryImpl and use the LogFactory interface to get a Log object by
name. This name appears as the subsystem name in the server log file.

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
...
System.setProperty(LogFactory.FACTORY_PROPERTY,

"weblogic.logging.commons.LogFactoryImpl");
...
Log bigRezLogger = LogFactory.getFactory.getInstance("bigrez.com");
...
bigRezLogger.error("BigRezJTADataSource.getConnection() failed", sqlException);

Note that Commons Logging defines six severity levels that map directly to method names on the Log
interface: trace, debug, info, warn, error, and fatal. Each severity level maps to two methods of the
following form:

void severity(Object message);
void severity(Object message, Throwable t);

620

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 621

Chapter 12: Administering and Deploying Applications

Now that we know the options for producing messages to the server log file, we talk briefly about how
to configure the logging service and tailor what messages get written to the server log. All of the log
configuration we discuss here references settings found under the Advanced area of the server’s General
Logging tab in the WebLogic Console. By default, a server logs all messages with a severity level of INFO
or higher and sends them to all log destinations, as specified by the Minimum severity to log attribute.
You can use the Logger severity properties field to customize the logging level by subsystem using a
semicolon-separated name-value pair syntax.

Security=Notice;EJB=Warning

You switch a server from using standard Java logging to Log4J using the Logging implementation
attribute. You can also redirect stdout to the logging subsystem by enabling the Redirect stdout
logging enabled checkbox. Other settings on this page tune the different log listeners’ filters that
write log messages to the server log file, stdout, the domain log file, and the memory buffer used for
tailing logs in the WebLogic Console

We have just scratched the surface with what is possible using the WebLogic Server Logging Ser-
vice. However, it is time to move on to talk about another powerful diagnostic tool WebLogic Server
provides — the WebLogic Diagnostic Framework. For more information on the logging service, please
refer to the WebLogic Server documentation at Link 12-46.

Using the WebLogic Diagnostic Framework
The WebLogic Diagnostic Framework (WLDF) is a powerful collection of services for monitoring the
runtime behavior of your application. Though you can use WLDF for production monitoring, it is partic-
ularly useful in pre-production performance testing and troubleshooting situations.

The component services of the WLDF are:

Logging The WebLogic Server Logging Services belong to the WLDF. These logging services
were just covered in the ‘‘Using WebLogic Server’s Logging Services’’ section.

Instrumentation WLDF allows instrumentation monitors to be applied at arbitrary points in
application code. Each monitor generates an event whenever the instrumented code is called. The
monitored points are specified using declarative rules, and implemented using byte code modifica-
tion. The events that are captured include a diagnostic context identifier, which allows a stream of
related events to be correlated whether they occur within a server, or across JMS messages, remote
RMI, or SOAP calls.

Harvester The harvester regularly schedules a task that records metric data from a configurable
set of JMX MBeans.

Data produced from the log sources and instrumentation is in the form of asynchronous events
that are pushed to the rest of the diagnostic framework. The harvester pulls data from the JMX
MBeans and translates it into events.

Diagnostic Archive Each server has a persistent diagnostic archive that is used to store captured
historical data from log sources, instrumentation monitors, and the harvester.

The diagnostic archive can be persisted using either a file-based or JDBC-based WebLogic Server
persistent store. The archive can be queried through a JMX accessor interface using the WLDF query
language. The data can also be exported to an XML file using WLST commands.

Watches and Notifications WLDF watch rules can be used to monitor log messages, instrumen-
tation events, or harvested metric data. By default when a watch rule fires, a message is written to
the server log. In addition, external systems can be notified using JMX, SNMP, JMS, or email.

621

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 622

Chapter 12: Administering and Deploying Applications

Console Extension The WLDF console extension provides a Java applet that can display metric
data from JMX MBeans as graphs and charts. It can also be used to browse historical metric data
that has been stored in the diagnostic archive using the harvester.

Diagnostic Image Capture A diagnostic image is an archive of information captured at a point in
time from many different WebLogic Server subsystems, such as the transaction engine, JDBC, JMS,
deployment, JNDI, and so on. The content of a diagnostic image is primarily of interest to Oracle
support engineers, but you may occasionally find it useful.

The creation of a diagnostic image can be triggered manually, using the console or WLST, or as the
result of notification.

These various WLDF services have been designed to complement each other. They provide primitive
capabilities that can be combined in powerful ways. The breadth of the WLDF can be a little daunting
at first. Rather than dryly walking through each service in isolation, we show how you might use the
WLDF to gain insight into the performance of bigrez.com, touching on instrumentation, the harvester,
the diagnostic archive, and watches and notifications along the way.

For an advanced example of using WLDF, including diagnostic context propagation between servers,
refer to the Oracle Technology Network article Mining WebLogic Diagnostic Data with WLST (see Link
12-47) which was written by one of this book’s authors.

Instrumenting bigrez.com
Let’s assume you are interested in the performance cost of searching bigrez.com for suitable properties
to offer to the user. In particular, you want to know how long it takes the session façade to perform
a JPA query against the database, and what further overhead is added by the EJB dispatch (including
transaction management and the application interceptor).

To add instrumentation, you need to create an application-specific diagnostic module and a diagnostic
system module. Listing 12-1 shows a suitable application diagnostic module. This should be named
weblogic-diagnostics.xml, and packaged in the application archive below the META-INF directory.

Listing 12-1: Sample weblogic-diagnostics.xml application module.

<?xml version="1.0" encoding="UTF-8"?>
<wldf-resource

xmlns="http://xmlns.oracle.com/weblogic/weblogic-diagnostics"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-

diagnostics http://xmlns.oracle.com/weblogic/weblogic-
diagnostics/1.0/weblogic-diagnostics.xsd">

<instrumentation>
<enabled>true</enabled>
<wldf-instrumentation-monitor>

<name>Trace_facade_getOffersForDisplay</name>
<action>MethodInvocationStatisticsAction</action>
<location-type>around</location-type>
<pointcut>execution(*

com.bigrez.service.impl.PropertyServicesImpl findByCityAndState(...))</pointcut>
</wldf-instrumentation-monitor>
<wldf-instrumentation-monitor>

622

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 623

Chapter 12: Administering and Deploying Applications

<name>Trace_propertySearchController_onSubmit</name>
<action>MethodInvocationStatisticsAction</action>
<location-type>around</location-type>
<pointcut>execution(* com.bigrez.web.PropertySearchController

onSubmit(...))</pointcut>
</wldf-instrumentation-monitor>

</instrumentation>
</wldf-resource>

The example application module defines two custom monitors. One monitor instruments the session
façade findByCityAndState() method and the other instruments the appropriate web controller’s
onSubmit() method. The code instrumented by each monitor is determined by a pointcut expression,
similar to that used by Aspect Oriented Programming (AOP) frameworks such as AspectJ. The pointcut
expression language is powerful: expressions can be based on Java inheritance, visibility modifiers (for
example, public or protected), annotations, use wild cards, and can be combined to form composite
expressions. We’re using the pointcut language in a straightforward manner — the first pointcut in the
example instruments any method called findByCityAndState() in the PropertyServicesImpl class,
whatever the parameters or return type.

In addition to the instrumentation point, each monitor in the application module configures a number
of actions. There are several types of actions that do things such as record the elapsed time, take a stack
dump or a thread dump, or simply record that the monitored code has been called. There are three types
of monitors:

❑ Before monitors fire before the application code is called.

❑ After monitors fire after the application code is called.

❑ Around monitors fire both before and after the application code is called.

Each action type is compatible with either before and after monitors or around monitors.

Most of the action types cause event information to be stored in the diagnostics archive. Storing data in
the archive is useful when you want to record and analyze information about specific events. However, it
requires you either to use the accessor API or export the data using WLST, so it is less interactive. Because
we’re not yet interested in individual events, we’ve used the MethodInvocationStatisticsAction,
which aggregates information for each monitor and stores it in an in-memory JMX MBean that can be
easily queried.

A diagnostic system module is also required. Diagnostic application modules only contain application-
scoped monitors. System modules contain system-scoped monitors and other WLDF configuration data,
such as that for the harvester, watches, and notifications. Note that instrumentation must be enabled in
a system module that is targeted to each server you wish to monitor. This allows it to be easily switched
on or off. Each server can have at most one targeted diagnostic system module.

Instrumentation for custom monitors is applied using byte code modification, so you must usually rede-
ploy the application whenever you modify the instrumentation. This recreates the application classloader
and reloads its classes, instrumenting them as necessary. Alternatively, you can add the hot-swap Java
agent to the command line used to start the server, which allows the instrumentation to be changed
dynamically without requiring redeployment.

java ... -javaagent:$WL_HOME/server/lib/diagnostics-agent.jar ... weblogic.Server

623

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 624

Chapter 12: Administering and Deploying Applications

Best Practice
You can leave weblogic-diagnostic.xml application modules in your application, and
enable and disable instrumentation in a system module, or by targeting and untargeting
the system module.

Typically, you must redeploy the application whenever you retarget the system mod-
ule, change whether instrumentation is enabled, or otherwise modify the instrumenta-
tion.

WebLogic Server does not support applying custom monitors to its own classes. Instead, a set of built-in
diagnostic monitors is supplied that provide standard instrumentation points throughout the WebLogic
Server subsystems. These monitors can be configured in a diagnostic system module. In contrast to
custom application-scoped monitors, these standard monitors are rarely useful to application developers.

You can create diagnostic system modules using the WebLogic Console. For our example, we simply
need to target the module to the appropriate server and enable instrumentation using the Enabled check-
box on the Instrumentation Configuration tab.

The information recorded by the MethodInvocationStatisticsAction is available through the applica-
tion’s WLDFInstrumentationRuntime MBean. This MBean has a MethodInvocationStatistics attribute
that returns a nested set of maps containing of all the recorded statistics for the application. It also has an
getMethodInvocationStatisticsData() operation that allows you to query for a subset of the data.

Listing 12.2 is an example WLST script that queries the bigrez.com WLDFInstrumentationRuntime
MBean and displays all of the results.

Listing 12-2: WLST script to display the WLDF method invocation statistics.

connect()
cd("serverRuntime:/WLDFRuntime/WLDFRuntime/WLDFInstrumentationRuntimes/bigrez-ear")
def formatTime(t):

"""Convert nanoseconds double to milliseconds string."""
return "%.2f" % (t/1e6)

for classStats in cmo.methodInvocationStatistics.entrySet():
for methodStats in classStats.value.entrySet():

for signatureStats in methodStats.value.entrySet():
print "%s.%s(): %d %s %s %s %s" % (

classStats.key,
methodStats.key,
signatureStats.value["count"],
formatTime(signatureStats.value["min"]),
formatTime(signatureStats.value["avg"]),
formatTime(signatureStats.value["max"]),
formatTime(signatureStats.value["std_deviation"]),)

Here are the results produced by the script after a few product searches have been performed.

...PropertyServicesImpl.findByCityAndState(): 3 13.62 95.36 193.37 74.28

...PropertySearchController.onSubmit(): 3 15.85 103.24 212.52 81.77

624

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 625

Chapter 12: Administering and Deploying Applications

The values are the number of the times the method has been called, followed by the minimum, average,
and maximum times, and the standard deviation. All the times are in milliseconds. These numbers were
obtained by making a few requests to the application using a browser. If we applied a more realistic work
load using a performance testing tool such as The Grinder (see Link 12-48), we could get a very good feel
for the cost of the JPA query and the overhead of the EJB dispatch.

Harvesting Metric Information
Querying the JMX information using a WLST script can be inefficient. Each time a WLST script is started,
it must create a Java virtual machine and a Jython interpreter. Each access to JMX MBeans requires an
RMI call to the server. This overhead can be prohibitive when you need to capture lots of data during a
performance test run.

This is where the WLDF harvester is useful. The harvester is configured in a diagnostics system mod-
ule. If you use the WebLogic Console to access the diagnostic system module’s Collected Metrics
Configuration tab, you’ll see that you can specify the metric data sampling period, which defaults to
5 minutes. This page also lets you add harvesting rules to collect data from built-in and custom MBeans.
For example, you might want to record the number of JDBC connections in use. Simply use the WebLogic
Console to define a new harvesting metric that collects the value of the ActiveConnectionsCurrentCount
attribute of the JDBCDataSourceRuntime MBean by selecting the MBean and the attribute from the pro-
vided lists.

Continuing our bigrez.com example, you might also want to capture the statistics regularly from the
application WLDFInstrumentationRuntime MBean. The data provided by this attribute is more complex,
so you can’t simply select it from the list. Instead, you have to provide an attribute expression in a particular
form. The syntax is straightforward; refer to the WebLogic Server documentation at Link 12-49 for full
details. Here’s an expression that harvests the count, average, minimum, and maximum statistics from
any monitor that uses the MethodInvocationStatisticsAction.

MethodInvocationStatistics(*)(*)(*)(count|avg|min|max)

Listing 12-3 shows the configuration file for the diagnostic system module having configured it to harvest
from the JDBCDataSourceRuntime and WLDFInstrumentationRuntime MBeans.

Listing 12-3: Diagnostic system module with harvester configured.

<?xml version=’1.0’ encoding=’UTF-8’?>
<wldf-resource ...>

<name>MySystemModule</name>
<instrumentation>
<enabled>true</enabled>

</instrumentation>
<harvester>
<harvested-type>

<name>
weblogic.management.runtime.JDBCDataSourceRuntimeMBean

</name>
<harvested-attribute>
ActiveConnectionsCurrentCount

</harvested-attribute>
<harvested-instance>

Continued

625

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 626

Chapter 12: Administering and Deploying Applications

Listing 12-3: Diagnostic system module with harvester configured. (continued)

com.bea:Name=BigRezJTADataSource,ServerRuntime=AdminServer,
Type=JDBCDataSourceRuntime

</harvested-instance>
<harvested-instance>
com.bea:Name=BigRezNonJTADataSource,ServerRuntime=AdminServe

r,Type=JDBCDataSourceRuntime
</harvested-instance>
<namespace>ServerRuntime</namespace>

</harvested-type>
<harvested-type>

<name>
weblogic.management.runtime.WLDFInstrumentationRuntimeMBean

</name>
<harvested-attribute>
MethodInvocationStatistics(*)(*)(*)(avg,count,min,max)

</harvested-attribute>
</harvested-type>

</harvester>
</wldf-resource>

With the harvester enabled, the server is now recording information in its diagnostic archive. How can
you get at it?

If you enable the WLDF console extension, you can see the historic information captured from the
JDBCDataSourceRuntime MBean. The console extension is the quickest way to visualize data in the
archive, and if you harvest a few key metrics such as heap size, thread usage, and JDBC connection
pool usage, it can help you spot trends over time. This is particularly useful during performance testing,
or when troubleshooting problems that occur out of office hours.

Due to its complex format, the WLDF console extension cannot display the data from the
WLDFInstrumentationRuntime MBean. To get at the historical data, we’ll have to export it from
the archive.

Exporting Diagnostic Data
Data can be exported from the archive using WLST. There are two ways to accomplish this. First, you can
use the exportDiagnosticDataFromServer command while connected to a running server. Second, you
can use the exportDiagnosticData command in offline mode while the server is stopped.

The exportDiagnosticDataFromServer command makes a new HTTP connection to
the server to perform the bulk download of data. You must run WLST from a
location that can make such an HTTP connection.

626

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 627

Chapter 12: Administering and Deploying Applications

The archive can contain harvested metric data and event data (from the other types of instrumentation
actions that store their results in the archive). Both of the export commands take a logicalName parameter
that determines which class of data should be read. This can also be set to export from the various log
files, but only where the persistent data is stored in the log file itself, not in the diagnostic archive.

The export commands also allow a date range to be specified, or a WLDF query that can precisely specify
the information to export.

Here’s an example WLST command that exports all of the available harvested data from the connected
server.

exportDiagnosticDataFromServer(logicalName="HarvestedDataArchive",
exportFileName="myexport.xml")

The data is exported in an XML format that represents a set of tabular rows. WebLogic Server does not
supply any tools to post-process this exported data. The Oracle Technology Network article referred to
at the beginning of this section shows how to process the data using XSLT scripts.

Managing the Diagnostic Archive

Be wary of instrumenting too many methods, harvesting too many metrics, or using very short sam-
pling period. You will quickly fill up the archive, and the overhead of the instrumentation may become
measurable.

The data in the archive obviously cannot be allowed to grow indefinitely. WebLogic Server allows data
retirement policies to be set for a each class of data in the diagnostic archive that regularly deletes data of
a certain age. Data retirement policies can be used for both file- and database-based stores. For file stores,
a preferred maximum size can also be configured — WebLogic Server will regularly remove old records
to keep the file below the configured size.

Watches and Notifications
A watch is a rule that is used to monitor log records, WLDF events, and harvest metric data for some
situations. When a watch fires, it triggers one or more notifications. A notification allows users and other
systems to be informed of the situation using JMX, SNMP, JMS, or email, or for a diagnostic image to be
created. Both watches and notifications are configured in a diagnostic system module using the WebLogic
Console.

We could, for example, configure a watch rule that fires whenever the harvester discovers there are more
than 10 active database connections in use.

Watches can have an associated alarm setting. This prevents the same watch from firing within either
a configured period (an automatic reset alarm), or until an administrator resets the alarm (a manual reset
alarm).

This concludes our whirlwind tour of the WebLogic Diagnostic Framework. For more information,
please see Link 12-50. Now that you understand some of the tools WebLogic Server provides to help

627

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 628

Chapter 12: Administering and Deploying Applications

troubleshoot applications, we will talk about how we roll new versions of applications into our produc-
tion system.

Versioning Applications
Applications change. Deployment strategies for putting in new versions of already running applications
vary. Certain application characteristics can make rolling out new versions of an application messy.
The purpose of this section is to point out the issues around application versioning and to discuss the
features that WebLogic Server offers that may help you address these issues with your applications.
Note that even these advanced features of WebLogic Server do not address every possible situation.
Choosing the right strategy for an application involves analyzing the application requirements and the
sorts of application changes occurring, then trading those off against the pros and cons of the available
approaches.

WebLogic Server supports the notion of hot deployment of an application. This means that you can take
a new version of an application and push it into a set of running servers without restarting the servers.
Two primary strategies for hot redeployment:

In-Place Redeployment In-place redeployment is the default redeployment model used in
WebLogic Server today, and the only one available in older releases of the product. With this
model, the new version of the application immediately replaces the old version of the application
in running server processes. Although WebLogic Server tries to do this in a way to minimize
potential disruption of service, the process essentially drops the older version’s application
classloader and creates a new application classloader to load the new version of the application.
This means that there will be some period of time where the application is unavailable and
users may lose their non-persisted state. For example, users may lose their HttpSession state
if the application has not enabled the <save-session-enabled> element in the weblogic.xml
deployment descriptor, or if the new version of the application has made incompatible changes to
one or more classes stored in the HttpSession. Therefore, this type of redeployment should ideally
be done during scheduled downtime.

WebLogic Server offers some partial redeployment capabilities that allow in-place redeployment
of static files like HTML and JSP pages as well as partial redeployment of modules within a larger
enterprise application. We do not spend time here discussing these variations because we covered
them briefly in Chapter 8. For more information, please see Links 12-51 and 12-52.

Production Redeployment Production redeployment provides a side-by-side deployment model
that does not disrupt service during the redeployment process. Production redeployment support
has certain restrictions and limitations (see Link 12-53 for details) and generally works best with
applications where client access is via one or more web applications, potentially contained within a
larger enterprise application. When you use production redeployment to deploy a new version of
the application, existing clients continue to use the old version until their session completes. New
clients are directed to the new version of the application. Over time, the old application’s client
sessions will end and new sessions will be redirected to the new version of the application. Once
the old application is no longer needed, it can be safely retired without disrupting clients because
it is no longer being used. We spend the rest of this section talking about how to use production
redeployment.

628

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 629

Chapter 12: Administering and Deploying Applications

Production redeployment is probably the right choice for most production applications, assuming they
meet the criteria discussed at Link 12-54. For versioning to work well, the application needs to be self-
contained. This means that any place your application references global resources is a potential problem
unless you are sure that the external resource access will not cause problems when used from the different
versions of the application. Things like JMS and JDBC resource have potential to be problematic because
many times, what is on the other side of the resource may be application version dependent (for example,
your database schema may have changed between application versions). As such, it is typically best to
use application-scoped resources wherever possible.

To support this notion and warn application developers and administrators, versioned applications
that use global JNDI lookups will result in warnings. To disable these warnings, set the following JNDI
properties (expressed as constants on the weblogic.jndi.WLContext class) to true when creating the
JNDI InitialContext to perform the lookup:

WLContext.ALLOW_GLOBAL_RESOURCE_LOOKUP This property will disable warnings about JNDI
lookups of global resources like JDBC Data Sources and JMS resources from within a versioned
application.

WLContext.ALLOW_EXTERNAL_APP_LOOKUP This property will disable warnings about JNDI
lookups of external application components like EJBs from within a versioned application.

Versioned applications may also have modules that are bound into the global JNDI tree. These modules
should be used only by other modules in the same version of the application. WebLogic Server performs
version-aware JNDI bindings and lookups for global resources deployed in a versioned application. By
default, a JNDI lookup of a global resource returns a binding for the same version of the application.
Setting the WLContext.RELAX_VERSION_LOOKUP JNDI property to true allows you to get other versions
if the same version cannot be found. Only use this property if you are certain that the current version is
compatible with the expected version!

To use production redeployment, applications need an explicit version number. Version numbers are
strings made up of one or more valid characters. Valid characters are: any lowercase letter (a–z), any
uppercase letter (A–Z), any numeric character (0–9), a period (.), an underscore (_), and a hyphen (-). The
best way to assign a version number to an application is to explicitly put the application version number
in the EAR file’s Manifest using a line like the one shown here.

Weblogic-Application-Version: v11gR1

Any application with a version number assigned in this way will automatically be deployed using
production redeployment, assuming that the version number of the application being deployed is differ-
ent than the one already deployed.

WebLogic Server deployment tools also allow you to provide a version number for applications at
deployment time. For example, weblogic.Deployer has an –appversion argument that allows you to
assign a version number to an application that doesn’t have a version number in its Manifest file.

WebLogic Server will not support more than two versions of an application at a time. That means that
to use production redeployment to deploy a new version of the application, you must ensure that only a

629

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 630

Chapter 12: Administering and Deploying Applications

single version is deployed before you start your redeployment process. Once you redeploy the new ver-
sion of the application, the new version becomes the current version of the application and the old version
begins the retirement process. Once the retirement process starts, the old version only accepts requests
that are part of a pre-existing session (for example, a web application request with an HttpSession asso-
ciated with the old version) — all new requests go to the current version of the application. Typically,
the retirement process completes once every pre-existing session ends. However, it is possible to specify
a retirement timeout after which the old version of the application is retired, regardless of whether users
have completed their sessions or not.

Once the application is retired, it is safe to undeploy it and remove the files associated with that version
of the application. Note that if you are using either nostage or external_stage deployment modes, do
not overwrite the old application version’s files with the new ones. You must allow both versions’ files to
exist until you have undeployed the old version of the application.

What happens if you redeploy a new version of the application only to find that there is a problem with it?
If you want to roll back the redeployment process, simply redeploy again pointing to the older version’s
source files. This will reverse the active and retiring processes roles, assuming the retirement process
hadn’t already completed. If the old application is already retired and undeployed, the redeployment will
be the same as deployment any new version of an application — in this case, the new version happens to
be the older one but then, WebLogic Server doesn’t really know that anyway.

That is really about all there is to production redeployment for applications with web clients. For appli-
cations with remote RMI-based clients, WebLogic Server’s production redeployment feature currently
defines the pre-existing session as a JTA transaction (or single request in case of no transaction context).
Though from a technical point of view, this might seem reasonable, practically speaking, we are not
convinced that this is sufficient to handle the real-world situations that might arise in fat client–based
production redeployment use cases. As such, we do not cover the nuances of using this feature with
applications using RMI-based clients here. For more information, please consult the WebLogic Server
documentation at Link 12-55.

At this point, it is time to move on to our next topic: failure recovery.

Managing Failure Conditions
Failures happen. As an administrator, you want to make your system as resilient as possible. Sometimes
it is possible to automate processes so that when a particular type of failure occurs, the system can take
steps to recover; other times, it is not. WebLogic Server provides some built-in mechanisms to help make
applications fault tolerant and transparently recoverable (for example, clustering, in-memory replication,
database connection testing). Newer versions of the product also provide mechanisms to fully automate
certain types of failover scenarios. However, when recovering from failures in complex, distributed
systems, it is not always possible to provide or use a general purpose failover mechanism. For example,
when a WebLogic Server instance fails, how do you decide whether to use whole server migration to
migrate the WebLogic Server instance to another machine? In many cases, the machine may restart faster
than the WebLogic Server process could be migrated. In this section, we talk about several common
failure scenarios and the mechanisms that WebLogic Server provides for recovering from these situations.

Database Failures
A very common scenario is that a database goes down (or is taken down) and restarted, either automat-
ically by a high-availability (HA) framework or by the database administrator. When this happens, the

630

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 631

Chapter 12: Administering and Deploying Applications

connections in WebLogic Server database connection pools become invalid and the applications trying to
use them will begin to fail. As we discussed earlier, WebLogic Server does provide mechanisms to allow
the server to eventually recover from the situation without any intervention, although these mechanisms
come at the cost of some extra overhead. Depending on the mechanism(s) chosen and the configura-
tion, the application may continue to fail for an extended period of time after the database recovers.
Fortunately, WebLogic Server also provides a manual mechanism to tell a server to reset a connection
pool.

To reset a database connection pool, you can use the JDBCDataSourceRuntime MBean’s reset() oper-
ation. Using this operation, it is possible to provide a script that can reset all of the connection pools
associated with a particular database server. Once you have such a script, you need only to have the
database administrator or the HA framework run the script whenever the database startup completes
(to the point where it is accepting connections). The following WLST script demonstrates resetting the
BigRezJTADataSource on all running servers in the domain:

connect(userConfigFile=’C:\powls\ch12\server-WebLogicConfig.properties’,
userKeyFile=’C:\powls\ch12\server-WebLogicKey.properties’,
url=’t3s://192.168.1.40:9002’)

servers=domainRuntimeService.getServerRuntimes()
if (len(servers) > 0):

for server in servers:
jdbcServiceRT = server.getJDBCServiceRuntime()
dataSources = jdbcServiceRT.getJDBCDataSourceRuntimeMBeans()
if (len(dataSources) > 0):

for dataSource in dataSources:
if(dataSource.getName() == ‘BigRezJTADataSource’):

dataSource.reset()

The JDBCDataSourceRuntime MBean also provides other operations related to connection pools. Rather
than covering them all here, we refer you to the WebLogic Server documentation at Link 12-56. The
forceSuspend(), resume(), and clearStatementCache() operations are ones that might prove useful
in certain situations. forceSuspend() allows you not only to disable all access to the pooled connections
but also to destroy all of the existing connections if you choose to do so. For planned database restarts,
you might want to suspend the pool and destroy the connections before shutting down the database.
This might allow your application to trap the exception raised and display an error page indicating that
the system is down. Once the database is back up, you can use the resume() operation to re-enable the
connection pool, causing the destroyed connections to be recreated. Certain types of database changes
may make the prepared statements WebLogic Server is caching invalid. Use clearStatementCache() to
remove all cached statements after such a database update. This will allow your application to function
properly without having to cycle the data source or restart the server.

WebLogic Server also supports Multi Data Sources. A multi data source is a data source encapsulates one
or more member data sources that point to different database instances — a pool of data sources. To an
application, a multi data source looks and feels like any other data source. Multi data sources support
two different use cases:

Load balancing A multi data source configured to support load balancing will pick a data
source from its members to use to honor each DataSource.getConnection() request. WebLogic
Server uses a round robin algorithm to balance connection requests across the contained data
sources. Note that multi data sources configured to support load balancing also support failover,

631

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 632

Chapter 12: Administering and Deploying Applications

which relies on the Test Connections on Reserve feature we discussed earlier in the ‘‘Configuring
Database Resources’’ section.

Failover Multi data sources configured to support failover will always use the same data source
to honor the DataSource.getConnection() requests. When processing a getConnection()
request, the multi data source tests the connection to determine if it is valid before returning it to
the caller. If the connection is not valid, the data source will try to replace it first. If that doesn’t
work, it will go to the next member data source in the pool, get a connection, and test it. It will
repeat this cycle until it finds a valid connection or runs out of member data sources.

An important point to note is that multi data sources do not attempt to failover connections that
are in use. The application needs to catch any exceptions, close the existing connection, and call
getConnection() again to try to obtain a valid connection with which the application can restart
its database work.

At the time of writing, WebLogic Server relies on multi data sources for high availability scenarios involv-
ing Oracle RAC databases and XA transactions. Each member data source is configured to point to a
single RAC node. When using XA transactions, each transaction will be pinned to a single RAC node
but different transactions will be load balanced across the member data sources, assuming the multi data
source specifies its Algorithm Type as Load-Balancing. This is really required for pre-11g Oracle RAC
databases due to lazy propagation of XA transactions IDs across nodes that may lead to XA transac-
tion requests going to a RAC node that has no knowledge of the transaction. Although this limitation
is addressed in the 11g RAC database, Oracle still recommends that you do everything possible to keep
all branches of an XA transaction on the same RAC node so this transaction affinity will likely not be
relaxed.

For non-XA use cases, you have the choice of using multi data sources or using a single data source
and the failover capabilities built into the Oracle Thin driver. See Link 12-57 for more information on
configuring WebLogic Server to use the Oracle Thin driver’s RAC failover capabilities.

When using WebLogic Server with XA transactions against an Oracle RAC
database, you must use multi data sources and each member data source must point
to a single RAC node. While WebLogic Server will pin each transaction to a single
RAC node, it will load balance transactions across nodes if the multi data source
specifies Load-Balancing as its Algorithm Type.

WebLogic Server Failures
When designing a highly available production system, you must eliminate single points of failure and
you must provide mechanisms to ensure your system continues to operate without breaking your service-
level agreements. As you know, WebLogic Server clustering provides an excellent first line of defense
against single points of failure and provides automatic failover when a server instance or machine fails.
However, several situations may require some sort of migration. If you have singleton services run-
ning in your cluster, a server process or machine failure may require you to migrate that service to
another running instance in the cluster. If you lose a machine, you may need to migrate one or more
WebLogic Server instances to another machine to allow the system to continue to service requests without

632

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 633

Chapter 12: Administering and Deploying Applications

prolonged periods of degraded performance. In this section, we talk about three types of migration:
service migration, whole server migration, and admin server migration.

Service Level Migration
WebLogic Server supports running singleton services in a cluster such that the service will always run in
one server at a time. The most popular singleton service is a JMS server, which typically includes one or
more destinations. WebLogic Server also provides application developers the ability to build their own
custom singleton services. We discuss both topics in this section.

As discussed in Chapter 10, WebLogic JMS provides clustering facilities to allow you to build JMS appli-
cations that are resilient to server failure. However, the fact remains that when a server hosting one or
more JMS destinations fails, it is very likely that the destinations may contain undelivered messages. If
the JMS messages represent time-sensitive tasks that need to be processed, your job as a WebLogic Server
administrator is to provide a failover mechanism that allows those trapped messages to be delivered
in a timely fashion. JMS service migration is one way to achieve this. The other is to use Whole Server
Migration, a topic we discuss a little later.

Migrating JMS Services

WebLogic Server supports both manual and automatic JMS service migration. If you are using JTA trans-
actions with your JMS application, you will also need to migrate the JTA service. To set up manual JMS
service migration, you will need to perform a number of steps. There are many options and variations on
the configuration; we list the primary steps to get JMS service migration working.

1. Create your machines and assign the managed servers to the appropriate machines.

2. WebLogic Server automatically creates migratable targets for your clustered man-
aged servers. However, you still need to configure them to make sure that the correct
User-Preferred Server is selected and that the Service Migration Policy is set to Manual
Service Migration Only.

3. Create and target custom persistent stores for each migratable target. These will be used to
store any persistent JMS messages.

4. Create your JMS servers and target them to the migratable targets.

5. If any migration policies were modified, you need to restart the admin server and any man-
aged servers affected.

6. To manually migrate a JMS service, use the migratable targets’ Control tab. You can also use
WLST (or a custom JMX program) to perform manual server migration.

While manual service migration is good for situations where you have an external HA framework that
can invoke a migration script, many WebLogic Server installations simply do not need an external HA
framework so that fact that WebLogic Server provides a framework for automatic migration is a real
benefit to administrators.

Setting up automatic JMS service migration requires the same steps as setting up manual migration plus
a couple more. Before we cover the steps required to perform automatic migration, we need to talk about
leasing and automatic service migration policies.

633

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 634

Chapter 12: Administering and Deploying Applications

When performing automatic migration, WebLogic Server needs a leasing mechanism to ensure that the
service only runs on one server at a time. WebLogic Server supports two leasing mechanisms:

Database-Based Leasing This style of leasing relies on a highly available database to coordinate
the actions of the servers in the cluster. It is important that you ensure that the database is always
available and reachable by each migratable server. A migratable server is only as reliable as the
database. If a migratable server is unable to reach the database, it will shut itself down.

Leasing information is maintained in a database table. The schema definition for the table is located
in a database vendor–specific directory underneath the $WL_HOME/server/db directory in a file
called leasing.ddl. You must configure a nontransactional data source to access the leasing infor-
mation. To tell WebLogic Server about the database configuration, use the cluster’s Migration
Configuration tab to set the Migration Basis to Database and set the Data Source for Automatic
Migration attribute to point to the nontransactional data source for the database where you cre-
ated the leasing table. Change the Auto Migration Table Name attribute if you named the leasing
table something other than the default value of ACTIVE.

Consensus-Based Leasing This style of leasing keeps the leasing table in-memory. One server in
the cluster is designated as the cluster leader. The cluster leader controls leasing in that it holds a
copy of the leasing table in-memory and other servers in the cluster communicate with the cluster
leader to determine lease information. The leasing table is replicated across the cluster to ensure
high availability should the cluster leader go down.

To tell WebLogic Server you want to use consensus-based leasing, use the cluster’s Migration
Configuration tab to set the Migration Basis to Consensus. Note that consensus-based leasing
requires the use of node manager on every machine hosting managed servers within the cluster.

Database leasing requires a highly available database. Your migratable targets are
only as reliable as the database. If the database becomes unavailable, the migratable
servers will shut themselves down.

Consensus leasing requires the use of the node manager on every machine hosting
managed servers in your cluster.

WebLogic Server has two automatic service migration policies from which to choose.

❑ Auto-Migrate Exactly-Once Services — With this policy, WebLogic Server will try to keep
the service running if at least one candidate server is available in the cluster — even when an
administrator shuts down a server on which the service is running. Note that this can lead to all
migratable targets running on a single server.

❑ Auto-Migrate Failure Recovery Services — With this option, WebLogic Server will not try
to migrate services where the User-Preferred Server (UPS) is shutdown by the administrator.
If the UPS goes down for any other reason, WebLogic Server will try to migrate the service to
another candidate server. If the candidate server also goes down, WebLogic Server will first try
to reactivate the service on the UPS before searching for another candidate server.

For our purposes with migrating JMS servers that only contain uniform distributed destination members,
we will select the Auto-Migrate Failure Recovery Services option. This means that if we plan to shut a
server down for an extended period of time, we will need to manually migrate the service before shutting

634

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 635

Chapter 12: Administering and Deploying Applications

the server down; otherwise, the service will be unavailable. This is fine because the only reason we want
to migrate the service is to process any message stuck in the queue. Our application will continue to
function without the service because the other distributed destination members are still available.

If the JMS destinations had not been part of a distributed destination and our application depended on
access to the destinations, we would have selected the Auto-Migrate Exactly-Once Services option to
ensure that the destinations were made available as quickly as possible to prevent our application from
failing for an extended period of time.

So, now that you understand the leasing an automatic service migration policies, you are ready to config-
ure automatic JMS service migration. As with manual migration there are many options and variations
on the configuration; we list the primary steps to get automatic JMS service migration working.

1. Create your machines and assign the managed servers to the appropriate machines.

2. Use the cluster’s Migration Configuration tab to set the Migration Basis to either
Database or Consensus. If you choose Database:

a. Create the leasing table, as described previously.

b. Create a nontransactional JDBC data source for the servers to use to access the leasing
table.

c. On the cluster’s Migration Configuration tab, set the Data Source for Auto
Migration attribute to point to your nontransactional data source and verify that the
Auto Migration Table Name attribute is set to the name of your leasing table.

If you choose Consensus:

a. Make sure that you configure the node manager on each machine that hosts the clus-
ter’s managed servers.

3. WebLogic Server automatically creates migratable targets for your clustered managed
servers. However, you still need to use the migratable targets’ Migration Configuration
tab to make sure that the correct User-Preferred Server is selected and that the Service
Migration Policy is set to either Auto-Migrate Exactly-Once Services or Auto-Migrate
Failure Recovery Services.

4. Create and target custom persistent stores for each migratable target. These will be used to
store any persistent JMS messages.

5. Create your JMS servers and target them to the migratable targets.

6. Restart the admin server and any managed servers to pick up the new migration policy
settings.

7. Even with automatic migration configured, you can still manually migrate a JMS server
using the migratable targets’ Control tab (or WLST), if desired.

One important thing to note is that, as of the time of writing, WebLogic Server does not support automatic
failback of migrated JMS services. You will need to perform this task manually, either via the WebLogic
Console or a WLST script.

635

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 636

Chapter 12: Administering and Deploying Applications

Tip to Remember
At the time of writing, WebLogic Server does not support automatic failback of JMS
services. After a service has been migrated to another server, you will need to manually
migrate it back to the original server one that server is ready.

Though we have only covered the basics of WebLogic Server’s JMS service migration framework, it is
time to move on. See our discussion of MDB migration in the ‘‘Connecting to Distributed Destinations’’
section of Chapter 10 to understand how to get your MDBs to migrate with the JMS service. Because JMS
applications often use XA transactions, let’s discuss JTA service migration.

Migrating the JTA Service

When machines fail, you need to be able to bring up services on other machines. Migrating the JTA
service can play a critical role in recovery from a failure scenario. In-flight transactions can hold locks
on the underlying resources. If the transaction manager is not available to recover these transactions,
resources may hold on to these locks for long periods of time, making it difficult for the application to
function properly. JTA service migration is possible only if the server’s default persistent store (where the
JTA logs are kept) is accessible to the server to which the service will migrate. Once you guarantee this,
migration is simple, although you must be careful how you share these files. Distributed file systems
such as NFS typically do not provide the necessary semantics to guarantee the integrity and content
of transaction logs. Typically, this means using some higher-end means of sharing the files, such as a
multi-ported disk or storage area network (SAN).

Like JMS service migration, you can configure either manual or automatic JTA service migration. Because
one of the most common use cases for JTA service migration is using it in conjunction with JMS service
migration, we only point out the additional steps needed to allow JTA service migration.

To add manual JTA service migration to your cluster already configured to support manual JMS service
migration, you must ensure that the managed servers’ default persistent stores are accessible from the
other managed servers to which you want to be able to migrate the JTA service.

By default, WebLogic Server expects to locate a server’s default persistent store in the
$DOMAIN_HOME/servers/<server-name>/data/store/default directory. For example, say that you
want to be able to migrate Server2’s JTA service to Server1 in the event of failure. That means that
on Server1’s machine, the directory $DOMAIN_HOME/servers/Server2/data/store/default must con-
tain Server2’s default persistent store. The Server2 directory structure would typically not exist on
Server1 so you would need to do something to realize this structure. One thing to consider though is
that the addition of the Server2 directory structure on Server1 might be confusing for another WebLogic
Server administrator so you might want to think twice before adopting this strategy.

A better approach might be to store the default persistent store directories for all managed servers
using a common mount point outside the domain directories on each machine (for example,
/mount/BigRezCluster/<server-name>/defaultstore). Once you do this, you need to reconfigure
your managed server to use this directory by using the server’s Service Configuration tab and setting
the Directory attribute to the absolute path to the directory on the shared file system.

636

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 637

Chapter 12: Administering and Deploying Applications

Once the domain is properly configured, use the Advanced area of the managed server’s Migration
Control tab to migrate the JTA service to another server. Note that JTA service migration is only sup-
ported when the server from which you are migrating is not running.

To add automatic JTA service migration to your cluster already configured to support automatic JMS
service migration, you must do the following things:

1. Ensure that each managed server’s default persistent store is accessible via shared disk, as
we just described in our discussion of manual JTA service migration.

2. On each server’s Migration Configuration tab, enable the Automatic JTA Migration
Enabled checkbox.

3. Restart the managed servers to pick up this change.

4. Even with automatic migration configured, you can manually migrate the service, if desired.

Before we move on to discuss whole server migration, we need to discuss migrating custom singleton
services that your application may contain.

Migrating Custom Singleton Services

WebLogic Server provides a mechanism for applications to use the service migration framework to
implement singleton services that run on only one server at a time and provide automatic failover to
other cluster members when a server fails. To implement a singleton class, you simply write a Java class
that implements the weblogic.cluster.singleton.SingletonService interface shown here.

package weblogic.cluster.singleton;

public interface SingletonService
{

public void activate();
public void deactivate();

}

Next, you have to make the class available to the server and tell the server that you want this class to
be treated as a singleton service. You have two ways to accomplish this. First, you can package up the
class in your enterprise application and add a stanza to the weblogic-application.xml deployment
descriptor declaring the singleton, as shown here.

<singleton-service>
<class-name>professional.weblogic.ch12.example3.MySingletonService</class-name>
<name>My_App_Scoped_Singleton_Service</name>

</singleton-service>

When you use this method, the eligible set of candidate servers for migration is defined by the servers to
which the application is deployed.

Second, you can simply make the class available to the server (for example, by placing the jar file contain-
ing the class in the $DOMAIN_HOME/lib directory) and then use the WebLogic Console to tell WebLogic
Server about the singleton service. To create a new singleton service using the WebLogic Console, use

637

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 638

Chapter 12: Administering and Deploying Applications

the cluster’s Singleton Services Configuration tab to create a new singleton service by specifying
the Singleton Service Name, the Class Name, and the User Preferred Server. By default, the singleton
service will use all servers in the cluster as candidate servers. To restrict the candidate servers, simply
specify the list of candidate servers in the singleton service’s Migration Configuration tab using the
Constrained Candidate Servers attribute.

Of course, the automatic singleton service migration relies on the same sort of configuration needed for
automatic JMS and JTA service migration. You must perform the following steps to enable automatic
migration of your singleton service:

1. Create your machines and assign the managed servers to the appropriate machines.

2. Use the cluster’s Migration Configuration tab to set the Migration Basis to either
Database or Consensus. If you choose Database:

a. Create the leasing table, as described previously.

b. Create a nontransactional JDBC data source for the servers to use to access the leasing
table.

c. On the cluster’s Migration Configuration tab, set the Data Source for Auto
Migration attribute to point to your nontransactional data source and verify that the
Auto Migration Table Name attribute is set to the name of your leasing table.

If you choose Consensus:

a. Make sure that you configure the node manager on each machine that hosts the clus-
ter’s managed servers.

3. Restart the admin server and any managed servers to pick up the new migration policy set-
tings.

4. Even with automatic migration configured, you can manually migrate a singleton service
using the singleton service’s Control tab (or WLST), if desired.

At this point, we have covered the basics of WebLogic Server service migration. For more detailed infor-
mation, please see the WebLogic Server documentation at Link 12-58. An alternative to service migration
is to simply migrate the entire server instance to another machine, something WebLogic Server calls
whole server migration.

Whole Server Migration
Although service migration provides a great framework for ensuring availability of critical services
during failure conditions, it does not change the fact that one or more servers in your cluster have failed
and are not available to process incoming requests. If you haven’t oversized your cluster to handle such
failures gracefully, your applications could experience service level degradation until the failed managed
servers are restarted. For extended periods of server downtime (for example, hardware failure), it is
often desirable to restart managed servers on another machine to limit your exposure to service level
degradation.

638

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 639

Chapter 12: Administering and Deploying Applications

Though the ability to restart managed servers on another physical machine is nothing new, automating
it used to require the use of an external HA framework like Veritas Cluster Server to detect and trigger
the sequence of events necessary to restart the managed server on another machine. For many complex
environments, using a full-fledged HA framework still makes sense and WebLogic Server still supports
integration into these sorts of environments. However, sometimes all you really need is to restart the
managed servers on another machine, and do not require other complex interactions with other hardware
or software systems. For those situations, WebLogic Server provides a whole server migration (WSM)
framework that supports restarting managed servers on different machines.

Before we dive into the details of configuring WSM, let’s talk about some of the requirements for
using WSM.

❑ WSM uses a floating IP address, also known as a virtual IP address, for each migratable server.
This means that the migratable server candidate machines have to be in the same subnet
(because the virtual IP address must be valid on all candidate machines).

❑ WSM requires the use of the node manager. You must make sure the node manager on each can-
didate machine is properly initialized with the security-related files it need to authenticate and
accept commands from the admin server.

❑ WSM uses the node manager to migrate the virtual IP address and assign it to the target
machine. As such, the default configuration assumes that the machines are similar; specifically,
it assumes the following:

❑ The netmask associated with the virtual IP is the same on all machines.

❑ The network device name (for example, eth0 on Linux) is the same on all machines.

❑ The functional behavior of the platform-specific OS command used to add and remove the
virtual IP (for example, ifconfig on Linux) is the same.

❑ WSM only supports migration of a single virtual IP address for each migratable server. There-
fore, a migratable server cannot define any network channels that use a Listen Address different
from the virtual IP address associated with the server. If you need your servers to use multiple
network channels associated with multiple IP addresses, you cannot use the WSM framework.

❑ WSM assumes that any server-specific state is already shared through some highly available
sharing mechanism. For example, the server’s default persistent store where it keeps its XA
transaction logs must be accessible on all candidate machines using the exact same path.

Now that you understand the requirements, let’s discuss the steps required to set up automatic whole
server migration.

1. Create your domain. Make sure that you set up each managed server’s to Listen Address to
its virtual IP address and assign it to a machine.

2. Set up the node manager for each candidate machine. For each machine, edit the
nodemanager.properties file to set the NetMask property to the netmask associated with
the virtual IP addresses being used and Interface to the network device name with which
to associate the virtual IP address. Typically, the nodemanager.properties file is created
the first time the node manager is started in the $NODEMGR_HOME directory (by default,
$WL_HOME/common/nodemanager).

639

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 640

Chapter 12: Administering and Deploying Applications

3. Verify the domain and node manager configuration. Before we proceed, start up the domain
and each clustered managed server via its node manager. This not only ensures that the
node managers and servers are properly configured but also initializes the node managers
with the password files they need to accept commands from the admin server. Don’t forget
to start managed servers on all candidate machines to ensure that the node manager and
domain directory are properly initialized.

4. Choose and configure your leasing mechanism. Like automatic service migration, automatic
whole server migration relies on leasing. Use the cluster’s Migration Configuration tab to
select the appropriate Migration Basis.

5. If you choose database leasing, be sure to create and configure your nontransactional data
source, create the leasing table, and use the cluster’s Migration Configuration tab to set the
Data Source for Automatic Migration and Auto Migration Table Name appropriately.

6. Grant superuser privileges to the wlsifconfig script. Node managers use the
$WL_HOME/common/bin/wlsifconfig.sh (on Windows, wlsifconfig.cmd) script to add and
remove virtual IP addresses from the machines. By default, the file is set up to use sudo; sudo
typically prompts you for your password the first time you run it and periodically after that.
To do this without needing to input your password, you need to add the NOPASSWD option to
the relevant entry in your /etc/sudoers file. Don’t forget to add the wlsifconfig script to
your PATH so that the node managers can locate it.

weblogic machine1 = NOPASSWD: /oracle/middleware/wlserver_10.3/common/bin/wlsifconfig.sh

7. Enable automatic server migration. The last step is to use each managed server’s Migration
Configuration tab to select the Automatic Server Migration Enabled checkbox and restart
the servers.

At this point, automatic whole server migration configuration is complete and needs to be tested.
Debugging problems with whole server migration can be tricky so you will probably want to add
-Dweblogic.debug.DebugServerMigration=true to the Java command line used to start your servers.
Now, it is time to move onto discuss admin server migration. For more information on whole server
migration, please see the WebLogic Server documentation at Link 12-59.

Migrating the Admin Server
The last thing we want to discuss is how to handle admin server availability because the admin server
is not currently clusterable. This means that if the admin server goes down, you cannot administer your
WebLogic Server domain until you bring it back up. In most cases, you may not be too concerned if the
admin server goes down because all you need to do is restart it. If you use the node manager to start
the admin server, the node manager can automatically restart a failed admin server just like it can any
other server. What happens if the machine where the admin server runs fails in such a way that you
cannot restart the admin server? The answer is simple if you prepare for this unlikely event.

Proper operation of the admin server relies on several configuration files and any application files it
controls. Typically, the best thing to do is to store the admin server’s directory tree on a shared disk. As
long as the configuration and application files are accessible, you can restart the admin server on another
machine. It is up to you to make sure that you don’t have more than one admin server running at a time.
If the new machine can assume the original admin server’s Listen Address (or if it was not set), you
can simply start the admin server on the new machine without any configuration changes. Otherwise,

640

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 641

Chapter 12: Administering and Deploying Applications

you will need to change the admin server’s Listen Address. Since the managed servers ping the admin
server URL every 10 seconds until it comes back up, you need to devise a way for the admin server URL
to allow the managed server to find the restarted admin server on the new IP address. The easiest way
to achieve that is using a DNS name that maps to both IP addresses, or better yet that is dynamically
updated to point to the correct location of the admin server. If this is a graceful shutdown and migration,
use the WebLogic Console to change the Listen Address just before shutting down the admin server. If
not, you will need to edit the config.xml file by hand to replace the old Listen Address with the new
one. Typically, we recommend planning ahead so that everything you need is already in place to make
admin server failover as painless as possible.

Chapter Review
We covered a lot of ground in this chapter. We began with a thorough discussion of the WebLogic Server
product architecture to give us a good understanding of how the product works. We followed that with
a discussion of other administrative concepts, such as server health states and network channels. The
rest of the chapter was dedicated to covering WebLogic Server administration including configuration,
monitoring, and management of WebLogic Server and WebLogic Server–based applications. We hope
that this gives you the basic fundamentals of WebLogic Server administration. These basics should go
a long way toward demystifying the complex task of administering Java EE applications running on
WebLogic Server. In the next chapter, we will explore WebLogic Server performance optimization.

641

Patrick c12.tex V3 - 09/18/2009 12:20pm Page 642

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 643

Optimizing WebLogic
Server Performance

This chapter presents best practices for delivering and troubleshooting scalable high-performance
systems. It is organized into three major sections:

❑ System Performance, a discussion of core principles and strategies for scalable Java EE sys-
tems

❑ Performance Best Practices, a collection of important design patterns and best practices that
affect performance and scalability

❑ Troubleshooting Performance Problems, a set of steps and techniques you can use to improve
performance and solve scalability issues for your system

This chapter discusses design considerations and best practices we use while delivering scalable
systems for numerous BEA and Oracle customers. Information presented in this chapter represents
the experience gathered while designing, prototyping, building, and benchmarking distributed
systems over the past twelve years. We have had the opportunity to work with very bright architects
on many of the largest and most demanding systems deployed using BEA and Oracle software.

This chapter cannot cover all aspects of Java EE performance, which could be the topic of its own
book. We instead provide a number of key best practices and troubleshooting tips to help you
achieve your performance goals. If you want more information about performance tuning, we sug-
gest looking at some of the existing books and web sites on performance tuning and testing. In
our experience, there is no one book that will tell you everything you need to know. For a better
understanding of operating system performance tuning, books like Sun Performance and Tuning: Java
and the Internet by Adrian Cockroft and Richard Pettit (Prentice Hall, 1998) are invaluable. To under-
stand better how to build applications that run in multithreaded Java environments, we recommend
Concurrent Programming in Java: Design Principles and Patterns by Doug Lea (Addison-Wesley, 1999).
To understand web application performance testing models better, we recommend books like Capac-
ity Planning for Web Performance: Metrics, Models, and Methods by Daniel A. Menascé and Virgilio
A.F. Almeida (Prentice Hall, 1998). Several books are also available on both Java EE and WebLogic
Server performance that may provide some additional insight. We also recommend looking at the

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 644

Chapter 13: Optimizing WebLogic Server Performance

WebLogic Server documentation at Link 13-1 in the online Appendix on the book’s web site at
http://www.wrox.com.

Overview of System Performance
In this section, we discuss the core principles and tuning techniques that underlie many of the per-
formance best practices and troubleshooting tips that we cover later in the chapter. Having a good
understanding of the basic operating system, network, JVM, and server resources and tuning options
will help you apply these best practices and tips. It is not enough to know what to do; you need to
understand why it helps.

Reviewing the Core Principles
Before we get started talking about techniques for achieving scalability, we should define the term itself.
Scalability generally refers to the ability of an application to meet additional capacity demands without
significantly affecting the request processing time. The term is also used to describe the ability to increase
the capacity of an application proportional to the hardware resources added. For example, if the max-
imum capacity of an application running on four CPUs is 200 requests per second with an average of
1-second response time, you might expect that the capacity for the application running on eight CPUs
to be 400 requests per second with the same 1-second response time. This type of linear scalability is
typically very difficult to achieve, but scalable applications should be able to approach linear scalability if
the application’s environment is properly designed. Good scalability in multi-tier architectures requires
good end-to-end performance and scalability of each component in each tier of the application.

When designing enterprise-scale applications, you must first understand the application itself and how
your users interact with it. You must identify all of the system components and understand their interac-
tions. The application itself is a critical component that affects the scalability of the system. Understanding
the distribution of the workload across the various tiers will help you understand the components
affected most severely by user activity. Some systems will be database-intensive; others will spend a
majority of their processing time in the application server. Once you identify these heavily used com-
ponents, commonly referred to as application hotspots, you can use proper scaling techniques to prevent
bottlenecks.

This strong understanding of the system itself will also allow you to choose the correct system architec-
ture to meet the demands of the application. Once you choose the system architecture, you can begin
to concentrate on the application and apply good performance design practices. There are no silver bul-
lets for choosing the correct system architecture. In our experience, it is best to take an overall system
approach to ensure that you cover all facets of the environment in which the application runs. The over-
all system approach begins with the external environment and continues drilling down into all parts
of the system and application. Taking a broad approach and tuning the overall environment ensures that
the application will perform well and that system performance can meet all of your requirements.

Best Practice
WebLogic Server–based application performance depends on many different fac-
tors that include the network, operating system, application server, database, and
application design and configuration. Many of these factors vary from installation
to installation, so you should review all recommendations made in this chapter to
determine whether they are applicable to your environment.

644

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 645

Chapter 13: Optimizing WebLogic Server Performance

Before we dive into the lower-level tuning techniques, we will review some system-level approaches for
increasing the performance and throughput of your Java EE application.

Use More Powerful Machines This technique applies equally well across the web, application,
and database tiers. If a particular tier’s processing is CPU-intensive, using more powerful
machines can allow this layer to do the same amount of work in less time or to do more work,
thereby increasing throughput. Keep in mind that this technique is effective only on CPU-intensive
applications. If your system performance is limited by I/O operations, adding processing power
will do very little to improve performance or eliminate bottlenecks. Increasing an application’s
capacity by adding more CPUs to a machine is often referred to as vertical scaling.

Use Clustering By distributing the load across multiple web or application servers, you can
increase the capacity of your application. Increasing an application’s capacity by adding more
machines is often referred to as horizontal scaling. Horizontal scaling also provides a secondary
benefit: increased redundancy at the hardware level to improve the overall system reliability.

Take Advantage of Network Appliances Today, a wide variety of specialized hardware devices
are optimized to perform specific tasks, such as fast and reliable data storage, content caching, load
balancing, and SSL termination. These devices operate at various layers within the system architec-
ture and can either offload or significantly reduce the processing work that the software needs to
do, and do it in a much more scalable way than can be accomplished with software only. As such,
they can dramatically increase the performance and scalability of your applications.

Cache Whenever Possible Caching can significantly improve response time and increase the
scalability of web, application, and database servers. Network appliances that cache static con-
tent and prevent those requests from ever hitting the web servers can dramatically improve per-
formance. Most web servers also offer page caching, which you should use whenever possible.
WebLogic Server also offers dynamic content caching through its JSP caching features, a tech-
nique discussed in Chapter 1. WebLogic Server provides various options for both data and object
caching; you can use these to cache application data to reduce trips to the database or other
backend systems. Of course, caching application data that changes frequently can often create more
problems than it solves. In most cases, we recommend using the database to cache this frequently
changing data. Most database management systems offer a variety of tuning options for optimiz-
ing their caching strategies to better suit a particular application; this can significantly reduce the
amount of I/O that the database has to do to answer application queries. For larger-scale systems
where caching is mandatory to achieve the performance and scalability goals, Oracle Coherence
provides a robust, highly available, distributed object caching solution that integrates seamlessly
with WebLogic Server. You should evaluate each of these techniques to determine how best to use
caching to improve your application’s performance and scalability.

Tuning a WebLogic Server–Based Application
Achieving maximum performance and scalability for your WebLogic Server–based application requires
tuning at many different layers within the overall environment. We’ll structure our discussion of tun-
ing from the bottom up, starting with the operating system itself and ending with application server
tuning.

Operating System Tuning
Many Java EE applications have some sort of web interface through which the users interact. HTTP is
a stateless protocol used by browsers to talk to web and application servers. When initiating a request,
the browser opens a connection to the server, sends a request, waits for the response, and then closes the
connection. Although HTTP keep-alive allows the browser to reuse an existing connection to the server

645

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 646

Chapter 13: Optimizing WebLogic Server Performance

for multiple requests, both the browser and the server will typically close the connection after a fairly
short period of inactivity. A typical timeout for one of these connections might be 30 seconds or less. As a
result, busy web applications with hundreds, or even thousands, of concurrent users will open and close
a large number of connections between the browser and the web or application server.

These HTTP connections to the web or application server are nothing more than operating system–level
TCP sockets. All modern operating systems treat sockets as a specialized form of file access and use
data structures called file descriptors to track open sockets and files for an operating system process. To
control resource usage for processes on the machine, the operating system restricts the number of open
file descriptors per process. The default number of file descriptors available for a process depends on the
operating system type and its configuration. Without going too far into the gory details of TCP/IP, you
should be aware that all TCP connections that have been gracefully closed by an application will go into
what is known as the TIME_WAIT state before being discarded by the operating system. The length of time
that the socket stays in the TIME_WAIT state is commonly known as the time wait interval. While in this
TIME_WAIT state, the operating system will maintain the resources allocated for the socket, including its
file descriptor and TCP/IP port. To learn more about the details of this, see Internetworking with TCP/IP
Volume II: Design, Implementation, and Internals by Douglas A. Comer and David L. Stevens (Prentice Hall,
1998).

As a result of this phenomenon, combined with the fact that HTTP servers end up opening and closing a
lot of TCP sockets, busy server processes can fill up the server process’s file descriptor table, or use up all
available TCP/IP ports. To deal with this problem, you often need to tune the operating system to allow
your application to scale without running into these operating system limits. When tuning the operating
system, you should follow your hardware vendor’s tuning recommendations, if these exist. Remember
to tune the operating system on all machines that exist in the system, especially any web or application
server machines that use the HTTP protocol. On Unix servers, this typically means tuning the number of
file descriptors or some of the TCP/IP device driver’s tuning parameters. On platforms such as HP-UX,
it may be necessary to change some of the kernel parameters. When tuning TCP parameters, you should
work with your system administrator to determine what modifications your machines require.

Each operating system sets important tuning parameters differently. Fortunately, most modern server
operating systems come configured to minimize the potential impact of the TIME_WAIT problem. We start
with detailed coverage of the Solaris operating system and then briefly discuss the differences on other
common Unix operating systems and Windows.

Tuning Solaris
On Solaris 8.0 and older, one common problem is that the default value for the time wait interval is too
high for high volume HTTP servers. On most Unix operating systems, you can determine the number of
sockets in the TIME_WAIT state using the netstat command.

netstat –a | grep TIME_WAIT | wc –l

This command will count all of the TCP connections that are in the TIME_WAIT state. As this number
approaches the maximum number of file descriptors per process, your application’s throughput will
suffer dramatic degradations because new connection requests may have to wait for a free space in the
application’s file descriptor table. To determine the current setting for the time wait interval, use the ndd
command shown here.

/usr/sbin/ndd /dev/tcp tcp_time_wait_interval

646

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 647

Chapter 13: Optimizing WebLogic Server Performance

By default, Solaris 8.0 and earlier sets this parameter to 240,000 milliseconds, or 4 minutes. Our rec-
ommendation, which follows the recommendations of both Oracle and SUN, is to reduce this setting
to 60,000 milliseconds, or 1 minute; this is the default value starting in Solaris 9. You should use the
following ndd command to change the tcp_time_wait_interval setting dynamically:

/usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

This command will change the setting of the TCP device driver for the entire machine and therefore
requires superuser privileges. Be forewarned that this value, and any other values you change with ndd,
will reset to the default value when you reboot the machine. To make the changes permanent, you will
need to create a boot script.

According to Solaris 8 tuning recommendations on Sun’s web site at Link 13-2, you want the ndd
boot script to run between the S69inet and S72inetsvc scripts. This means that you should create the
script file in the /etc/init.d directory and create symbolic links to your script from the /etc/rc2.d,
/etc/rc1.d, and /etc/rcS.d directories. The link names should begin with either S70 or S71 because
the S tells Solaris that this script should run at startup and the numeric value determines the order in
which the scripts run.

A number of other TCP-related parameters are available on Solaris that may yield performance improve-
ments in certain situations. To get a list of all of the names of the TCP device driver parameters, use the
following ndd command.

ndd /dev/tcp \?

The output from this command will also show you which parameters are read-write and which ones are
read-only. Read-only parameters cannot be changed with ndd and must be changed in /etc/system.
In addition to the tcp_time_wait_interval parameter, you may also want to consider changing
some of the other parameters like tcp_conn_hash_size, tcp_conn_req_max_q, tcp_xmit_hiwat, and
tcp_recv_hiwat.

The tcp_conn_hash_size parameter controls the size of a hash table that helps quickly locate the TCP
socket’s data structure in the kernel. If the size is too small, it will result in long hash chains in each bucket
that force the operating system into a linear search for the socket entry of interest, and performance will
suffer accordingly. By default, Solaris 8 and 9 set this parameter to 512; we recommend raising the value
to 8192 for machines hosting HTTP servers. To set tcp_conn_hash_size, change the /etc/system file, as
shown here:

set tcp:tcp_conn_hash_size=8192

In Solaris 10, the tcp_conn_hash_size parameter name changed to ipcl_conn_hash_size and its default
value changed to 0, which means that Solaris will automatically select the appropriate value at boot time
based on available memory. To raise this to the recommended value, change the /etc/system file, as
shown here:

set ip:ipcl_conn_hash_size=8192

The tcp_conn_req_max_q parameter controls the maximum allowable number of completed connections
waiting to return from an accept call (that have completed the three-way TCP connection handshake).

647

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 648

Chapter 13: Optimizing WebLogic Server Performance

You should increase this parameter only if you notice that your system is dropping connections. You can
determine the number of drops using the netstat command:

netstat –s | grep tcpListenDrop

By default, this value is set to 128. If the system is dropping connections, try increasing the value of
tcp_conn_req_max_q to 1024.

The tcp_xmit_hiwat and tcp_recv_hiwat parameters control the default size of the send window and
receive window for each TCP connection, respectively. On very fast networks, you should make sure that
the values are set to at least 32K. By default, Solaris 8 sets these parameters to 16K and 24K, respectively.
Solaris 9 changes the default settings for both parameters to 48K.

Best Practice
Increase the size of key TCP-related parameters to improve system performance and
reduce dropped connections.

As we mentioned previously, most operating systems limit the number of open file descriptors a pro-
cess can have. On Solaris (and most other Unix operating systems), there are actually two file descriptor
limits. The first limit is the default limit imposed on each process; this is sometimes called the soft limit.
The second limit is the maximum number of file descriptors per process that the operating system can
support in its current configuration; this is sometimes called the hard limit. Use the ulimit command
to change the soft limit to increase the maximum number of file descriptors for a particular process.
You can increase this number only up to the hard limit unless you are the superuser, whose username
is typically root — regardless of any feedback that the ulimit command may give you to the con-
trary. To change the hard limit for processes not running as the root user, you need to reconfigure
the operating system. On Solaris, this means modifying the /etc/system file. The two parameters of
interest in the /etc/system file are rlim_fd_cur and rlim_fd_max, which control the soft and hard lim-
its, respectively. You will need to reboot the machine in order for changes to the /etc/system file to
take effect.

For any machine that will host an HTTP server, we strongly recommend that you increase both the
soft and hard limits to 4096 or even 8192. Please make sure to check your operating system documen-
tation and release notes; there are some negative performance implications on some older versions of
Solaris if you set these numbers too high. The syntax for adjusting these parameters in the /etc/system
file is shown here:

set rlim_fd_cur=4096
set rlim_fd_max=4096

Best Practice
On any machine that hosts an HTTP server, increase the maximum number of file
descriptors per process to either 4096 or 8192. On Solaris, this means setting the
rlim_fd_cur and rlim_fd_max parameters in the /etc/system file and rebooting the
machine.

648

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 649

Chapter 13: Optimizing WebLogic Server Performance

For more information on tuning the Solaris operating system, please refer to the Solaris Tunable Parameters
Reference Manual, available on Sun’s web site at Link 13-3 (Solaris 8), Link 13-4 (Solaris 9), or Link 13-5
(Solaris 10).

Tuning AIX
On AIX, the no command is equivalent to the ndd command on Solaris. Running the no –a command will
display the current values of all network attributes. Issuing the following command will change the time
wait interval:

no –o tcp_timewait=4

This example command sets the tcp_timewait parameter to 4 15-second intervals, or 1 minute. For more
information on the no command, see Link 13-6.

When a server listens on a port for connections, TCP creates a queue that it uses to buffer connection
requests while waiting for the server to accept the connection. This listen queue is a fixed size, and if it
fills up, the operating system will reject any new connection requests until there is space available in
the queue. AIX controls the maximum length of this listen queue with the somaxconn parameter. By
default, AIX sets this to 1024, but on machines with busy HTTP servers, you might want to increase this
to 8192. Note that this increases only the maximum allowable length of the listen queue. You will still
need to adjust the WebLogic Server instance’s Accept Backlog parameter so that WebLogic Server will
ask for a longer listen queue, using the server’s Tuning Configuration tab in the WebLogic Console.
Of course, this particular configuration is also important for other operating systems, including Solaris.
Also, setting this value to allow more pending connection requests has its risks; you should consider how
many concurrent connections and requests the WebLogic Server instance can handle without significant
degradations in performance and adjust this parameter accordingly.

Some other TCP parameters you may need to tune on AIX include tcp_sendspace and tcp_recvspace,
which control the socket’s sending and receiving buffer sizes, respectively. For more information about
tuning AIX, please refer to the AIX Performance Management Guide at Link 13-7.

Tuning HP-UX
HP-UX provides the ndd command to use for setting the TCP parameters, just like Solaris (although
parameter names are slightly different). To adjust the maximum allowable length of the listen queue to
1024, execute the ndd command shown here:

ndd –set /dev/tcp tcp_conn_req_max 1024

By default, HP-UX sets the tcp_time_wait_interval to 60000 milliseconds, so you do not typically need
to adjust this. HP-UX reads a file in /etc/rc.config.d/nddconf to get customized settings for the TCP
parameters at boot time. See this file for further information about how to use it to customize the TCP
settings for your machine.

On HP-UX, you may also need to modify some kernel parameters to ensure that WebLogic Server
performs optimally. Use the /usr/sbin/sam program to modify kernel parameters. HP-UX limits the
maximum number of threads per process. On older versions of HP-UX, this value defaults to 64, a value
that large applications can easily exceed. Newer versions of HP-UX set the default value to 256, but you
can change this using the max_thread_proc kernel parameter. The maximum number of threads allowed

649

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 650

Chapter 13: Optimizing WebLogic Server Performance

on the system at any point in time is set using the nkthread kernel parameter. Older versions of HP-UX
come with a default value of 499 that can be too low on larger multi-CPU machines; newer versions have
a default value of 8416. Also remember to adjust the maxfile and maxfile_lim parameters that control
the soft and hard limits on the maximum number of file descriptors, if needed. For more information on
kernel tuning parameters, see Link 13-8.

Tuning Linux
When tuning Linux operating systems, use either the sysctl command or the /proc file system. Because
the sysctl command provides the ability to read from the /etc/sysctl.conf file, we generally prefer
to use sysctl over the /proc method. On newer versions of Linux, the default time wait interval is 60
seconds so you really shouldn’t need to change this value, which now requires modifying the kernel
source (include/net/tcp.h) and rebuilding your kernel.

Linux also limits the maximum number of open files for all users. If this is set too low, your HTTP
server process might run out of file descriptors. To change this setting, you can add an entry into the
/etc/sysctl.conf file and then run sysctl –p. The required entry is

fs.file-max = 20000

Then, if you want to allow your HTTP server process to be able to have 8,192 open file descriptors, you
need to edit the /etc/security/limits.conf file to add the following entry for your weblogic user
(assuming that the server is running as user weblogic). Remember that this number applies across all
processes running as the weblogic user. The entry is

weblogic hard nofile 8192

Finally, you need to use the ulimit command to actually make the setting active for the current login
session, as shown here:

ulimit –n 8192

For more information on Linux tuning, please consult your Linux vendor’s documentation or check out
some of the Linux resources on the web, such as Link 13-9, which provides a detailed, yet slightly dated
description of the TCP/IP tuning parameters available on Linux.

Tuning Windows
The concepts behind tuning the pre-Vista versions of the Windows operating system are similar to those
for tuning other operating systems. Most of the TCP/IP parameter settings are located in the registry
under the HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services folder. To change the maximum
length of the TCP listen queue, whose default value is 15, you create a DWORD entry called ListenBackLog
in the Inetinfo\Parameters subfolder in your Windows registry. Windows sets the default for the time
wait interval to four minutes; the TcpTimedWaitDelay parameter in the Tcpip\Parameters subfolder
allows you to change its value. Windows Vista changes the available tuning parameters and their loca-
tions significantly. For more information on tuning Windows, please consult the Microsoft Windows
documentation. One excellent paper that discusses Windows Server 2008 performance tuning is located
at Link 13-10.

650

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 651

Chapter 13: Optimizing WebLogic Server Performance

Network Tuning
Most networks today are very fast and are rarely the direct cause of performance problems in well-
designed applications. In our experience, the most frequent network problems come from misconfigured
network devices. Whether it is a network interface card in your server, a firewall, a router, or another,
more specialized network device such as a load balancer, improper configuration can lead to insidious
problems that are very difficult to figure out. This is why it is important to monitor your network when
troubleshooting performance problems. Some very simple tests can indicate problems with the network.

First, you can use the ping command to generate network traffic between two nodes in your network and
look for packet loss. On a high-speed local area network, you should almost never see any packet loss.
If you are only seeing performance problems during peak load, make sure to run your ping tests during
these times to make sure that the network is still working properly under load. Second, look for send or
receive errors on your machine’s network interface. You can use the netstat command shown here to
do this on Solaris:

netstat –I /dev/hme0 5

This command will generate output every five seconds that shows the statistics for the hme0 network
interface card. Always remember that the first line of output is the cumulative output since the last
reboot, so you should generally ignore it. The output of this command will look similar to that shown
here. Pay particular attention to the errs columns.

input /dev/h output input (Total) output
packets errs packets errs colls packets errs packets errs colls
0 0 0 0 0 142034 0 40794 242 0
0 0 0 0 0 48 0 6 0 0
0 0 0 0 0 50 0 7 0 0
0 0 0 0 0 48 0 7 0 0

Even when the network is properly configured, it is still important to monitor your network performance
in both your testing and production environments, concentrating on three areas: packet retransmissions,
duplicate packets, and listen drops of packets.

Packet retransmissions occur when the TCP layer is not receiving acknowledgments (ACKs) from the
receiver quickly enough, causing TCP to retransmit the packet. If your retransmission rate is 15 percent
or higher, this generally indicates a problem with the network. Bad network hardware or a slow or
congested route can cause excessive packet retransmission. You should monitor retransmissions using
the netstat –s –P tcp command to get the tcpRetransBytes and tcpOutDataBytes statistics. From these
numbers, calculate the retransmission percentage using the following formula:

tcpRetransBytes
tcpOutDataBytes

PercentRetransmits = × 100

If the remote system is retransmitting too quickly, this will cause duplicate packets. Like packet retrans-
missions, duplicate packets can also indicate a bad network device or a slow or congested route. Using
the same netstat command we just showed you, get the tcpInDupBytes and tcpInDataBytes statistics
and calculate the duplication percentage using the following formula:

tcpInDupBytes
tcpInDataBytes

PercentDuplicates = × 100

651

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 652

Chapter 13: Optimizing WebLogic Server Performance

Listen drops occur when your system has a full listen queue and cannot accept any new connections.
To eliminate listen drops, increase the size of the Solaris TCP parameter tcp_conn_req_max_q (or its
equivalent on your operating system) or add more servers to handle the network load. Use the netstat
–s –P tcp | grep tcpListenDrop command to measure the frequency of listen drops.

Best Practice
Modern networks are fast enough to avoid performance problems in well-designed
systems, but you should monitor key network statistics such as packet retransmissions,
duplicate packets, and listen drops to ensure good performance. When troubleshooting
performance problems, don’t forget to check your network for packet loss or errors.

Java Virtual Machine Tuning
The Java Virtual Machine (JVM) you use to run your WebLogic Server–based application is a key factor in
the final server performance. Not all JVMs are created equal — we have seen certain applications perform
up to 20 percent better simply by using a different JVM. Performance is nothing without stability, and
fast applications do not do your users any good if they are not running. We recommend that you look
for stability first and then performance when selecting the JVM on which to run your application server.
If more than one JVM is available and supported on your target deployment environment, you should
test them head-to-head to determine which JVM best meets your reliability, performance, and scalability
requirements.

Garbage collection is the single most important factor when tuning a JVM for long-running, server-
side applications. Improperly tuned garbage collectors or applications that create unnecessarily large
numbers of objects can significantly affect the efficiency of your application. It is not uncommon to find
that garbage collection consumes a significant amount of the overall processing time in a server-side
Java application. Proper tuning of the garbage collector can significantly reduce the garbage collector’s
processing time and, therefore, can significantly improve your application’s throughput.

Though we spend most of our time in the next sections specifically talking about the Sun JVM, a lot of
these concepts are similar in other JVMs, such as Oracle’s JRockit JVM. Our discussion of JVM tuning
starts by reviewing garbage collection. Next, we walk through key JVM tuning parameters and options
for the Sun JVM. We also discuss JRockit toward the end of this section.

Understanding Garbage Collection
Garbage collection (GC) is the technique a JVM uses to free memory occupied by objects that are no
longer being used by the application. The Java Language Specification does not require a JVM to have
a garbage collector, nor does it specify how a garbage collector should work. Nevertheless, all of the
commonly used JVMs have garbage collectors, and most garbage collectors use similar algorithms to
manage their memory and perform collection operations.

Just as it is important to understand the workload of your application to tune your overall system prop-
erly, it is also important to understand how your JVM performs garbage collection so that you can tune it.
Once you have a solid understanding of garbage collection algorithms and implementations, it is possible
to tune application and garbage collection behavior to maximize performance. Some garbage collection
schemes are more appropriate for applications with specific requirements. For example, near-real-time
applications care more about avoiding garbage collection pauses whereas most OLTP applications care

652

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 653

Chapter 13: Optimizing WebLogic Server Performance

more about overall throughput. Once you have an understanding of the workload of the application and
the different garbage collection algorithms your JVM supports, you can optimize the garbage collector
configuration.

In this section, we give you a brief overview of different approaches that JVMs use for garbage collec-
tion. For more information on garbage collection algorithms and how they affect JVM performance,
we recommend looking at the two very good articles on Sun’s web site: ‘‘Improving Java Application
Performance and Scalability by Reducing Garbage Collection Times and Sizing Memory’’ by Nagendra
Nagarajayya and Steve Mayer (see Link 13-11) and ‘‘Improving Java Application Performance and Scal-
ability by Reducing Garbage Collection Times and Sizing Memory Using JDK 1.4.1 — New Parallel
and Concurrent Collectors for Low Pause and Throughput Applications’’ by Nagendra Nagarajayya and
Steve Mayer (see Link 13-12).

As we discussed previously, the purpose of the garbage collection in a JVM is to clean up objects that are
no longer being used. Garbage collectors determine whether an object is eligible for collection by deter-
mining whether objects are being referenced by any active objects in the system. The garbage collector
must first identify the objects eligible for collection. The two general approaches for this are reference
counting and object reference traversal. Reference counting involves storing a count of all of the ref-
erences to a particular object. This means that the JVM must properly increment and decrement the
reference count as the application creates references and as the references go out of scope. When an
object’s reference count goes to zero, it is eligible for garbage collection.

Although early JVMs used reference counting, most modern JVMs use object reference traversal. Object
reference traversal simply starts with a set of root objects and follows every link recursively through the
entire object graph to determine the set of reachable objects. Any object that is not reachable from at least
one of these root objects is garbage collected. During this object traversal stage, the garbage collector must
remember which objects are reachable so that it can remove those that are not; this is known as marking
the object.

The next thing that the garbage collector must do is remove the unreachable objects. When doing this,
some garbage collectors simply scan through the heap, removing the unmarked objects and adding their
memory location and size to a list of available memory for the JVM to use in creating new objects; this
is commonly referred to as sweeping. The problem with this approach is that memory can fragment over
time to the point where there are a lot of small segments of memory that are not big enough to use for
new objects but yet, when added all together, can make up a significant amount of memory. Therefore,
many garbage collectors actually rearrange live objects in memory to compact the live objects, making the
available heap space contiguous.

In order to do their jobs, garbage collectors usually have to stop all other activity for some portion of the
garbage collection process. This stop-the-world approach means all application-related work stops while
the garbage collector runs. As a result, any in-flight requests will experience an increase in their response
time by the amount of time taken by the garbage collector. Other, more sophisticated collectors run
either incrementally or truly concurrently to reduce or eliminate the application pauses. Some garbage
collectors use a single thread to do their work; others employ multiple threads to increase their efficiency
on multi-CPU machines. Look at a few of the garbage collectors used by modern JVMs.

Mark-and-sweep Collector This type of collector first traverses the object graph and marks
reachable objects. It then scans the heap for unmarked objects and adds their memory to a list of
available memory segments. This collector typically uses a single thread to do its work and is a
stop-the-world collector.

653

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 654

Chapter 13: Optimizing WebLogic Server Performance

Mark-and-compact Collector A mark-and-compact collector, sometimes known as a mark-
sweep-compact collector, uses the same marking phase as a mark-and-sweep collector. During the
second phase, it compacts the heap by copying marked objects to a new area of the heap. These
collectors are also stop-the-world collectors.

Copying Collector This type of collector divides the heap into two areas, commonly known as
semi-spaces. It uses only one semi-space at a time; the JVM creates all new objects in one semi-space.
When the garbage collector runs, it copies any reachable objects it finds to the other semi-space as it
finds them, thus compacting the heap as it copies live objects. All dead objects are left behind. This
algorithm works well for short-lived objects, but the expense of continually copying long-lived
objects makes it less efficient. Again, this is a stop-the-world collector.

Incremental Collector Incremental collectors basically divide the heap into multiple areas and
collect garbage from only one area at a time. This can create much smaller, though more frequent,
pauses in your application. Numerous approaches exist for defining how the actual collection is
handled from traditional mark-and-sweep to algorithms designed explicitly for use with multiple
smaller areas like the train algorithm. See ‘‘Incremental Mature Garbage Collection Using the Train
Algorithm’’ by Jacob Seligmann and Steffen Grarup (see Link 13-13) for more information.

Generational Collector This type of collector divides the heap into two or more areas that it
uses to store objects with different lifetimes. The JVM generally creates all new objects in one of
these areas. Over time, the objects that continue to exist get tenure and move into another area for
longer-lived objects. Generational collectors often use different algorithms for the different areas to
optimize performance.

Concurrent Collectors Concurrent collectors run concurrently with the application, typically as
one or more background threads. These collectors typically have to stop-the-world at some point
to complete certain tasks, but the amount of time they halt all processing is significantly reduced
because of their other background work.

Parallel Collectors Parallel collectors typically use one of the traditional algorithms but use
multiple threads to parallelize their work on multiprocessor machines. Using multiple threads
on multi-CPU machines can dramatically improve the scalability of a Java application on
multiprocessor machines.

Tuning the Sun HotSpot JVM Heap Size
Sun Microsystem’s HotSpot JVM uses a generational collector that partitions the heap into three main
areas: the new generation area, the old generation area, and the permanent generation area. The JVM
creates all new objects in the new generation area. Once an object survives a certain number of garbage
collection cycles in the new generation area, it gets promoted, or tenured, to the old generation area.
The JVM stores Class and Method objects for the classes it loads in a section of the heap known as the
permanent generation area. From a configuration perspective, the permanent generation area in the Sun
HotSpot JVM is a separate area that is not considered part of the heap. Before we go any further, let’s
look at how to control the size of these areas.

You can use the -Xms and -Xmx flags to control the initial and maximum size of the entire heap, respec-
tively. For example, the following command sets the initial size of the entire heap to 128 megabytes (MBs)
and the maximum size to 256 MBs:

java -Xms128m -Xmx256m ...

654

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 655

Chapter 13: Optimizing WebLogic Server Performance

To control the size of the new generation area, you can use the -XX:NewRatio flag to set the proportion
of the overall heap that is set aside for the new generation area. For example, the following command
sets the overall heap size to 128 MBs and sets the new ratio to 3. This means that the ratio of the new area
to the old area is 1:3; the new area is one-fourth of the overall heap space, or 32 MBs, and the old area is
three-fourths of the overall heap space, or 96 MBs.

java -Xms128m -Xmx128m -XX:NewRatio=3 ...

The initial and maximum sizes for the new area can be set explicitly using the -XX:NewSize and
-XX:MaxNewSize flags or the -Xmn flag. For example, the command shown here sets the initial and
maximum size to 64 MBs:

java -Xms256m -Xmx256m -Xmn64m ...

Configuration-wise, the permanent area is not considered part of the heap. By default, the initial size of
the permanent area is 4 MBs. As your application loads and runs, the JVM will resize the permanent area
as needed up to the maximum size for this area. Every time it resizes the permanent area, the JVM does
a full garbage collection of the entire heap (and the permanent area). By default, the maximum size is 32
MBs. Use the -XX:MaxPermSize flag to increase the maximum size of the permanent area. When loading
large numbers of classes in your WebLogic Server application, it is not uncommon to need to increase the
maximum size of this area. The number of objects stored in the permanent area will grow quickly while
the JVM loads classes, and it may force the JVM to resize the permanent area frequently. To prevent this
resizing, set the initial size of the permanent area using the -XX:PermSize flag. For example, here we
have set the initial size to 64 MBs and the maximum size to 128 MBs:

java -Xms512m -Xmx512m -Xmn128m -XX:PermSize=64m -XX:MaxPermSize=128m ...

When the permanent area of the heap is too small, the JVM will do a full garbage
collection of the entire heap before resizing the permanent area. If you allow the
JVM to control the size, these full garbage collections will happen relatively
frequently because the JVM is ultra-conservative about grabbing too much space
for the permanent area. Always set the PermSize big enough for your application to
run comfortably.

By default, HotSpot uses a copying collector for the new generation area. This area is actually subdivided
into three partitions. The first partition, known as Eden, is where all new objects are created. The other
two semi-spaces are also called survivor spaces. When Eden fills up, the collector stops the application
and copies all reachable objects into the current from survivor space. As the current from survivor space
fills up, the collector will copy the reachable objects to the current to survivor space. At that point, the
from and to survivor spaces switch roles so that the current to space becomes the new from space and
vice versa. Objects that continue to live are copied between survivor spaces until they achieve tenure, at
which point they are moved into the old generation area.

Use the –XX:SurvivorRatio flag to control the size of these subpartitions. Like the NewRatio, the
SurvivorRatio specifies the ratio of the size of one of the survivor spaces to the Eden space. For

655

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 656

Chapter 13: Optimizing WebLogic Server Performance

example, the following command sets the new area size to 64 MBs, Eden to 32 MBs, and each of the two
survivor spaces to 16 MBs:

java -Xms256m -Xmx256m -Xmn64m -XX:SurvivorRatio=2 ...

Figure 13-1 shows an overview of the HotSpot JVM heap layout and some of the parameters that we have
been discussing.

Pe
rm

an
en

t S
pa

ce

Fr
om

 S
pa

ce

To
 S

pa
ce

Old Space

PermSize

NewSize

NewRatio = m

Total Heap Size

SurvivorRatio = n

1

1n

m

Eden

Figure 13-1: Understanding the HotSpot heap partitioning.

As we discussed previously, HotSpot defaults to using a copying collector for the new area and a mark-
sweep-compact collector for the old area. Using a copying collector for the new area makes sense because
the majority of objects created by an application are short-lived. In an ideal situation, all transient objects
would be collected before making it out of the Eden space. If we were able to achieve this, and all objects
that made it out of the Eden space were long-lived objects, then ideally we would immediately tenure
them into the old space to avoid copying them back and forth in the survivor spaces.

Unfortunately, applications do not necessarily fit cleanly into this ideal model because they tend also
to have a small number of intermediate-lived objects. It is typically better to keep these intermediate-
lived objects in the new area because copying a small number of objects is generally less expensive than
compacting the old heap when they have to be garbage collected in the old heap.

To control the copying of objects in the new area, use the -XX:TargetSurvivorRatio flag to control the
desired survivor space occupancy after a collection. Don’t be misled by the name; this value is a percent-
age. By default, the value is set to 50. When using large heaps in conjunction with a low SurvivorRatio,
you should probably increase this value to somewhere in the neighborhood of 80 to 90 to better utilize
the survivor space.

Use the -XX:MaxTenuringThreshold flag to control the upper threshold the copying collector uses before
promoting an object. If you want to prevent all copying and automatically promote objects directly from
Eden to the old area, set the value of MaxTenuringThreshold to 0. If you do this, you will in effect be
skipping the use of the survivor spaces, so you will want to set the SurvivorRatio to a large number to
maximize the size of the Eden area, as shown here:

java ... -XX:MaxTenuringThreshold=0 -XX:SurvivorRatio=50000 ...

656

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 657

Chapter 13: Optimizing WebLogic Server Performance

Now that you understand the goals and controls you have for tuning the heap sizes, let’s look at some of
the information you can get from the JVM to help you make the right tuning decisions.

The –verbose:gc switch gives you basic information about what the garbage collector is doing. By turn-
ing this switch on, you will get information about when major and minor collections occur, what the
memory size before and after the collection was, and how much time the collection took. Look at some
sample output from this switch.

[Full GC 21924K->13258K(63936K), 0.3854772 secs]
[GC 26432K->13984K(63936K), 0.0168988 secs]
[GC 27168K->13763K(63936K), 0.0068799 secs]
[GC 26937K->14196K(63936K), 0.0139437 secs]

The first line that starts with Full GC is a major collection of the entire heap. The other three lines are
minor collections, either of the new or the old area. The numbers before the arrow indicate the size of
the heap before the collection, and the number after the arrow shows the size after the collection. The
number in parentheses is the total size of the heap, and the time values indicate the amount of time the
collection took.

By turning on the -XX:+PrintGCDetails switch, you can get a little more information about what is
happening in the garbage collector. Output from this switch looks like this.

[Full GC [Tenured: 11904K->13228K(49152K), 0.4044939 secs]
21931K->13228K(63936K), 0.4047285 secs]

[GC [DefNew: 13184K->473K(14784K), 0.0213737 secs]
36349K->23638K(63936K), 0.0215022 secs]

As with the standard garbage collection output, the Full GC label indicates a full collection. Tenured
indicates that the mark-sweep-compact collector has run on the old generation; the old heap size went
from 11904K to 13228K; and the total old area size is 49152K. The reason for this increase is that the new
area is automatically purged of all objects during a full collection. The second set of numbers associated
with the first entry represents the before, after, and total size of the entire heap. This full collection took
0.4047285 seconds. In the second entry, the GC label indicates a partial collection, and DefNew means that
the collection took place in the new area; all of the statistics have similar meanings to the first except that
they pertain to the new area rather than the old area.

By adding the -XX:+PrintGCTimeStamps switch, the JVM adds information about when these garbage
collection cycles occur. The time is measured in seconds since the JVM started, shown in bold here.

21.8441: [GC 21.8443: [DefNew: 13183K->871K(14784K), 0.0203224 secs]
20535K->8222K(63936K), 0.0205780 secs]

Finally, you can add the -XX:+PrintHeapAtGC switch to get even more detailed information. This infor-
mation will dump a snapshot of the heap as a whole.

To get more information on what is going on in the new area, you can print the object tenuring statistics
by adding the -XX:+PrintTenuringDistribution switch, in addition to the -verbose:gc switch, to the
JVM command line. The output that follows shows objects being promoted through the ages on their
way to being tenured to the old generation.

java -Xms64m -Xmx64m -XX:NewRatio=3 -verbose:gc
-XX:+PrintTenuringDistribution ...

657

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 658

Chapter 13: Optimizing WebLogic Server Performance

[GC
Desired survivor size 819200 bytes, new threshold 31 (max 31)
- age 1: 285824 bytes, 285824 total
34956K->22048K(63936K), 0.2182682 secs]

[GC
Desired survivor size 819200 bytes, new threshold 31 (max 31)
- age 1: 371520 bytes, 371520 total
- age 2: 263472 bytes, 634992 total
35231K->22389K(63936K), 0.0413801 secs]

[GC
Desired survivor size 819200 bytes, new threshold 3 (max 31)
- age 1: 436480 bytes, 436480 total
- age 2: 203952 bytes, 640432 total
- age 3: 263232 bytes, 903664 total
35573K->22652K(63936K), 0.0432329 secs]

Notice the desired survivor size of 819200 bytes. Why is that? Well, let’s do the math. If the overall heap
is 64 MBs and the NewRatio is 3, this means that the new area is one-fourth of the total heap, or 16 MBs.
Because we are using the client JVM, the default value of the SurvivorRatio is 8. This means that each
survivor space is one-eighth the size of the Eden space. Because there are two survivor spaces, that
means that each survivor space is one-tenth of the overall new area size, or 1.6 MBs. Because the default
TargetSurivorRatio is 50 percent, this causes the desired survivor size to be about 800 KBs.

You will also notice that the maximum threshold is always 31. The threshold is the number of times the
JVM will copy the object between the to and from spaces before promoting it to the old space. Because
of the TargetSurvivorRatio discussion previously, the garbage collector will always try to keep the
survivor space at or below the target size. The garbage collector will try to age (copy) the objects up
to the threshold of 31 times before promoting them into the old area. The garbage collector, however,
will recalculate the actual threshold for promotion after each garbage collection. Remember, any full
garbage collection cycle will immediately tenure all reachable objects, so always try to tune the garbage
collector — especially the PermSize — to prevent full garbage collection cycles from occurring.

In the last entry, you will notice that the garbage collector changed the threshold from the default of 31
to 3. This happened because the garbage collector is attempting to keep the occupancy of the survivor
space at its desired survivor size. By adding the size of the objects in all three age categories you will get
903664 bytes, which exceeds the desired survivor size; therefore, the garbage collector reset the threshold
for the next garbage collection cycle.

Sun’s JVM comes with several garbage collectors that allow you to optimize the garbage collector based
on your application requirements. Rather than discuss these alternate garbage collectors here, Sun pro-
vides a very good description of these alternate garbage collectors and when to use them in the ‘‘Memory
Management in the Java HotSpot Virtual Machine’’ on its web site (see Link 13-14).

Using Oracle JRockit JVM
The Oracle JRockit JVM was designed from the ground up to be a server-side JVM. Instead of lazily
compiling the Java byte code into native code as HotSpot does, it precompiles every class as it loads.
JRockit also provides more in-depth instrumentation to give you more insight into what is going on
inside the JVM at runtime. It does this through Oracle JRockit Mission Control, which provides a stand-
alone GUI console but can also be integrated within your Eclipse IDE.

658

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 659

Chapter 13: Optimizing WebLogic Server Performance

JRockit supports both dynamic and static garbage collection modes. By default, JRockit dynamically
selects a garbage collection strategy to optimize application throughput. Dynamic garbage collection
supports three modes:

throughput: Optimizes for maximum throughput

pausetime: Optimizes for short and even pause times

deterministic: Optimizes for very short and deterministic pause times (requires Oracle JRockit
Real Time)

JRockit also supports four static garbage collection models:

Single-spaced Parallel Collector This collector stops the world but uses multiple threads to
speed the collection process. It does not segment the heap into multiple areas. Though it will cause
longer pauses than the rest, it generally provides better memory utilization and better throughput
for applications that don’t allocate large numbers of short-lived objects.

Generational Parallel Collector This collector stops the world but uses multiple threads to speed
the collection process. It segments the heap into a nursery and an old area. New objects are allo-
cated in the nursery and only promoted to the old area after two collection cycles in the nursery
area. Though it will cause longer pauses than the rest, it generally provides better memory utiliza-
tion and better throughput for applications that allocate large numbers of short-lived objects.

Single-spaced Mostly Concurrent Collector This collector uses the entire heap and does its work
concurrently using a background thread. Though this collector can virtually eliminate pauses, you
are trading memory and throughput for pause-less collection because it will generally take the
collector longer to find dead objects and the collector is constantly running during application pro-
cessing. If this collector cannot keep up with the amount of garbage the application creates, it will
stop the application threads while it finishes its collection cycle.

Generational Mostly Concurrent Collector This collector uses a stop-the-world parallel collec-
tor on the nursery area and a concurrent collector on the old area. Because this collector has more
frequent pauses than the single-spaced concurrent collector, it should require less memory and
provide more throughput for applications that can tolerate short pauses. Remember that an under-
sized nursery area can cause large numbers of temporary objects to be promoted to the old area.
This will cause the concurrent collector to work harder and may cause it to fall behind to the point
where it has to stop the world to complete its cycle.

By default, JRockit uses the dynamic garbage collection strategy to optimize for throughput. To change
to one of the other dynamic strategies, use the –XgcPrio:<mode> flag, where valid mode values are
throughput and pausetime. JRockit Real Time adds a third value to this list: deterministic. To specify
the collector statically, use the –Xgc:<gc_name> flag, where the valid values for the four collectors are
singlepar, genpar, singlecon, and gencon, respectively. You can set the initial and maximum heap
sizes using the same -Xms and -Xmx flags as you do for the HotSpot JVM. To set the nursery size, use the
-Xns flag.

java -jrockit -Xms512m -Xmx512m -Xgc:gencon -Xns128m ...

Although JRockit recognizes the -verbose:gc switch, the information it prints will vary depending on
which garbage collector you are using. JRockit also supports verbose output options of memory (same as
gc), load, and codegen. Using the default dynamic throughput collector, the -verbose:memory output
provides information on both nursery area (nursery GC) and old area (GC) collections, as shown here.

659

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 660

Chapter 13: Optimizing WebLogic Server Performance

[INFO][memory] Running with 32 bit heap and compressed references.
[INFO][memory] GC mode: Garbage collection optimized for throughput, initial
strategy: Generational Parallel Mark & Sweep
[INFO][memory] heap size: 262144K, maximal heap size: 524288K, nursery size:
131072K
[INFO][memory] <s>-<end>: GC <before>K-><after>K (<heap>K), <pause> ms
[INFO][memory] <s/start> - start time of collection (seconds since jvm start)
[INFO][memory] <end> - end time of collection (seconds since jvm start)
[INFO][memory] <before> - memory used by objects before collection (KB)
[INFO][memory] <after> - memory used by objects after collection (KB)
[INFO][memory] <heap> - size of heap after collection (KB)
...
[INFO][memory] 6.924: parallel nursery GC 159174K->64518K (262144K), 34.992 ms
...
[INFO][memory] 48.953-49.041: GC 262144K->81910K (262144K), 88.137 ms

Using the -XgcPause switch will cause JRockit to print output each time the JVM has to pause other
threads to complete garbage collection. The output looks like this.

[INFO][memory] 28.787: parallel nursery GC 201290K->105482K (262144K), 30.931ms
[INFO][gcpause] nursery collection pause time: 30.930677ms
[INFO][memory] 29.726: parallel nursery GC 223427K->130499K (262144K), 38.595ms
[INFO][gcpause] nursery collection pause time: 38.594919ms
[INFO][memory] 30.297: parallel nursery GC 244085K->145013K (262144K), 22.180ms
[INFO][gcpause] nursery collection pause time: 22.180263ms
[INFO][memory] 30.822: parallel nursery GC 258605K->159341K (262144K), 21.630ms
[INFO][gcpause] nursery collection pause time: 21.629774ms
[INFO][gcpause] Threads waited for memory 61.151ms starting at 31.922 s
[INFO][gcpause] old collection phase 1-0 pause time: 69.134904 ms, (start time:
31.922 s)
[INFO][gcpause] (pause includes compaction: 3.539ms (external), update ref: 9.769
ms)
[INFO][memory] 31.922-31.991: GC 262144K->76156K (262144K), 69.135ms

As we discussed, even the concurrent collector occasionally has to stop the application to do certain
phases of its work. If you use the -XgcReport switch, JRockit will print out a summary of the garbage
collection activity before it exits.

[INFO][memory]
[INFO][memory] Memory usage report
[INFO][memory]
[INFO][memory] young collections
[INFO][memory] number of collections = 10
[INFO][memory] total promoted = 2473233 (size 129116408)
[INFO][memory] max promoted = 551062 (size 31540352)
[INFO][memory] total GC time = 0.415 s
[INFO][memory] mean GC time = 41.500ms
[INFO][memory] maximum GC Pauses = 54.765 , 58.583, 64.630ms
[INFO][memory]
[INFO][memory] old collections
[INFO][memory] number of collections = 2
[INFO][memory] total promoted = 0 (size 0)
[INFO][memory] max promoted = 0 (size 0)
[INFO][memory] total GC time = 0.142 s (pause 0.142 s)

660

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 661

Chapter 13: Optimizing WebLogic Server Performance

[INFO][memory] mean GC time = 71.009ms (pause 71.007 ms)
[INFO][memory] maximum GC Pauses = 0.000 , 69.135, 72.878ms
[INFO][memory]
[INFO][memory] number of parallel mark phases = 2
[INFO][memory] number of parallel sweep phases = 2

What really makes the JRockit JVM so compelling is JRockit Mission Control. JRockit Mission Control is
a management console for the JRockit JVM that contains the following tools.

JRockit Management Console This provides a real-time view into the JVM’s operation by
capturing and displaying live data on the CPU and memory usage, as well as garbage collection
pauses. This console also gives you control over CPU affinity, garbage collection strategy, and
memory pool sizes so that you can adjust settings without restarting the JVM.

JRockit Runtime Analyzer (JRA) The runtime analyzer allows you to make low overhead
recordings of detailed information about what is happening inside the JVM. Those recordings can
then be analyzed offline to get detailed information on garbage collection, object usage, method
and lock profiling, and latency statistics.

JRockit Latency Analyzer Using a JRA recording, the latency analyzer graphically shows you all
the latency events occurring in your application. Through this tool, you can easily identify areas
of contention where your application threads are blocked waiting on locks, database I/O, and any
other type of event that may cause latency.

JRockit Memory Leak Detector This tool allows you to find memory leaks in production appli-
cations with very low overhead without needing to restart the JVM. It can track down even the
smallest memory leaks and presents the information in a style that simplifies the task of determin-
ing the exact cause of the leak.

We have touched on only the highlights of the JRockit JVM and JRockit Mission Control. For more
information on the JRockit JVM, please see the JRockit documentation at Link 13-15. You can find more
information on JRockit Mission Control at Link 13-16.

JVM tuning is a complex and challenging topic, and we have barely scratched the surface. Nevertheless,
it is time to continue moving up the layers in the architecture to the application server platform.

Application Server Tuning
In this section, we discuss techniques and best practices for tuning the core aspects of your WebLogic
Server environment. This discussion includes setting some important connection-related parameters,
using the native I/O muxer, optimizing thread management, and tuning pool sizes.

Configuring Connection-Related Parameters
During performance tests or on heavily loaded production systems, you may want to increase the length
of the TCP listen queue, as we discussed in the ‘‘Operating System Tuning’’ section. Whereas the operat-
ing system parameter we discussed controls the maximum length of the listen queue, WebLogic Server
uses the Accept Backlog parameter to specify the queue size that the server should request from the
operating system. Prior to WebLogic Server 10, the default value of 50 could be too small on heav-
ily loaded systems. Starting in WebLogic Server 10, the new default of 300 should be sufficient for
most purposes. However, if valid client connection requests are being rejected, the listen queue may be
too small.

661

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 662

Chapter 13: Optimizing WebLogic Server Performance

WebLogic Server uses the Login Timeout parameter to help prevent certain types of denial-of-service
attacks. This parameter sets a maximum amount of time for a non-SSL client to complete the process of
establishing the connection and sending the first request. By default, WebLogic Server sets the default
values to 5,000 milliseconds, which may be too low for heavily loaded systems. If your clients are seeing
their connections timed out by the server, then increasing the Login Timeout may help. WebLogic Server
has a corresponding parameter for SSL connections called the SSL Login Timeout that defaults to 25,000
milliseconds. In certain high volume SSL conditions, you may need to raise this limit as well.

Using the Native I/O Muxer
As we discussed in Chapter 12, WebLogic Server has several different socket multiplexing (muxer,
for short) implementations: an all-Java muxer and a native I/O muxer. By default, WebLogic Server
uses the native I/O muxer whenever it can but will revert automatically to the Java muxer if the
native I/O muxer fails to initialize properly — for example, if it cannot locate its shared library. In
general, you should always use the native I/O muxer because it is far more scalable than the all-
Java muxer.

Optimizing Thread Management
In earlier versions of WebLogic Server, choosing the right number of execute threads for your application
was arguably the single most important and difficult parameter to size properly to maximize application
performance. As we discussed in Chapter 12, WebLogic Server 9.0 changes the execution model to use
a single, priority-based, self-tuning execute queue with a common, self-tuning pool of execute threads.
By collecting actual performance information over time, WebLogic Server can dynamically adjust the
number of execute threads available for processing work to manage the changing workload demands
that are inherent in most applications.

By default, each application uses an instance of the default work manager, which gives each application
a fair share of 50 and sets no constraints. This setting gives each application equal priority and prevents
applications from using more than their fair share of the server’s resources when more work exists for
each application than the number of available threads. For many situations, this default work manager
is sufficient, so this new model greatly simplifies WebLogic Server tuning. Nevertheless, there are a few
things to consider before moving on.

Database Connection Pool Contention If your application depends on database connections for
processing requests, allowing the server to schedule more application requests concurrently than
the size of the connection pool will cause threads to block waiting on access to a database con-
nection. Administrators limit the number of concurrent requests by setting the maximum thread
constraint on the application’s work manager.

If two or more applications share the same database connection pool, you should define the max-
imum thread constraint outside the context of a specific work manager and refer to this shared
constraint from each application’s work manager (or the default work manager). By doing this, you
force all application work managers to share the constraint so that the sum of all threads processing
requests for all applications will not exceed the maximum number of database connections config-
ured for the pool. WebLogic Server makes this easy by allowing you to refer to your WebLogic
Server data source by name from the constraint. The following config.xml excerpt shows you the
result of overriding the default work manager in the WebLogic Server instance MyServer and set-
ting the maximum thread constraint based on the size of the data source MyDataSource such that
all applications using the default work manager will share this constraint.

662

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 663

Chapter 13: Optimizing WebLogic Server Performance

<self-tuning>
<max-threads-constraint>
<name>MyDataSource_MaxThreads</name>
<target>MyServer</target>
<connection-pool-name>MyDataSource</connection-pool-name>

</max-threads-constraint>
<work-manager>
<name>default</name>
<target>MyServer</target>
<max-threads-constraint>MyDataSource_MaxThreads</max-threads-constraint>

</work-manager>
</self-tuning>

Server Deadlock Some applications deploy different components in different server instances or
call other applications in other servers. When this happens, care must be given if the remote appli-
cation calls back into the calling application’s server (or cluster) as part of processing the request to
prevent a server deadlock. The deadlock occurs if all of the calling server’s threads are waiting on
remote application requests and none are available to process the callbacks, Though the self-tuning
behavior will normally prevent this type of deadlock, we strongly recommend explicitly configur-
ing the work manager associated with the callbacks to tell the server to reserve sufficient resources
to process the callback. You have two options to consider.

The first option you might consider is assigning a higher fair share to the work manager associated
with the callbacks. This tells WebLogic Server to give higher priority to processing the callbacks
than to the requests the create them. Although this approach generally works, it introduces a theo-
retical race condition that could prevent the callbacks from getting scheduled if the server received
a large number of originating requests at nearly the same time while no callback requests were
waiting.

A better option is to assign a minimum thread constraint to the work manager associated with the
callbacks. Doing this guarantees that the server will always reserve the specified number of threads
for processing the callbacks — even if it has to create those threads dynamically.

Best Practice
When dealing with applications that involve request processing that spans multiple
servers and uses callbacks, always assign a separate work manager for the callbacks.
Do not rely solely on setting a higher fair share for the callbacks’ work manager. Always
set the minimum thread constraint on the callbacks’ work manager to prevent server
deadlock.

Server Overload When tuning WebLogic Server to meet your throughput and response time
goals, you must consider the point at which it no longer makes sense to accept new work into
the server. If user requests sit in the internal WebLogic Server queue waiting for scheduling on
a thread longer than the users are willing to wait, it makes no sense for the server to accepting
requests until this condition is cleared. We will provide an example.

From monitoring your system, you know that the server typically self-tunes to run with 25 threads,
that your application requests take an average 500 milliseconds to process, and that your users will
resubmit requests that take longer than 30 seconds. From this data, you can roughly estimate that
as soon as the server exceeds 1500 in-flight requests that the server will be doing work for which

663

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 664

Chapter 13: Optimizing WebLogic Server Performance

no user will ever see the response. Clearly, you want the server doing useful work. To prevent this
condition from happening, set a capacity constraint of 1500 on your application’s work manager.
This will tell WebLogic Server to reject new requests for work associated with this work manager
when the capacity is exceeded. When the capacity is exceeded, WebLogic Server responds either
by sending the well-known HTTP 503 response code or throwing a RemoteException in the case of
RMI calls, which permits cluster failover.

Prioritization of Important Requests Most business applications have a variety of request types
and users. For example, a stock trading system might collocate the quotes and trading components
in the same servers. By assigning the trading component to its own work manager, you can give
higher priority to the trading component so that these trading requests get scheduled with higher
priority than do the quote requests. To do this, simply give the trading component’s work manager
a larger fair share than the quote component’s work manager.

In a similar vein, you might want to give your top-tier customers’ requests higher priority than
anonymous user requests. Using the work manager context request class, you can associate differ-
ent work managers with the same requests based on the user or group name associated with the
request. This allows you to assign a higher fair share or lower response time work manager with
your top-tier customers.

JMS Producer and Consumer Balancing Some applications use JMS messaging as a mechanism
to decouple intensive backend processing from user requests. For example, a web application
might accept a request to search for available flights from a user, drop that request into a JMS
queue, return a page to the user to show that the request is being processed, and periodically poll
for the result. The challenge in all messaging applications is having the consumers of the messages
keep up with the producers over long periods of time because message production is almost
always much cheaper than message consumption. As a result, you will likely need to define a
custom work manager to assign a higher fair share to the message consumer component if both
the producer and consumer are deployed in the same server.

Tuning Resource Pool and Cache Sizes
WebLogic Server uses resource pooling to optimize server efficiency and performance. Though database
connection pools are the most obvious use of pooling, the server also pools stateless session bean
instances, message-driven bean instances, and other types of objects. If all the pooled resources are in
use, the server will increase the size of the pool dynamically to honor application requests for access
to a pooled resource. Increasing the size of the pool dynamically adds overhead to application request
processing; the amount of overhead depends on how expensive it is to create the pooled resource.
Once the pool reaches its maximum size, the server can no longer grow the size of the pool. When this
occurs applications requesting access to a pooled resource when all the resources are in use are forced
to wait for a resource to become available. If the maximum size of the pool is dramatically undersized,
application requests may be blocked for minutes waiting on an available resource. This can literally kill
the performance of an otherwise well-written application.

The rule of thumb for pool sizing is simply to make sure that the pool is large enough for all server
threads to get access to the pooled resources they need concurrently. In previous versions of WebLogic
Server, this was usually simple. For example, each execute thread needs access to one database connec-
tion from each pool, so you always make sure that the maximum capacity of the database connection pool
was greater than or equal to the number of execute threads. With the introduction of server self-tuning,
the number of execute threads isn’t necessarily well defined; however, as we discussed in the previous
section, setting a shared maximum threads constraint on the relevant work manager(s) that refer to the

664

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 665

Chapter 13: Optimizing WebLogic Server Performance

data source used to access the connection pool prevents the server from dispatching more requests than
the maximum size of the pool.

With stateless session and message-driven bean pooling, the overhead associated with creating additional
instances is typically very small. As a result, we recommend not setting the <max-beans-in-free-pool>
and simply use the default value of 1000. Because the server will not create more instances than it needs
unless you set the <initial-beans-in-free-pool> setting too high, we find that the default value works
well in almost all situations. For more information on how to configure EJB pool sizes, please refer to
Chapter 8.

WebLogic Server does not pool stateful session beans; however, it does cache them in memory. Because
stateful session bean instances contain client state, the server must retain them for the duration of the
session. The size of the stateful session bean cache determines how many instances are kept in mem-
ory. If the number of sessions exceeds the size of the cache, WebLogic Server will passivate the session
bean instance to disk to make room in the cache for other instances. As you can imagine, this pag-
ing of instances in and out of memory can dramatically affect the time it takes to process a request to
an instance that is not resident in memory. An order of magnitude increase in response times is not
uncommon. Therefore, you must choose the size of your stateful session bean cache carefully to try to
balance the need to keep all active sessions in cache with the memory requirements of doing so. Set-
ting the proper <idle-timeout-seconds> value and <cache-type> parameters in conjunction with
<max-beans-in-cache> allows you to keep orphaned instances from polluting your cache. For more
information on EJB pooling and caching, see Link 13-17.

Verifying Application Server Tuning
Once you have found the optimum settings, you should go back and look at garbage collection to see if
there is room for improvement in the garbage collector settings to improve the efficiency of the applica-
tion. Before moving an application into production, we always recommend that you run a longer test to
make sure that the application is stable under heavy load for 24, 48, or 72 hours. These tests can often
reveal issues that might not show up in production for weeks or months, such as memory leaks. Skip-
ping these saturation tests may save you time up front but can lead to production downtime later. Do
not assume that application server tuning will not impact the long-term stability of your application.

Performance Best Practices
In this section, we turn our attention to application design and configuration best practices that directly
affect the performance of your WebLogic Server system. We start by reviewing a few design patterns that
can improve performance, then present a series of web container and EJB container best practices, and
finish up with some best practices related to database access.

Designing for Performance
Good application performance starts with good application design. Overly complex or poorly designed
applications will perform poorly regardless of the system-level tuning and best practices you employ
to improve performance. Entire books have been dedicated to good application design, and we have
only part of one chapter in this book, so we must limit our discussion to a few key principles and best
practices. Many books on Java EE design patterns and anti-patterns are available; two of our favorites
are Bitter Java by Bruce A. Tate (Manning Publications, 2002) and EJB Design Patterns: Advanced Patterns,
Processes, and Idioms by Floyd Marinescu (Wiley, 2002).

665

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 666

Chapter 13: Optimizing WebLogic Server Performance

Design patterns are an important topic in the Java EE development community. Proper use of design
patterns can provide significant benefits in the maintainability of application code through standardizing
the approach to common design problems. Certain design patterns are also beneficial to performance
because they reduce the overhead associated with transactions and inter-component messaging. We
discuss three of the more important patterns for Java EE applications. For a more extensive overview of
well-known Java EE design patterns, take a look at Core J2EE Patterns: Best Practices and Design Strategies
by Deepak Alur et al. (Prentice Hall, 2001).

Before we continue, we should point out that the Java EE 5 specification has introduced significant
changes that arguably affect the importance of certain patterns in Java EE applications. For example,
the introduction of resource injection in Java EE 5 seemingly reduces the value of using the service loca-
tor pattern to find other Java EE resources within your application. At the time of writing, there was no
definitive design patterns book that accounts for the changes in Java EE 5, though a number of web sites
and blogs discuss the implications of Java EE 5, such as Link 13-18.

Session Façade
The session façade pattern is a high-level wrapper for server-side components and was discussed at
some length in Chapter 7. Java EE applications commonly implement this pattern by creating a stateless
session bean that wraps business process logic and the JPA entities, database interactions, and Java
objects required to perform the business process. The bigrez.com application makes use of this pattern
for key business services such as reservation creation and the rate and availability search processes.

Session façades improve application performance by exposing only high-level business operations and
reducing the individual client invocations to the lower-level business components and domain objects.
This is especially important when accessing EJB components by remote interfaces, because the network
and marshalling overhead for each remote call is substantial. Even with local interfaces, there is some
overhead because the EJB container provides security, lifecycle management, and transaction control for
each invocation. The guiding principle remains the same: reduce the number of invocations that require
network, data marshalling, lifecycle, or transactional services to improve application performance. Ses-
sion façades are one good way to follow this principle.

Best Practice
Reduce the number of remote calls or other high overhead invocations in your sys-
tem to improve performance. Stateless session beans implementing the session façade
pattern are one good way to reduce the number of these types of invocations.

Value Object
Another common and important mechanism available to reduce the need for remote invocations is the
value object pattern. The EJB 3.0 specification transforms entity beans into plain old Java objects (POJOs).
There is no longer any need to create separate value objects representing the entity bean data to return
to the client. Clients can simply create these value objects, populate them with information, and either
pass them into the server or persist them directly using the JPA persistence manager. This works because
the value objects are simply serializable Java objects. Passing the entire object from a client to the server
eliminates the need to invoke multiple setter methods from the client.

666

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 667

Chapter 13: Optimizing WebLogic Server Performance

Command Pattern
The command pattern uses a single command object to encapsulate multiple steps or requests that are
passed to the server for processing with a single invocation. Use this pattern by itself or in conjunction
with the session façade pattern to further reduce individual component remote invocations. Systems
that contain many business interfaces implemented as façades often use this pattern to create additional
higher-level interfaces without creating additional session beans.

The command pattern resembles the business delegate pattern in that both patterns create a higher-level
interface for multiple business services. The command pattern processes the logic within the command
class on the server, whereas the business delegate pattern uses the client tier. In other words, though
business delegates can simplify the interfaces to backend systems by providing a higher-level interface,
they generally execute on the client side of the application and create multiple invocations to backend
services. The command pattern may therefore be a better choice if performance is a key requirement for
the design.

Best Practice
Create objects that implement the command pattern to further reduce the number of
remote calls or other high overhead invocations in your system. When using remote
clients, favor command objects over business delegates for better performance.

Understanding Web Container Best Practices
Many high volume Java EE applications service hundreds, if not thousands, of page requests per second.
Small improvements in performance within the web container can therefore lead to big improvements in
overall system throughput and scalability. This section touches on a few important best practices related
to servlets and JavaServer Pages (JSPs), the core components in most web applications.

Session Management
As discussed in Chapter 1, many applications supplement the stateless HTTP protocol by storing session-
specific data in the HttpSession. This session data will then be available during subsequent requests
from the same browser session. In a reliable application, this session data must be available even if the
server originally used to service the HTTP request fails or is shut down. WebLogic Server provides two
fundamental options for session persistence within a cluster.

In-memory Replication Session data is kept in memory on the primary server assigned to this
session and replicated to a backup server in the cluster for failover.

JDBC-based Persistence Session data is stored in a special database table and read in to memory
by the server processing an HTTP request.

In-memory replication is much faster than JDBC-based persistence and should be used when it
meets your requirements. Recognize, however, that there is a cost associated with session persistence
regardless of the persistence option chosen. When a web application updates the HttpSession object,
WebLogic Server must save these changes at the end of the HTTP request. The quantity of data the
server needs to save depends on the structure of the data in the HttpSession. WebLogic Server uses the
HttpSession.setAttribute() method to detect when changes to the session occur. At the end of each

667

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 668

Chapter 13: Optimizing WebLogic Server Performance

request, WebLogic Server saves each new or changed attribute value. This means that WebLogic Server
will save the entire object graph bound into the attribute that changed. If your web application updates
only one or a few fields in a large object structure, you should consider breaking up this large object
structure into smaller objects that are bound into different attributes in the session to reduce the amount
of data the server has to save at the end of any particular request.

Best Practice
Avoid placing all session data in a single large object in the HttpSession. Use in-
memory replication for session persistence unless you need JDBC-based persistence
to meet your requirements.

HttpSession objects also use system resources, so it is important to clean them up when you finish using
them. WebLogic Server releases HttpSession objects in two ways:

Session Timeouts WebLogic Server will remove an HttpSession object after a period of inactiv-
ity, known as a session timeout. Session timeouts can be set using either the <session-descriptor>
element’s <timeout-secs> attribute in the weblogic.xml deployment descriptor or the
<session-timeout> element in the web.xml descriptor. See the WebLogic Server documentation at
Link 13-19 for more information.

Explicit Invalidation You can programmatically remove a session by calling the invalidate()
method on the HttpSession object.

Too often, web application programmers abuse the session object. You should carefully consider what
you store in session objects. Make sure that you understand all of the other available options and the
performance trade-offs associated with using sessions. The following list represents a set of best practices
related to sessions.

❑ Avoid using the session to pass data between web application components such as servlet
controllers and JSP pages during the processing of a single HTTP request. You should use the
HttpServletRequest object for passing data needed when forwarding or including other web
application components.

❑ Consider other alternatives when state can easily be maintained or derived. You can often store
the state in local variables, the database, or client-side cookies.

❑ Keep your session objects as small as possible by always removing objects from the session that
you no longer need with the session’s removeAttribute() method.

❑ Never, ever use the session to store data you cannot afford to lose — even in conjunction with
JDBC-based persistence. If the data is too important to lose, store it in the database directly rather
than relying on session persistence to avoid losing data when the session times out.

❑ Understand your business requirements for session timeouts. Always make sure that you tune
the session timeout interval to the smallest value consistent with your business requirements.
This will prevent users from tying up valuable resources when they fail to exit the system when
finished. WebLogic Server uses a default value of 3,600 seconds, or 1 hour. A value of 10 or 15
minutes is usually sufficient for most web applications.

668

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 669

Chapter 13: Optimizing WebLogic Server Performance

JavaServer Pages
Chapter 1 presented a number of the best practices related to JavaServer Pages. Here, we highlight two
areas of particular importance to performance.

Using Sessions Efficiently
JavaServer Pages (JSPs) create HttpSession objects by default, as required by the JSP specification. If
your pages are not using sessions, turning the default behavior off can enhance performance. Include the
following JSP page directive to avoid creating unnecessary HttpSession objects.

<%@ page session="false"%>

Using Dynamic Content Caching
Chapter 1 presented the wl:cache custom tag and the CacheFilter servlet filter, two powerful tech-
niques available for dynamic content caching in WebLogic Server. When determining what content to
cache you should consider the following questions.

❑ How often is the content requested?

❑ How often does the content change?

❑ How expensive is it to create or calculate the content with each request?

Content items that change infrequently, such as headers or footers on a portal page, are excellent can-
didates. Additionally, repetitive database queries that are returning data that changes infrequently also
offer the opportunity for performance gains from caching.

Be careful not to go overboard with caching, however, because it consumes memory on the server and
there is currently no mechanism to limit the size of the response cache unless you are using keys. The key
parameter in the wl:cache tag makes it very easy to cache response data for different key values. Be sure
to set the size attribute to control the size of the cache when the number of possible key values is large
enough to create a very large cache of responses.

Best Practice
Use dynamic content caching when content is frequently displayed, is infrequently
changed, and represents a fair amount of work to create with each request. Limit the
size of the cache to avoid competing for heap space with other components.

Servlets
Avoid using the deprecated SingleThreadModel for servlets. While the servlet specification recommends
using Java synchronization to eliminate the need for the SingleThreadModel, overly synchronizing your
servlet class can be even worse from a performance perspective. Try to minimize the need for syn-
chronization in your servlets. Where absolutely required, minimize the scope of synchronization to the
smallest possible block of code. Make sure that your synchronized blocks do not involve long, blocking
calls that could bring your system to a grinding halt when slowdowns or failure occur.

669

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 670

Chapter 13: Optimizing WebLogic Server Performance

Use the servlet’s init() method to perform expensive operations that need to take place only once.
Because the web container calls the HttpServlet.init() method right after loading the servlet, it is an
excellent place to invoke heavyweight operations that you want to perform only once.

In many cases, it is possible to speed up the writing of the output stream by using a ServletOutputStream
object instead of a PrintWriter. PrintWriter performs character set conversion; therefore, you should
use it only when your requirements demand it. For cases where your servlet returns only ASCII or
binary data, use a ServletOutputStream to get better performance.

Understanding EJB Container Best Practices
High volume Java EE applications often use Enterprise JavaBean (EJB) components to provide trans-
action, security, and object lifecycle services for key business processes and objects. The performance
of EJB components can have a dramatic effect on overall system performance because they tend to
perform much more processing per request than a web component. This section highlights a num-
ber of best practices for improving the performance of your EJB components in a WebLogic Server
environment.

JNDI Lookup Strategies
Java EE applications use the Java Naming and Directory Interface (JNDI) to locate many different types
of resources. Excessive calls to JNDI to look up EJB references, DataSource references, and JMS connec-
tion factories and destinations can reduce system performance significantly, especially if you are using
WebLogic Server’s global JNDI namespace. To minimize the overhead of these lookup operations, you
should cache and reuse the objects; also, use Java EE resource references to bind the objects in WebLogic
Server’s global JNDI tree into your application’s Environment Naming Context (ENC) namespace. Sev-
eral techniques are available for caching these objects; we discuss two of them.

For many simple web applications, you can simply look up the objects in the servlet’s init() method
and cache them in instance variables in the servlet. As long as the objects themselves are thread-safe,
using instance variables in this way is also thread-safe because your servlet probably uses these objects
to create other objects. For example, you use a DataSource to get a database connection from the JDBC
connection pool.

Java EE 5 supports injecting common resource types directly into your application. An example of
resource injection you might use on your servlet’s instance variable is shown here. Though this resource
injection doesn’t eliminate the underlying JNDI lookup, it does simplify the code.

@Resource(name=jdbc/MyOracleDataSource)
DataSource myDataSource;

Another common approach requires a helper or factory class that you can use throughout your appli-
cation to locate and cache these types of objects. You can create a separate locator class for each type of
object, or create one general purpose locator capable of finding and caching all types of objects. With the
introduction of resource injection into the Java EE specification, the desirability and benefits of the service
locator pattern are significantly reduced.

670

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 671

Chapter 13: Optimizing WebLogic Server Performance

Best Practice
Use caching to reduce the number of JNDI lookup operations for EJB references,
DataSource objects, and JMS connection factories and destinations. Use Java EE
resource references to further reduce the cost of your application’s JNDI lookups.

One caveat on caching worth noting is that the use of JNDI lookup caching can result in the client having
a stale reference if the server on which the object resides shuts down. This is typically an issue only if
the client using the object and the object are in separate processes. For example, standalone clients can
avoid the problem of EJB reference caching by deploying the EJBs to a WebLogic Server cluster. In a
WebLogic Server cluster, each server in the cluster has a copy of the object and the reference bound into
JNDI is cluster-aware; that is, it knows about all of the copies of the objects in all of the servers. Should
one server fail, the client-side stub can route calls around the failed server to another server with an
equivalent component.

Optimizing EJB 3.0 Entities
The EJB 3.0 specification transformed the older specifications’ persistence mechanism from one that uses
full-blown entity beans to represent your domain objects to one that uses POJOs. This transformation
makes it much easier to design and build high performance EJB-based applications. Nevertheless, it
does not eliminate the need to optimize your application design to make efficient use of the underlying
database interactions. Chapter 6 discusses the tuning considerations for WebLogic Server’s default JPA
provider, Kodo. If using the EclipseLink provider contained within Oracle TopLink, please refer to Link
13-20.

Taking Advantage of Pass-by-Reference
Enterprise JavaBeans are designed to provide location transparency: The caller may call the bean as if it
coexists in the same JVM when it may actually be located on a completely different server. EJB compo-
nents use Remote Method Invocation (RMI) to enable location transparency, but it comes with a cost. RMI
uses serialization to pass method parameters and return values using a pass-by-value semantic — even if
the caller and the bean are in the same JVM.

This marshalling and unmarshalling of data is expensive but necessary when the caller and EJB are in
two different processes. It is also necessary if the caller and the EJB are in the same process but loaded
using different classloaders. If both the caller and the EJB are in the same JVM and loaded with the same
classloader hierarchy, it is possible to skip the marshalling and unmarshalling and pass the arguments
and return values using pass-by-reference semantics. In many applications, the functional behavior of the
application won’t change by switching to pass-by-reference semantics; however, certain coding styles
and practices can cause functional change. This is why the EJB specification requires the use of pass-by-
value semantics for all EJB calls using the EJB’s home and remote interfaces, if they exist. EJB 2.0 added
support for local interfaces that support pass-by-reference semantics.

This pass-by-reference optimization is available only between components within an enterprise applica-
tion. Separate applications running in the same JVM use separate classloaders, so attempts to pass data by
reference would invariably result in a ClassCastException. WebLogic Server uses serialization in these
cases. Don’t forget that passing data by reference allows the called method to modify the contents of the

671

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 672

Chapter 13: Optimizing WebLogic Server Performance

passed object, in most cases, providing either a powerful feature or a debugging nightmare depending
on how you use it.

Best Practice
Deploy related components together in the same enterprise application to allow pass-
by-reference semantics and maximize performance.

Historically, WebLogic Server has optimized calls made to EJB components within the same appli-
cation by passing parameters and return values by reference, rather than by value, to improve perfor-
mance. Because of Java EE licensing requirements imposed by Sun, WebLogic Server changed its default
behavior to always use pass-by-value semantics. Therefore, we want to emphasize that in order to take
advantage of this performance optimization, you now need to enable the optimization explicitly in the
weblogic-ejb-jar.xml deployment descriptor for every EJB for which you want callers to be able to use
pass-by-reference semantics with the EJB’s remote interface. This example shows how to enable it:

<weblogic-enterprise-bean>
<ejb-name>CustomerBean</ejb-name>
<enable-call-by-reference>true</enable-call-by-reference>

</weblogic-enterprise-bean>

WebLogic Server 8.1 changed the default behavior for its <enable-call-by-
reference> optimization. The new default value is false to make WebLogic Server
Java EE–compatible out of the box. To take advantage of this performance
optimization, you must explicitly enable the optimization in your EJB deployment
descriptors.

Applying Database Access Best Practices
Efficient database access is critical to achieving high throughput and good scalability for your system. All
of the other tuning and optimizations you perform, whether in the JVM, web container, EJB container, or
elsewhere, will be for naught if the database access in the application is slow. Worse yet, the techniques
available for increasing database processing capability through hardware upgrades are generally more
expensive than the simple clustering techniques available for increasing the processors available for the
web or EJB tiers of the application. You simply must start with efficient database access to achieve good
overall performance.

This section provides a number of best practices related to database access from within Java EE appli-
cations. This section is not intended to provide a complete treatment of database design or performance
tuning. For more information about database performance tuning for Oracle, we recommend Oracle
Database 10g Performance Tuning: Tips and Tricks by Richard Niemiec (Oracle Press, 2007). Numerous
books on database design, such as the classic An Introduction to Database Systems, 7th Edition by C. J.
Date (Addison-Wesley, 2000) and Case*Method: Entity-Relationship Modelling by Richard Barker (Addison-
Wesley, 1990) are also available.

672

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 673

Chapter 13: Optimizing WebLogic Server Performance

Basic Database Principles
First, you need an efficient logical database design. Database designers tend to favor highly normalized
designs requiring multi-way joins to fetch a typical business object and related data. A design that looks
good in the data modeling tool may become a real bottleneck in production. If performance is a key
criterion for your system, it is important to push back in this area and work with your database designer
to flatten or denormalize some critical tables.

Next, the physical database design must reflect the performance requirements of your application. Your
DBA should be employing all of the optimization features available in the chosen database technology to
achieve the best possible performance. Make sure to provide your DBA with a complete list of the queries
your application uses, including all columns appearing in the WHERE and ORDER BY clauses, so that he or
she can create the proper indexes on each table.

After creating and tuning your database, you still need to use efficient database access coding techniques
to ensure a high performance application. Some basic rules of thumb include these:

❑ Always perform table access using a good, selective index. Work with your database administra-
tor to view statistics on your queries and correct any inefficient database access.

❑ Avoid joining multiple tables unless your application logic requires it. This often means creat-
ing multiple versions of a query, one that avoids a join and fetches only limited data for each
matching object and one that joins with related tables and fetches a fully populated object.

❑ Avoid using queries that return extremely large result sets. This becomes even more important
when using an ORDER BY clause that does not use the same index that the query’s WHERE clause
uses. When this happens, the database must order the rows manually — a very time-consuming
process.

❑ Cache data when the access pattern is mostly read and the hit frequency is high.

Retrieve Columns Explicitly
Use explicit column lists in queries rather than selecting all columns from a table using the SELECT *
syntax. Explicitly retrieving only the needed columns avoids internal JDBC operations and reduces the
amount of data transferred back to the application, improving query performance. Of course, the other
benefit is that your code doesn’t break if the table is altered to add new columns.

Cache Prepared Statements
Use prepared statements for database access if your application executes the same SQL statement repeat-
edly. The first time you execute a prepared statement the database must spend extra time parsing and
compiling the statement before it can be executed. Most relational databases will then cache the statement
and match new statements against the cached ones to avoid this performance penalty. Keep in mind that
for the database to reuse a cached statement, the new statement must match the old statement exactly in
all aspects except the values of bind variables.

WebLogic Server supplements this database-level caching with its own JDBC PreparedStatement cache
built into its data source support. Whenever your application calls prepareStatement() for a new state-
ment, WebLogic Server will cache the PreparedStatement object returned by the JDBC connection for
use during subsequent prepareStatement() requests made using this same JDBC connection. The JDBC
model restricts cached statements to a specific connection; therefore, frequently used queries will likely
have a cached statement per connection. Reusing JDBC PreparedStatement objects eliminates the need

673

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 674

Chapter 13: Optimizing WebLogic Server Performance

for parsing statements in the database, which reduces CPU usage on the database machine, improv-
ing performance for the current statement and leaving CPU cycles for other tasks. You configure a data
source’s prepared statement cache using the WebLogic Console.

Like most tuning operations, determining the proper size of the prepared statement cache is an iterative
process. In general, the more prepared statements your application employs, the larger the cache should
be. For example, if the application has 20 SQL statements, setting the pool’s prepared statement cache size
to 20 will allow WebLogic Server to cache all of the prepared statements because each pool connection
has its own cache. One empirical, iterative approach for sizing the cache involves monitoring the SQL
parse operations per second occurring in the database during a realistic load test. Continue increasing the
size of the prepared statement cache until the number of parse operations per second stops decreasing,
representing a point of diminishing returns.

Transaction Model
WebLogic Server supports both the local and distributed JTA transactions. Distributed transactions are
transactions that span either multiple database connections or multiple resources. Distributed transac-
tions require additional logging and extra network I/O, making them many times slower than local
transactions. Whenever possible, use local transactions involving a single Connection object for the best
performance.

As we discussed in Chapter 12, there is a three-way relationship between transaction models, JDBC
DataSource settings, and the underlying JDBC driver. In most circumstances, you want to use a transac-
tional DataSource. To create a transactional DataSource, you just need to make sure that the Supports
Global Transactions checkbox is checked when you create the DataSource using the WebLogic Console.
Note that if you choose an XA JDBC driver, WebLogic Server always uses a DataSource that supports
global transactions.

It is very common to have multiple EJB components involved in the same unit of work. The only way to
accomplish this without using an XA-compliant driver is to have all participants share the same database
connection. WebLogic Server will automatically and transparently make sure that all operations use
the same connection when your application is using a transactional DataSource with a non-XA JDBC
driver. You will need to use an XA-compliant JDBC driver if your applications use transactions that span
multiple resources, such as a database and JMS or two databases. If a particular transaction involves
only a single resource, WebLogic Server’s JTA transaction manager will optimize the transaction to use a
single-phase commit instead of the more expensive two-phase commit.

WebLogic Server supports an optimization called Last Logging Resource, which we discussed in
Chapter 12. If you have a situation where you need to involve one or more XA resources and a database
in a global transaction, it is possible to use a non-XA JDBC driver with a DataSource configured to sup-
port global transactions with the Last Logging Resource option. Not only is this option transactionally
safe, it is generally significantly faster than using XA because the database isn’t required to use the XA
two-phase commit protocol and the XA transaction log is written into the database as part of the non-XA
transaction.

Best Practice
Use a transactional DataSource to ensure proper transaction coordination when using
EJB components or involving multiple resources in a transaction. When doing dis-
tributed transactions, you will generally need to use an XA-compliant JDBC driver.

674

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 675

Chapter 13: Optimizing WebLogic Server Performance

In certain cases, you may be able to use a non-XA JDBC driver with a transactional
DataSource configured to use Last Logging Resource to improve performance without
sacrificing transactional safety.

Commitment Control Level
JDBC connections use a commit control level of TRANSACTION_NONE with the autoCommit attribute set to
true by default. These are the correct settings when an application does not need to use transactions, such
as when an application invokes a stored procedure or trigger that runs under transaction commitment
control. These are unusual circumstances, though; in most cases, you should set autoCommit to false
to increase performance by reducing the number of commit operations. When using nontransactional
DataSource objects, you should explicitly call Connection.setAutoCommit(false) before executing
your queries and then call Connection.commit() at the end of the transaction, as shown here.

DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/TestDB");
conn = ds.getConnection();
conn.setAutoCommit(false);
...
conn.commit();

If you are using a transactional DataSource, all connections will already have autoCommit set to false.
Any attempt to invoke setAutoCommit(true) on the connection will throw a SQLException.

Best Practice
Configure commit control properly on JDBC connections obtained from a nontransac-
tional DataSource by calling setAutoCommit(false) before executing any queries and
commit() at the end of each transaction to improve performance and avoid committing
after every statement.

Batch Updates
A batch update refers to a set of SQL statements submitted as a unit for processing. Sending multiple state-
ments together can be much more efficient than sending each update separately. Always set autoCommit
to false or obtain the connection from a JTA-aware DataSource when doing batch updates to avoid
committing automatically when calling executeBatch(). The database will execute the SQL statements
in the order they were added to the batch. The following code block illustrates this technique.

DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/TestDB");
Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();
stmt.addBatch("INSERT INTO EMPLOYEE " +

"VALUES (500, ‘Jeff’, ‘Architect’, ‘Smith’, 250000)");
stmt.addBatch("INSERT INTO EMPLOYEE " +

"VALUES (501, ‘John’, ‘Controller’, ‘Park’, 300000)");
int[] updateNum = stmt.executeBatch();

675

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 676

Chapter 13: Optimizing WebLogic Server Performance

Connection Pools
Establishing a JDBC connection with a database can be very slow and resource intensive. If your applica-
tion requires database connections that are repeatedly opened and closed, this can become a significant
performance issue. WebLogic Server provides a connection pooling mechanism that allows users to
access and share persistent database connections to avoid the overhead of constantly opening and
closing new connections. When WebLogic Server starts, it creates each connection pool with an initial
number of connections. These connections will be available to any application that uses the configured
DataSource object. When an application closes the connection it got from the DataSource, the connection
will return to the pool and be available for the next time the application needs a connection. Because
the call to DataSource.getConnection() only checks a connection out from the pool and its call to
Connection.close() does not actually close the connection, using the database connection pool adds
very little overhead to the application.

You define and configure the DataSource using the WebLogic Console, as described in Chapter 12.
During performance tuning you are interested in two configuration parameters in particular: Initial
Capacity and Maximum Capacity. Initial Capacity specifies the initial number of physical database con-
nections to create, as well as the minimum number the pool should try to maintain at all times. Maximum
Capacity specifies the maximum number of physical database connections the pool is allowed to create.
In production systems, consider setting Initial Capacity equal to the Maximum Capacity so that you
don’t incur the hit for creating new connections on the fly when the server is busy.

To ensure optimal performance, your connection pool should have enough connections to eliminate
waiters. Waiters are nothing more than application threads that are forced to wait for a connection because
all available connections are in use. You can use two approaches to eliminate waiters.

❑ By using the WebLogic Console to monitor the active JDBC connections during stress testing,
you can properly size your connection pool to eliminate waiters.

❑ As discussed earlier, you can set the maximum threads constraint on the work manager(s) to
prevent WebLogic Server from dispatching more concurrent application requests than the size
of the connection pool.

Best Practice
Set Initial Capacity and Maximum Capacity to the same value in production systems
to avoid creating new connections on the fly during load spikes. Find the proper size
during stress testing by monitoring the pool for waiters and then use this value to deter-
mine an appropriate value for the maximum threads constraint on the work manager(s)
to prevent latency.

Release JDBC Resources
Always release JDBC resources when your application finishes using them. If the application does not
release resources in a timely manner, application performance can degrade because other threads may
need the resources but have to wait for them if all resources are currently held. JDBC Connection,
PreparedStatement, Statement, and ResultSet objects should be explicitly closed when your

676

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 677

Chapter 13: Optimizing WebLogic Server Performance

application component finishes using them. Simply counting on the garbage collector to clean up
after the objects is dangerous because there may be situations where these objects hold on to database
resources outside the control of the JVM. WebLogic Server will try to clean up after sloppy application
coding. Closing a connection should release its underlying resources; however, we advise you not to
depend on these mechanisms. We have seen numerous applications with memory leaks that turned
out to be the result of not closing JDBC resources properly. The most common errors are not using a
finally block to close them and not trying to close every resource in the finally block, even if you get an
exception. Always write your JDBC code defensively! It should always be structured similarly to that
shown here.

Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
try {
... // Do JDBC work here
}
catch (SQLException sqle) {
... // Do error recovery here
}
finally {

if (rs != null) {
try { rs.close(); } catch (SQLException ignore) { }

}
if (ps != null) {

try { ps.close(); } catch (SQLException ignore) { }
}
if (conn != null) {

try { conn.close(); } catch (SQLException ignore) { }
}

}

Best Practice
Always close JDBC resources as soon as you are done with them to reduce contention
for connections and improve performance. Always write your JDBC code defensively
and close JDBC resources inside the finally block — never inside the try block.

Troubleshooting Performance Problems
Your application and environment are now tuned to perfection, users are happy, and the system is taking
hundreds of hits per second without batting an eye, right? If not, then read on as we present a tried and
true methodology for troubleshooting performance problems.

Successful troubleshooting requires a strong understanding of the system and its components, a good
problem resolution process, and knowledge of common performance problems and their solutions.
Every system is different, and every performance problem is likely to be different, but a number of best
practices are worth outlining to help you through your own troubleshooting efforts. Good tooling and
instrumentation can significantly accelerate the root cause analysis process.

677

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 678

Chapter 13: Optimizing WebLogic Server Performance

Preparing for Troubleshooting
Troubleshooting performance problems can be a difficult and time-consuming process unless you pre-
pare ahead of time. When the users are unhappy and the pressure is on, you must have the proper
infrastructure, processes, and people in place to address the problem.

First, the application should have been thoroughly tested and profiled during performance testing. You
need to know how the application performed in the test environment to know if the performance problem
you are tackling is real or simply a normal slowdown under peak loads. Your test results also indicate the
normal resource usage of the individual transaction under investigation for comparison with observed
resource usage in production. Good testing is critical to efficient production troubleshooting.

Next, you must have all necessary performance monitoring mechanisms in place to provide information
concerning system performance and activity. Recognize that many performance problems do not happen
on demand, so you will need some form of logging to reconstruct system resource usage and activity
during a period in question. Simple shell scripts that log selected output from system monitoring tools
are often sufficient for this purpose. Of course, tools like JRockit Mission Control and other application
performance monitoring tools can accelerate the identification and isolation of the problem if they are
able to capture data while the problem is occurring.

Finally, you need a team and a process in place before the problem occurs. It is a good idea to form
a multi-disciplinary swat team and make that team responsible for troubleshooting performance prob-
lems. Typically, we recommend using many of the same people who did the original performance
testing because they already understand the behavior of the system under various loads. Create a well-
documented process for responding to performance problems, including a database or other knowledge
repository for storing information on previous incidents and remedies.

Once you’ve done everything you can to prepare for performance problems, all you can do is wait and
see how the system performs. Should a problem arise, the team’s first order of business is to identify the
root cause of the performance problem, also known as the bottleneck.

Bottleneck Identification and Correction
A bottleneck is a resource within a system that limits overall throughput or adds substantially to response
time. Finding and fixing bottlenecks in distributed systems can be very difficult and requires experienced
multi-disciplinary teams, though modern application performance monitoring tools can make this much
easier. Bottlenecks can occur in the web server, application code, application server, database, network,
hardware, network devices, or operating system. Experience has shown that bottlenecks are more likely
to occur in some areas than in others, the most common areas being these:

❑ Database connections and queries

❑ Application server code

❑ Application server and web server hardware

❑ Network and TCP configuration

Remember that there is rarely a single bottleneck in a system. Fixing one bottleneck will improve per-
formance but often highlights a different bottleneck. Bottlenecks should be identified one at a time,

678

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 679

Chapter 13: Optimizing WebLogic Server Performance

corrected, and the system tested again to ensure that another bottleneck does not appear before reaching
the required performance levels.

To identify bottlenecks quickly and correctly you must understand your system. The team responsi-
ble for problem resolution must know all of the physical components of the system. For each physical
component (server, network device, and so on), the team needs detailed knowledge of all the logical com-
ponents (software) deployed there. Ideally, all of this information will be documented and available to
the swat team members who are responsible for troubleshooting. The team can prepare for problems by
identifying all the potential bottlenecks for each component and determining the proper way to monitor
and troubleshoot these areas.

The following lists document some of the typical components and areas of concern related to each of
them. The team must be aware of these potential bottlenecks and be prepared to monitor the related
resource usage to identify the specific bottleneck responsible for a given performance problem quickly.

Common areas of concern for firewall devices include the following:

❑ Total connections.

❑ SSL connections — If you exceed more than 20 SSL handshakes per second per web server you
may need an SSL accelerator.

❑ CPU utilization — Make sure CPU utilization does not average above 80 percent.

❑ I/O — If the firewall is logging make sure it is not I/O bound.

❑ Throughput.

Common areas of concern for load balancers include these:

❑ Total connections.

❑ Connection balance.

❑ CPU utilization — Make sure average CPU utilization does not exceed 80 percent.

❑ Throughput.

Common areas of concern for web servers include the following:

❑ CPU utilization — Make sure average CPU utilization does not exceed 80 percent.

❑ Memory — Make sure excessive paging is not taking place.

❑ Throughput — Monitor network throughput to make sure you do not have an over-utilized net-
work interface card.

❑ Connections — Make sure connections are balanced among the servers.

❑ SSL connections — Make sure that the number of SSL handshakes per second is not too much for
the hardware and web server software. Consider using SSL accelerators if it is too high.

❑ Disk I/O — Make sure the web servers are not I/O bound, especially if they are serving a lot of
static content.

Common areas of concern for application servers include the following:

❑ Memory — Make sure there is enough memory to prevent the JVM from paging.

❑ CPU — Make sure average CPU utilization does not exceed 80 percent.

679

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 680

Chapter 13: Optimizing WebLogic Server Performance

❑ Database connection pools — Make sure application threads are not waiting for database con-
nections excessively. Also, check to make sure the application is not leaking connections.

❑ Execute queue — Watch the queue depth to make sure it does not consistently exceed a prede-
termined depth.

❑ Execute queue wait — Make sure messages are not starved in the queue.

Common areas of concern for database servers include these:

❑ Memory — Make sure excessive paging and high I/O wait time are not occurring.

❑ CPU — Make sure average CPU utilization does not exceed 80 percent.

❑ Cache hit ratio — Make sure the cache is set high enough to prevent excessive disk I/O.

❑ Parse time — Make sure excessive parsing is not taking place.

For each area of concern, you may want to put system monitoring tools in place that will take measure-
ments of these variables and trigger an alert if they exceed normal levels. If system monitoring tools are
not available for a component, you will need to have scripts or other mechanisms in place that you can
use to gather the required information.

Best Practice
Identifying bottlenecks quickly in production systems requires a thorough knowledge
of the hardware and software components of your system and the types of potential
bottlenecks common in each of these areas. Ensure that system monitoring tools cap-
ture appropriate information in all areas of concern to support troubleshooting efforts.
Consider creating scripts or processes that monitor system resources and notify team
members proactively if values exceed thresholds.

Problem Resolution
Troubleshooting performance problems should be accomplished using a documented, predefined prob-
lem resolution process similar to the high-level flowchart depicted in Figure 13-2. We will touch briefly
on each step in the flow chart to give you a better feel for the process.

The first step in the process is to define the problem. Two primary sources of problems require resolu-
tion: user reports and system monitoring alerts. Translating information from these sources into a clear
definition of the problem is not as easy as you might think. Reports such as ‘‘the system seemed slow
yesterday’’ don’t really help you define or isolate the problem. Provide users with a well-designed paper
form or online application for reporting problems to ensure that all important information about the
problem is captured while it is still fresh in their minds. Understanding how the user was interacting
with the system may lead you directly to the root of the problem. If not, move on to the next step in the
process.

The next step involves checking all potential bottlenecks, paying special attention to areas that have
been problems in the past. Consult your system monitoring tools and logs to check for any suspicious
resource usage or changes in normal processing levels. If you are lucky enough to catch the problem

680

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 681

Chapter 13: Optimizing WebLogic Server Performance

while it is occurring, your monitoring tools might help you determine in real time the exact location of
the bottleneck.

Apply best
practices to
troubleshoot
the system

Is the
problem
solved?

Document for
future use

Perform detailed
system analysis

of all
components

Check all
potential

bottlenecks

Identify
performance

problem

Can you
determine which

component contains
the bottleneck?

Document new
bottleneck for

future use

yes

no

no

yes

Figure 13-2: Problem resolution flow chart.

If you are unable to identify the location of the bottleneck or root cause of the performance problem you
will need to perform a more rigorous analysis of all components in the system, looking for more subtle
evidence of the problem. Start by identifying the layer in the application most likely to be responsible
for the problem and then drilling in to components in that layer looking for the culprit. If you discover
a new bottleneck or area of concern, make sure to document the new bottleneck, adding it to the list of
usual suspects for the next time.

Once you’ve identified the location of the bottleneck you can apply appropriate tuning options and best
practices to solve the problem. Document the specific changes made to solve the problem for future
use. If nothing seems to work, you may need to step back, revisit everything you’ve observed and

681

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 682

Chapter 13: Optimizing WebLogic Server Performance

concluded, and try the process again from the top. Consider the possibility that two or more bottlenecks
are combining to cause the problem or that your analysis has led you to an incorrect conclusion about
the location of the bottleneck. Persevere, and you will find it eventually.

Common Application Server Performance Problems
This section documents a variety of common problems and how you can identify and solve them in your
environment.

Troubleshooting High CPU Utilization and Poor Application Server
Throughput

The first step in resolving this problem is to identify the root cause of the high CPU utilization. Consider
the following observations and recommendations:

❑ Most likely the problem will reside in the application itself, so a good starting point is to profile
the application code to determine which areas of the application are using excessive proces-
sor resources. These heavyweight operations or subsystems are then optimized or removed to
reduce CPU utilization.

❑ Profile the garbage collection activity of the application. This can be accomplished using applica-
tion profiling tools or starting your application with the -verbose:gc option set. If the applica-
tion is spending more than 25 percent of its time performing garbage collection, there may be an
issue with the number of temporary objects that the application is creating. Reducing the number
of temporary objects should reduce garbage collection and CPU utilization substantially.

❑ Refer to information in this chapter and other tuning resources available from Oracle to make
sure the application server is tuned properly.

❑ Add hardware to meet requirements.

Troubleshooting Low CPU Utilization and Poor Application Server
Throughput

This problem can result from bottlenecks or inefficiencies upstream, downstream, or within the applica-
tion server. Correct the problem by walking through a process similar to the following:

1. Verify that the application server itself is functioning normally using the weblogic.Admin
command-line administration tool to request a GETSTATE and a series of PING operations.
Chapter 12 walked through the use of this tool and the various command-line options and
parameters available. Because the GETSTATE and PING operations flow through the normal
execute queue in the application server, good response times are an indication that all is
well within the server. Poor response times indicate potential problems requiring additional
analysis.

2. If the GETSTATE operation reports a healthy state but the PING operations are slow, check to
see whether the execute queue is backed up by viewing the queue depth in the WebLogic
Console.

682

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 683

Chapter 13: Optimizing WebLogic Server Performance

3. A backed-up execute queue may indicate that the system is starved for execute threads. If
all execute threads are active and CPU utilization is low, adding execute threads should
improve throughput, so check work managers for any maximum threads constraints and
raise them, as appropriate.

4. If the queue appears starved but adding execute threads does not improve performance,
there may be resource contention. Because CPU utilization is low, the threads are probably
spending much of their time waiting for some resource, quite often a database connection.
Use the JDBC monitoring facilities in the console to check for high levels of waiters or long
wait times. Adding connections to the JDBC connection pool may be all that is required to
fix the problem.

5. If database connections are not the problem you should take periodic thread dumps of the
JVM to determine if the threads are routinely waiting for a particular resource. Take a series
of four thread dumps about 5 to 10 seconds apart, and compare them with one another to
determine if individual threads are stuck or waiting on the same resource long enough to
appear in multiple thread dumps. The problem threads may be waiting on a resource held
by another thread or may be waiting to update the same table in the database. The JRockit
Latency Analyzer can easily identify any resource contention issues without resorting to
thread dumps and other types of monitoring. Once the resource contention is identified you
can apply the proper remedies to fix the problem.

6. If the application server is not the bottleneck, the cause is most likely upstream of the server,
perhaps in the network or web server. Use the system monitoring tools you have in place
to check all of the potential bottlenecks upstream of the application server and troubleshoot
these components.

Troubleshooting Low Activity and CPU Utilization on All Physical
Components with Slow Throughput

If CPU utilization stays low even when user load on the system is increasing, you should look at the
following:

1. Is there any asynchronous messaging in the system? If the system employs asynchronous
messaging, check the message queues to make sure they are not backing up. If the queues
are backing up and there are no message ordering requirements, try adding more dispatcher
threads to increase throughput of the queue.

2. Check to see if the web servers or application servers are thread starved. If they are, increase
the number of server processes or server threads to increase parallelism.

Troubleshooting Slow Response Time from the Client and Low Database
Usage

These symptoms are usually caused by a bottleneck upstream of the database, perhaps in the JDBC con-
nection pooling. Monitor the active JDBC connections in the WebLogic Console and watch for excessive
waiters and wait times; increase the pool size, if necessary. If the pool is not the problem, there must be
some other resource used by the application that is introducing latency or causing threads to wait. Often,
periodic thread dumps can reveal what the resource might be.

683

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 684

Chapter 13: Optimizing WebLogic Server Performance

Troubleshooting Erratic Response Times and CPU Utilization on the
Application Server

Throughput and CPU will always vary to some extent during normal operation, but large, visible swings
indicate a problem. First look at the CPU utilization, and determine whether there are any patterns in the
CPU variations. Two patterns are common:

❑ CPU utilization peaks or patterns coincide with garbage collection. If your application is running
on a multiple CPU machine with only one application server, you are most likely experiencing
the effects of non-parallelized garbage collection in the application server. Depending on your
JVM settings, garbage collection may be causing all other threads inside the JVM to block, pre-
venting all other processing. In addition, many garbage collectors use a single thread to do their
work so that all of the work is done by a single CPU, leaving the other processors idle until the
collection is complete. Try using one of the parallel collectors or deploying multiple application
servers on each machine to alleviate this problem and use server resources more efficiently. The
threads in an application server not performing the garbage collection will be scheduled on pro-
cessors left idle by the server performing collection, yielding a more constant throughput and
more efficient CPU utilization. Also consider tuning the JVM options to optimize heap usage
and improve garbage collection using techniques described earlier in this chapter.

❑ CPU peaks on one component coincide with valleys on an adjacent component. You should
also observe a similar oscillating pattern in the application server throughput. This behavior
results from a bottleneck that is either upstream or downstream from the application server. By
analyzing the potential bottlenecks being monitored on the various upstream and downstream
components you should be able to pinpoint the problem. Experience has shown that firewalls,
database servers, and web servers are most likely to cause this kind of oscillation in CPU and
throughput. Also, make sure the file descriptor table is large enough on all Unix servers in the
environment.

Troubleshooting Performance Degrading with High Disk I/O
If a high disk I/O rate is observed on the application server machine, the most likely culprit will be
excessive logging. Make sure that WebLogic Server is set to the proper logging level, and check to
see that the application is not making excessive System.out.println() or other logging method calls.
System.out.println() statements make use of synchronized processing for the duration of the disk I/O
and should not be used for logging purposes. Unexpected disk I/O on the server may also be a sign that
your application is logging error messages. The application server logs should be viewed to determine if
there is a problem with the application.

Java Stack Traces
This section discusses the reading and interpretation of Java stack traces in WebLogic Server. A Java stack
trace displays a snapshot of the current state of all threads in a JVM (Java Virtual Machine) process. This
trace represents a quick and precise way to determine bottlenecks, hung threads, and resource contention
in your application.

Understanding Thread States
The snapshot produced by a Java stack trace will display threads in various states. Not all Java stack
traces will use the same naming convention, but typically each thread will be in one of the following
states: runnable, waiting on a condition variable, and waiting on a monitor lock.

684

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 685

Chapter 13: Optimizing WebLogic Server Performance

Threads in the runnable state represent threads that are either currently running on a processor or are
ready to run when a processor is available. At any given time, there can be only one thread actually
executing on each processor in the machine; the rest of the runnable threads will be ready to run but
waiting on a processor. You can identify threads in a runnable state by the runnable keyword in the
stack trace, as shown here:

"DynamicListenThread[Default[2]]" daemon prio=10 tid=0x2dcb0800 nid=0x4ac
runnable [0x3116f000..0x3116fc94]

java.lang.Thread.State: RUNNABLE
at java.net.PlainSocketImpl.socketAccept(Native Method)

...

Threads waiting on a condition variable are sleeping, waiting to be notified by their manager that work
is ready for processing. The stack trace indicates this with the in Object.wait() message:

"[ACTIVE] ExecuteThread: ‘0’ for queue: ‘weblogic.kernel.Default (self-
tuning)’" daemon prio=6 tid=0x2ce82000 nid=0x1748 in Object.wait()
[0x2e0cf000..0x2e0cfd14]

java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x0c89aaa8> (a weblogic.work.ExecuteThread)
at java.lang.Object.wait(Object.java:485)
at weblogic.work.ExecuteThread.waitForRequest(ExecuteThread.java:157)
- locked <0x0c89aaa8> (a weblogic.work.ExecuteThread)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:178)

Applications use monitor locks, or mutexes, to synchronize access to critical sections of code that require
single-threaded access. When you see a thread that has waiting for monitor entry in its stack trace, the
thread is waiting to access synchronized code, such as the thread shown here:

"[ACTIVE] ExecuteThread: ‘1’ for queue: ‘weblogic.kernel.Default (self-
tuning)’" daemon prio=6 tid=0x2cff8400 nid=0x1630 waiting for monitor entry
[0x2e44f000..0x2e44fd14]

java.lang.Thread.State: BLOCKED (on object monitor)
at professional.weblogic.test.MutexServlet.doGet(MutexServlet.java:20)
- waiting to lock <0x289aefb0> (a professional.weblogic.test.MutexServlet)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:707)

...

Two different types of thread dumps can be produced in a typical environment: system-level process
dumps, otherwise known as core dumps, and Java thread dumps.

Generating System-Level Process Dumps
System-level process dumps are generated by the JVM itself in response to a system error condition;
typically, this happens because some native code is trying to access an illegal memory address. The
content of this dump depends on whether the JVM can call the signal handler before the process itself
core dumps. If the JVM can call the signal handler, it will typically produce a text file in the current
directory containing information about the process and the thread in which the low-level error occurred.
If the JVM is unable to call the signal handler, a core dump file will be produced containing information
about the JVM’s native operating system process rather than the Java classes themselves. This type of
dump is much less valuable and should be used only if no Java stack trace is available.

685

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 686

Chapter 13: Optimizing WebLogic Server Performance

Generating Java Thread Dumps
Sending a special signal to the JVM generates a Java stack trace. On Unix platforms you send the SIGQUIT
signal using the kill command. On most Unix platforms, the command kill –QUIT <PID>, where <PID>
is the process identifier for the JVM process, will produce a Java thread dump that shows the call stack
of every user-level thread in the JVM. On a Windows platform, you generate a thread dump by pressing
the Ctrl-Break key sequence in the console window in which the Java program is executing. In addition,
you can generate a stack trace either by invoking the static method Thread.dumpStack() or by invoking
the printStackTrace() method on an instance of the Throwable class.

WebLogic Server also provides several tools that allow you to generate a thread dump. First,
the WebLogic Console provides a Dump Thread Stacks button on the server’s Threads Monitoring tab.
Second, the deprecated weblogic.Admin tool we briefly discussed in Chapter 12 supports a THREAD_DUMP
command. Finally, you can use WLST to get the ThreadStackDump attribute on the JVMRuntime MBean,
as shown here.

connect(’weblogic’, ‘weblogic1’, ‘t3://127.0.0.1:7001’)
cd(’serverRuntime:/JVMRuntime/AdminServer’)
cmo.getThreadStackDump()

When analyzing or troubleshooting an application it is important to generate multiple thread dumps
over a period of time to identify hung threads properly and better understand the application state. Start
by generating three to five separate thread dumps approximately 15 to 30 seconds apart. If your servers
communicate with each other using RMI it may be necessary to perform this operation on all servers in
the cluster simultaneously to get a full picture. Depending on the number of servers in the cluster and
the number of threads in the execute queue, this process may generate a large amount of output, but the
output is invaluable in diagnosing thread-related problems. Later in this section we discuss how to read
and interpret these thread dumps.

Reading Core Dumps
Sometimes it will be necessary to examine the core file to determine what has caused the JVM to core
dump. When you are examining this core file, remember that Java itself uses a safe memory model and
that any segmentation fault must have occurred in either the native code of the application or the native
code of the JVM itself. On Unix systems a core file will be produced when a JVM fails. On Windows
systems, a drwtsn32.log file will be produced when a segmentation fault occurs in a JVM.

You have several ways to examine these core files, usually through debuggers like gdb or dbx. On Solaris
you can also use the pstack command, as shown here:

/usr/proc/bin/pstack ./core

When using dbx to examine the JVM core file, first move to the directory where the core file resides, then
execute the dbx command with the binary executable as a parameter. Remember that the java command
is usually a shell script and that you must specify the actual java binary in the command. Once you have
started the debugger you can use the dbx where command to show the function call stack at the time of
the failure, indicating the location of the segmentation fault.

dbx /usr/java/native/java ./core
(dbx) where
Segmentation fault in glink.JNU_ReleaseStringPlatformChars at 0xd074e66c

686

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 687

Chapter 13: Optimizing WebLogic Server Performance

0xd074e66c (JNU_ReleaseStringPlatformChars+0x5b564) 80830004
lwz r4,0x4(r3)

From this information you can often determine the location of the error and take the appropriate action.
For example, if the segmentation fault is the result of a just-in-time (JIT) compiler problem and you are
using the HotSpot compiler you can modify the behavior of the JIT to eliminate the problem. Create a
file called .hotspot_compiler in the directory used to start the application, and indicate in this file the
methods to exclude from JIT processing using entries similar to the following.

exclude java/lang/String indexOf

The specified methods will be excluded from the JIT compilation process, eliminating the core dump.

Reading Java Stack Traces
Java stack traces can be very useful during the problem resolution process to identify the root cause
for an application that seems to be hanging, deadlocked, frozen, extremely busy, or corrupting data.
If your data is being corrupted, you are probably experiencing a race condition. Race conditions occur
when more than one thread reads and writes to the same memory without proper synchronization. Race
conditions are very hard to find by looking at stack traces because you will have to get your snapshot at
the proper instant to see multiple threads accessing the same non-synchronized code.

Thread starvation or thread exhaustion can occur when threads are not making progress because they
are waiting for an external resource that is either responding slowly or not at all. One particular case
of this happens when WebLogic Server A makes an RMI call to WebLogic Server B and blocks waiting
for a response. WebLogic Server B then calls via RMI back into WebLogic Server A before the original
call returns from WebLogic Server B. If enough threads on both servers are awaiting responses from the
other server, it is possible for all threads in both servers’ execute queues to be exhausted. This exhaustion
behavior will show itself initially as no idle threads available in the WebLogic Server execute queue when
viewed in the WebLogic Console. You can confirm this problem by generating a stack trace and looking
for threads blocked waiting for data in the weblogic.rjvm.ResponseImpl.waitForData()method. Look
for entries like this:

"[ACTIVE] ExecuteThread: ‘1’ for queue: ‘weblogic.kernel.Default (self-
tuning)’" daemon prio=6 tid=0x2cff7c00 nid=0x1388 waiting for monitor entry
[0x2e44f000..0x2e44fd14]

java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x02a03f38> (a weblogic.rjvm.ResponseImpl)
at weblogic.rjvm.ResponseImpl.waitForData(ResponseImpl.java:87)

...

If a large number of threads are in this state you need to make appropriate design changes to eliminate
RMI traffic between the servers or better throttle the number of threads allowed to call out and block in
this way.

Deadlock occurs when individual threads are blocked waiting for the action of other threads. A deadly
embrace deadlock occurs when one thread locks resource A and then tries to lock resource B, while a
different thread locks resource B and then tries to lock resource A. This concept was discussed briefly in
Chapter 6 in the context of database locking for entities. Stack traces will show blocked threads within
synchronized application code or within code that accesses objects using exclusive locking in one form

687

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 688

Chapter 13: Optimizing WebLogic Server Performance

or another. Remember that it is also possible for the application to be deadlocked across multiple JVMs
with one server’s threads in a deadly embrace with another server’s threads.

A system that is inactive and has poor application performance may, in fact, be performing normally.
The problem may instead be indicative of an upstream bottleneck, as described earlier in this chapter. A
Java stack trace for a system in this state will display a high percentage of threads in the default execute
queue blocking until they receive some work, having a stack trace similar to the following.

"[ACTIVE] ExecuteThread: ‘0’ for queue: ‘weblogic.kernel.Default (self-
tuning)’" daemon prio=6 tid=0x2cf9f000 nid=0x7f0 in Object.wait()
[0x2e0cf000..0x2e0cfb14]

java.lang.Thread.State: WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x0c433020> (a weblogic.work.ExecuteThread)
at java.lang.Object.wait(Object.java:485)
at weblogic.work.ExecuteThread.waitForRequest(ExecuteThread.java:157)
- locked <0x0c433020> (a weblogic.work.ExecuteThread)
at weblogic.work.ExecuteThread.run(ExecuteThread.java:178)

The stack trace indicates that this thread is idle, or waiting for a request, rather than busy in application
code or waiting on an external resource.

Understanding WebLogic Server Stack Traces
Stack traces of a WebLogic Server instance will also show a number of common elements based on the
internal design of the WebLogic Server product. As you know from previous chapters, all client requests
enter WebLogic Server through a special thread called the listen thread. There will usually be two listen
threads visible in a stack trace, one for SSL and the other for nonsecure transport. Here is an example of
the WebLogic Server listen thread waiting for a connection to arrive:

"DynamicListenThread[Default]" daemon prio=10 tid=0x2d384c00 nid=0x1254
runnable [0x310cf000..0x310cfb94]

java.lang.Thread.State: RUNNABLE
at java.net.PlainSocketImpl.socketAccept(Native Method)
at java.net.PlainSocketImpl.accept(PlainSocketImpl.java:384)
- locked <0x0cb9ee20> (a java.net.SocksSocketImpl)
at java.net.ServerSocket.implAccept(ServerSocket.java:453)
at java.net.ServerSocket.accept(ServerSocket.java:421)

...

Socket connections received by WebLogic Server are registered and maintained by the socket muxer.
The socket muxer reads data from the socket and dispatches the request to the appropriate subsys-
tem. The socket muxer has its own execute thread pool that it uses to read the requests off the socket
by calling the processSockets() method, as shown here for the Windows version of the native
socket muxer.

"ExecuteThread: ‘1’ for queue: ‘weblogic.socket.Muxer’" daemon prio=6
tid=0x2d03f400 nid=0x180 runnable [0x2ebff000..0x2ebffc14]

java.lang.Thread.State: RUNNABLE
at weblogic.socket.NTSocketMuxer.getIoCompletionResult(Native Method)
at weblogic.socket.NTSocketMuxer.processSockets(NTSocketMuxer.java:81)
at weblogic.socket.SocketReaderRequest.run(SocketReaderRequest.java:29)

688

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 689

Chapter 13: Optimizing WebLogic Server Performance

at weblogic.socket.SocketReaderRequest.execute(SocketReaderRequest.java:42)
at weblogic.kernel.ExecuteThread.execute(ExecuteThread.java:145)
at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:117)

As you become more familiar with your application and better understand the internal implementation
of WebLogic Server itself, your ability to interpret stack traces and troubleshoot problems will increase.

Chapter Review
This chapter covered many different areas related to WebLogic Server application performance, including
basic principles and tuning options, design patterns and best practices, and specific performance best
practices and troubleshooting tips. As you can tell from this wide-ranging discussion, there is a lot to
know and consider when tuning or troubleshooting a complex Java EE system. Nothing beats experience
when it comes to successful performance tuning, and experience is gained only by doing, so go do some
performance tuning!

689

Patrick c13.tex V3 - 09/18/2009 12:21pm Page 690

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 691

Development Environment
Best Practices

Congratulations! Your boss just gave you the go-ahead to build a new Java EE application using
WebLogic Server. Months of meetings and proposals are behind you, and it’s time to get started on
the actual development. It’s going to be a fairly large application, requiring a development team of
10 to 15 people. You have a reasonable budget for development hardware and software and the full
confidence of management and the other team members. Now what?

It’s not enough to know the technology inside and out. You must structure your development effort
in a way that optimizes productivity and reduces the risk of failure. This chapter continues the
discussion of development best practices with recommendations in the following areas.

❑ Defining the required development environment hardware and software.

❑ Installing WebLogic Server in the development environment.

❑ Configuring the project directory structure.

❑ Establishing a build process.

❑ Choosing development tools.

❑ Creating a unit testing infrastructure.

There can be a lot more to Java EE development than these six items. You need to choose a devel-
opment methodology and team structure, create realistic plans with measurable deliverables, create
useful design artifacts and specifications, and embrace the other development best practices known
in the industry. This book does not cover best practices in these general areas. Classic references
for information on these topics include Rapid Development: Taming Wild Software Schedules by Steve
McConnell (Microsoft Press, 1996) and Extreme Programming Explained: Embrace Change by Kent Beck
(Addison-Wesley, 1999).

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 692

Chapter 14: Development Environment Best Practices

Defining Required Hardware and Software
The hardware and software required for your development effort will depend on many details of your
application and the chosen platform. The primary goals of the development environment should include
the following.

❑ Enable isolated development, execution, unit testing, and debugging of the application on each
developer’s workstation.

❑ Provide a centralized location for running, unit testing, and debugging a coordinated daily or
weekly development build of the application.

❑ Provide a centralized source code management (SCM) repository and database for use by devel-
opers and the common build of the application.

❑ Simulate the production hardware and software platform at a level sufficient to support devel-
opment and debugging.

Most Java EE applications will require at least two servers in the development environment to host
the source code management (SCM) server software, the development database, and the development
build of the Java EE application. It is common to combine the SCM software and development build on
the same server, yielding the following set of hardware and software requirements in the development
environment.

❑ Developer workstations with WebLogic Server, development tools, database client software, a
source code management client, and build scripts and tools.

❑ A development server with WebLogic Server, web server software, database client software,
source-code management server and repository, and build scripts and tools.

❑ A database server with RDBMS software installation and any required legacy system integration
software.

Each server and workstation in this environment has a specific role in the development process.

Developers use the workstations to construct the individual components of the application and create
local (workstation-based) builds for unit testing and debugging. In addition to all development tools and
SCM client applications, the workstations also require a copy of WebLogic Server configured with the
appropriate JDBC DataSource resources, JMS destinations, and other supporting infrastructure required
to run the application. Unless the development team is very small and can share a single development
server for builds, you should provide local execution capability for developers on their own workstations.

Best Practice
Provide local execution capability on developer workstations to avoid resource conflicts
on shared development servers.

If it is not possible to provide local execution capability for some reason, you may be able to segregate the
shared development server and provide an isolated environment to support each developer’s execution
and testing needs. The easiest way to segregate the server is to create separate domains for each devel-
oper with the servers defined in each domain configured to listen on a different port. The developers will

692

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 693

Chapter 14: Development Environment Best Practices

still compete for server resources (CPU, memory) but will be able to run multiple copies of the appli-
cation simultaneously. Again, this is not ideal. It is better to provide local execution capability on each
workstation if at all possible.

The development team uses the development server to host the shared source code management (SCM)
repository and as a central location for making and testing periodic builds of the application. We discuss
the importance of periodic builds and regression testing in a later section. This server also provides an
environment more similar to the production environment. A web server can be installed on the machine
and configured to proxy appropriate JSP and servlet requests back to WebLogic Server. The development
server usually matches the vendor and operating system present in production. Often developer work-
stations are Windows-based machines and the development, test, and production servers are Unix-based
systems.

Best Practice
The development server should match the vendor and operating system of the test and
production machines. Developer workstations may use a different platform, if desired.

Sharing a Database Server
The database server is used to host the common development database supporting both developer work-
station builds and the central development build of the application. Gateway products and other legacy
system integration products can also be hosted on this server. There is no strong reason to separate the
database server and the development server apart from the desire to mimic production as early in the
process as possible. Production undoubtedly will use separate servers for the WebLogic Server clus-
ter and the database so, if the budget allows, it makes sense to provide this separation in development
as well. Often the development database server will be managed by a professional DBA, and will host
databases for several project teams.

Sharing a common development database between multiple developers and the common development
build may look good on paper, but there is at least one significant problem with this simplistic approach
that we need to solve: changes to the database schema and contents can break builds. For example, one
developer may need to modify the structure or contents of a database table to support the components
he or she is changing and testing on a workstation. Structural modifications are very likely to break the
build for all other developers and for the common development build, especially in a JPA application.
Remember that the JPA container checks the database schema for every JPA entity when it is used, and
will throw exceptions if the schema has been changed to be incompatible with the code.

One approach is to serialize the development process during database schema changes. Essentially,
you make the database change, and the entire team waits for the developer to finish the changes, test
them, and make the new versions of the components available in the current branch of the application.
Everyone retrieves the new copy of the component from the SCM system and is able to build and run
the application again. Although this approach might be appropriate for small teams or in circumstances
where it can be done very quickly, it simply becomes an untenable solution on a large project.

Fortunately, there is a reasonable solution that provides support for existing builds and for developers
requiring database changes: create multiple copies of the development database on the development
server, usually as separate schema in a single database instance. In its simplest form, this technique
requires two complete copies of the database, called for our purposes DEVDB1 and DEVDB2. As shown

693

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 694

Chapter 14: Development Environment Best Practices

in Figure 14-1, the common development build and the builds used by different developers connect to
whichever copy of the database matches the components in that build.

Developer
WorkstationDevelopment

Server

Developer
Workstation

DEVDB1 DEVDB2

Developer
Workstation

Database Server

Figure 14-1: Multiple databases support different builds.

In a two-database approach such as this, often a primary database is used for the periodic builds and
an alternate database is used for development of components requiring database changes. The database
administrator usually toggles back and forth as each new set of changes is made, meaning that DEVDB1
is primary until the changes in DEVDB2 are made part of the common build, at which point DEVDB2
becomes primary and DEVDB1 is used for subsequent database changes. Clearly this technique can be
extended to three or more databases, but two are usually sufficient. You can switch between databases
without having to modify the application. Ensure that all application components acquire database con-
nections from the JDBC data source using a well-known JNDI name. Create multiple JDBC data sources
in the WebLogic Server configuration, and set the data source for appropriate database to use the well-
known JNDI name. To switch to another database, simple remove the JNDI name from one data source,
assign it to the data source for the new database, and restart the application.

Most development teams go further, and give each developer their own accounts in the database and
their own copy of the schema. Each developer configures the data source for their WebLogic Server
instance to use their database account. This allows developers to work in isolation from each other, and
also have their own copy of the application data. This last point can be important when running unit tests
that need to set the database to a known state, execute the code under test, then verify that the new state
is as expected. If this approach is taken, a database administrator will usually wish to use synonyms or
database views to provide each schema with access to a single copy of tables containing static reference
data, and also write database scripts that automate the roll out of schema changes to each developer
account.

Best Practice
Use multiple copies of the development database to support builds requiring differ-
ent database definitions, and to allow each environment to have its own set of data.
Switch between databases by changing data source parameters in the WebLogic Server
configuration.

694

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 695

Chapter 14: Development Environment Best Practices

Installing WebLogic Server Software
The installation program packaged with WebLogic Server provides a straightforward way to install
WebLogic Server on all required machines in the development environment. Follow the instructions
in the program, and choose a Typical Installation unless you wish to install the WebLogic Server
sample code and sample domains, or wish to de-select optional components such as the web server
plug-ins to save disk space, in which case choose Custom Installation. During the installation, you will
be prompted for an Oracle Middleware Home directory. In some limited cases multiple products may
share a Middleware Home, but we find it easier to manage multiple installations if we give each its own
Middleware Home. You will also be prompted for a Product Installation directory; there is no reason
to alter the default, which is located below the Middleware Home.

If you are installing WebLogic Server on many machines, you can run the installer as a command-line
program in silent mode, where it reads installation options from a pre-prepared file. Refer to the
WebLogic Server documentation for details, using Link 14-1 from this book’s online Appendix at
http://www.wrox.com/.

One final comment on installation before we move on: Because you want the development server to
mirror a production set up, be sure to install WebLogic Server on the development servers in a man-
ner consistent with your security and network rules. For example, never use the root account to install
WebLogic Server on a Unix machine. Create a weblogic or oracle user account for this purpose and
limit access to this account to certain developers on the project. Create a weblogic group and make the
weblogic user account a member of that group. Create additional developer accounts in the weblogic
group and control their level of access to WebLogic Server files and directory structures using the stan-
dard operating system permissions facilities.

There are few reasons to need to modify a WebLogic Server installation, and there is often an alternative
that does not require the installation to be changed. See Table 14-1 for details. Consequently, we recom-
mend further that you only grant developers read access to the installation, so you can be sure that it is
completely standard.

Table 14-1: Reasons for Altering the WebLogic Server Installation, and Alternatives

Reason Alternative

Install a custom or third-party security
provider. Requires placing the file in
$WL_HOME/server/lib/mbeantypes.

Install the security provider in the
lib/mbeantypes domain subdirectory for
each domain that requires it.

Register a domain with the node manager.
Requires that the nodemanager.domains file
is modified.

Run the node manager from a separate copy
of the $WL_HOME/common/nodemanager
directory.

Apply temporary product patches. No alternative. Write access to the
installation is required because patches may
make arbitrary changes to an installation.
Patches should be applied under the
installation user account.

695

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 696

Chapter 14: Development Environment Best Practices

Best Practice
Install WebLogic Server using a weblogic user account, not root. Create separate
developer accounts in the weblogic group to provide limited developer access to
WebLogic services and files.

Creating and Configuring a WebLogic Server Domain
When the installation process is complete, each machine will have a copy of WebLogic Server, but it
will not yet have a domain to use for your application. You can create a domain for each development
environment using the WebLogic Server Configuration Wizard. This program is available from the Start
menu in Windows or may be started using the config script in the $WL_HOME/common/bin directory. The
wizard program allows you to set up an empty domain containing a single server quickly, by selecting
the defaults, and also provides options to customize the created domain by adding servers, and clusters.
The Configuration Wizard’s online documentation has detailed instructions; see Link 14-2. The WebLogic
Server domain will need to be configured to support your application by adding appropriate JDBC data
sources, and JMS queues or topics, integrating the domain with other security systems, tuning network
settings, and so on. This configuration often varies between different development environments (we’ve
already noted that each developer may require data sources to connect to different database accounts),
and between development and pre-production environments.

The required configuration changes can be made in many ways, including using the WebLogic Console,
the <wlconfig> Ant task, pre-created domain templates, or the WebLogic Scripting Tool (WLST).

Although it is possible to manage configuration information by hand editing or
scripting changes to the XML files in the config directory, and Oracle publishes the
schema for these files, this is strongly discouraged. The file formats can, and do,
change between releases.

The <wlconfig> Ant task provides a simplified technique for accessing and manipulating JMX MBeans
in the domain, and includes get, set, create, delete, and query functions. Unfortunately, test and
production environments are not typically managed using Ant so the wlconfig approach is unlikely to
be suitable for migrating and promoting configuration information to those environments.

The WebLogic Server Domain Template Builder and WebLogic Server Configuration Wizard are easy-to-
use GUI applications providing a step-by-step process for creating and replaying templates. The Domain
Template Builder allows you to create preconfigured domains for your application’s environment and
use the Configuration Wizard to replay them. This replay capability provides an easy way to bootstrap
new domains that already contain the configuration information needed by your application. A silent
replay mode is available from the command line to support the build and promotion process. Making
changes to domain templates can be tedious, and they do not support incremental change as well as a
WLST script. Domain templates are most useful when you want to provide users with a simple instal-
lation experience, which fits their primary purpose to support the creation of domains for products that
build upon WebLogic Server, such as Oracle Service Bus.

696

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 697

Chapter 14: Development Environment Best Practices

For development environments, the standout winner out of these techniques is WLST, which we covered
in depth in Chapter 12. We strongly recommend that you invest the time to master this tool.

You should use the same WLST script to create domains for all of your environments: development, func-
tional and performance test, pre-production, and production. The script should use a small environment
properties file that describes the differences between the environments. This makes it easy to recreate an
environment at will, and significantly reduces the likelihood of configuration errors.

You can use WLST in either its online or its offline mode. The bigrez.com configuration is relatively
simple, and we used the online mode for the setUpDomain.py script. However, we generally prefer the
offline mode for projects that require many domain configuration changes. The offline mode doesn’t
require a pre-created empty domain and a running server, so is easier to integrate into a build process.
You can treat the WebLogic Server configuration like another development project — check changes to
the scripts or parameters for a domain into the source code control system, and let the build server create
new domains. Additionally, you have to write robust online mode scripts that work correctly if they are
reapplied to an existing domain. They need to undo any previous changes before applying new changes,
which makes them more complicated. In contrast, an offline script starts from scratch every time.

There are one or two types of changes that require using the online mode; in particular, changes to
security policies require a server to be running. Even if you use an offline WLST script as your primary
domain creation tool, it is common to need to run a small WLST online script as a post-installation script
for production domains.

Best Practice
Use WLST in its offline mode to create and customize WebLogic Server domains for
your development, pre-production, and production environments.

Development Project Structure
Once you have hardware and software in place, it is time to configure the working directories used to
organize application components.

We outlined the structure we used for bigrez.com in Chapter 8. We prefer to have a separate develop-
ment project and an Ant build file for each Java EE component or library, and called this out as a best
practice. We also have an application project that takes the various modules and libraries as input and
creates the EAR, and a project containing unit test code. This modular approach is used by IDEs, and
is well supported by higher-level build systems such as Apache Maven. Modular projects have many
advantages over the alternative of placing the entire source code in one project.

❑ Each project is responsible for building a single component. You can easily rebuild single com-
ponents, and develop and deliver them separately from other components.

❑ The structure forces you to address the important issue of the inter-component dependencies,
and encourages you to define and use public interfaces and establish a component versioning
strategy. In contrast, placing all of the code in a single project allows poor practices to creep in,
such as cyclic dependencies between components and direct Java calls to implementation arti-
facts, leading to a tangled source tree that is increasingly costly to change.

697

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 698

Chapter 14: Development Environment Best Practices

❑ The build files for individual projects are simple, and can be maintained easily. Common build
functions can be extracted and reused using the Ant <import> task.

Starting with version 10.0, WebLogic Server itself was restructured into modules for these same reasons.
You can see the component modules in the modules subdirectory below the Middleware Home directory.

Whatever the type of project, it will have source files, artifacts created during build process such as com-
piled .class files, and will produce a component file as output. For bigrez.com, these are located below
the src, build, and output project subdirectories, respectively. The web application and web services
projects have an additional source directory, WebContent, which contains the JSPs, TLDs, HTML, images,
and deployment descriptors to be packaged in the web application. Similarly, the application project
contains an EarContent source directory that contains deployment descriptors and the APP-INF/lib
directory, but has no src directory because the application doesn’t have any Java source files. The
EarContent and WebContent names happen to be the defaults used by Eclipse Web Tools Project; we
use those names because we used Eclipse to create bigrez.com.

All of the source files, the build scripts, and ancillary items such as WLST scripts should be stored in a
source code management (SCM) repository such as CVS, Subversion, ClearCase, or Perforce. The goal is
to have every component and file required to build and deploy the application in the repository to ensure
proper control and promotion of the application during the development process.

Streamlining the Development Cycle
Historically, Java EE development has had a bad name for the length of time required to make a change
and deploy it the server. In this section, we cover two WebLogic Server features that you should use on
developer workstations to avoid lengthy development cycles.

Split Directory Development
The time taken to copy and package compiled classes into libraries and modules, and then to package up
the modules into an .ear archive, is a significant contributor to lengthy deployment cycles. WebLogic
Server has supported exploded deployments for many releases, which partly addresses this problem. We
considered the many benefits of exploded deployments in Chapter 8, and noted that it removes the need
for a packaging step. WebLogic Server’s split directory development feature builds upon this capability, and
lets you deploy an application that is built from separately organized source trees and build directories
without first having to merge the application files into a single location.

The Oracle Enterprise Pack for Eclipse (OEPE) uses the split directory development structure to imple-
ment its Virtual EAR feature, which we cover later. If you use OEPE to create Java EE applications, you’ll
be using the split directory development structure whether you realize it or not. However, you can make
use of this feature even if you’re editing your source files with Notepad or vi and compiling them with
build scripts.

The key mechanism that underlies split directory development is a modified deployment process. All
of the WebLogic Server deployment tools, including the WebLogic Console, weblogic.Deployer, and
the <wldeploy> Ant task, understand split directory deployment. In a normal exploded deployment of
an application, the exploded directory contains a complete enterprise application. The top-level appli-
cation directory contains subdirectories for each of its components, and all of the compiled classes,

698

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 699

Chapter 14: Development Environment Best Practices

descriptors, JSPs, HTML pages, and other resources are present somewhere below the directory structure.
An example application is shown in Figure 14-2. This application has an EJB module and a web applica-
tion module, and contains a mixture of compiled classes, deployment descriptors, third-party .jar files,
and JSP files. In a development environment, many of these items would be stored in a source file tree
checked out of the SCM repository. Every time we change a source file, we have to copy either it or a
derived file (such as a compiled .class file) to the exploded directory. We might be able to configure an
IDE or create an Ant build script to automate this step, but this is still an additional interruption to the
development cycle.

myejb.jar/
 META-INF/weblogic-ejb-jar.xml
 com/bigapp/
 MyEJB.class
 MyEJBImpl.class

bigapp/
 META-INF/application.xml
 lib/thirdparty.jar

mywebapp.war/
 WEB-INF/
 web.xml
 index.jsp
 classes/com/bigapp/MyServlet.class
 picture.png

Figure 14-2: Example exploded
application.

Split directory development allows us to avoid the need to copy files between different locations.
Figure 14-3 shows the application restructured for split directory development. Now we have two
separate directory structures. The build directory contains various output files that are created as part of
the build, such as compiled .class files and third-party libraries that may have been downloaded from
a central repository using a dependency management tool. It is straightforward to configure an IDE or
build scripts to output files directly into this structure. The source directory contains the application files
that you create and edit, and this directory structure can be checked directly into your SCM system.

.beabuild.txt

Build directory Source directory

myejb.jar/
 META-INF/weblogic-ejb-jar.xml

bigapp/
 META-INF/application.xml

mywebapp.war/
 WEB-INF/
 web.xml
 index.jsp
 picture.png

myejb.jar/
 com/bigapp/
 MyEJB.class
 MyEJBImpl.class

bigapp/
 lib/thirdparty.jar

mywebapp.war/
 WEB-INF/
 classes/com/bigapp/MyServlet.class

Figure 14-3: Restructured application for split directory development.

699

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 700

Chapter 14: Development Environment Best Practices

The .beabuild.txt file in the build directory contains the magic behind split directory development.
When we deploy this application, we pass the build directory as the argument to one of the WebLogic
Server deployment tools. The deployment tool then uses the .beabuild.txt file to link the build direc-
tory to the source directory. Listing 14-1 shows the contents of a .beabuild.txt file for our application.

Listing 14-1: A .beabuild.txt file for split directory development.

bea.srcdir=/opt/development/bigapp/bigappEAR

The format of the .beabuild.txt file is very simple: a properties file with a single bea.srcdir property
pointing to the source directory. The source directory in the example is /opt/development/bigapp/
bigappEAR. If you move the source directory, you will need to edit the .beabuild.txt file to refer to its
new location.

WebLogic Server provides the weblogic.BuildXMLGen tool, which takes a source directory and creates an
Ant project that uses split directory development. However, this tool generates a build file and imposes
a particular Ant build structure upon you. This may be acceptable for simple projects, but we often find
it better to create the .beabuild.txt file manually. The caveat is that Oracle does not publicly document
the format of the .beabuild.txt file, but it is a simple format that is unlikely to change.

Better still, use a WebLogic Server–aware IDE, such as OEPE, that uses the split directory development
feature under the covers.

Best Practice
Take the time to set up split directory development for your development workstation
environments.

FastSwap
Another time-consuming process is the redeployment of a whole application. This can take a particularly
long time if an application uses lifecycle listeners to perform initialization tasks, or initializes EJBs and
servlets at deployment time. Exploded deployment can also help here. As noted in Chapter 8, WebLogic
Server uses change-aware classloaders with exploded deployments that support the refresh of changed
HTML, JSPs, servlets, and other web resources in-place without the need to redeploy. Exploded deploy-
ments also allow partial redeployment, where a single module can be redeployed without the need to
refresh the whole application.

Java 5 introduced a new feature called dynamic class redefinition (DCR). DCR allows a container to reload
modified classes without the need to destroy and recreate classloaders. Not only is this much faster, but
it also means that existing instances do not need to be discarded. This further improves development
times. However, the standard DCR only handles changes to classes that leave their shape unchanged; that
is, changes that do not add, remove, or change declared fields or method signatures. This significantly
reduces the opportunities for using DCR.

WebLogic FastSwap builds on Java 5 DCR, but mostly removes the restrictions, allowing methods and
fields to be added, changed, or removed from classes. A few restrictions still exist; in particular, Java
reflection will not be aware of changes to classes, you cannot change the interfaces a class implements,

700

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 701

Chapter 14: Development Environment Best Practices

you cannot add or remove methods from an EJB, and you cannot change annotations; refer to the
WebLogic Server documentation for details (see Link 14-3). If you make a restricted change to a class, a
ClassRedefinitionExceptionwill usually be thrown the next time you access the application, indicating
that you should either back out the change or redeploy the application.

FastSwap is very easy to use. When enabled, the server loads the application using a special class-
loader that handles the class redefinition. FastSwap must detect that classes have changed so they can be
reloaded. For web applications, a special servlet filter is automatically deployed that checks for changes
when a new request is received. If you are developing a non-web application, you can trigger detection
by using the <fast-swap> Ant task.

FastSwap works only with exploded applications; any modifications to archived libraries and modules
will require a redeployment of the application.

To enable FastSwap, add the following element to your application’s weblogic-application.xml
descriptor. You can also use this element in a standalone web application’s weblogic.xml descriptor.

<fast-swap>
<enabled>true</enabled>

</fast-swap>

FastSwap is a development-time feature, and is disabled if the server is started in production mode.
Consequently, you can safely enable FastSwap in the deployment descriptor for all of your applications.

Tip to Remember
You can safely enable FastSwap for all of your applications, because the setting is
ignored unless a server is running in development mode.

Establishing a Build Process
The project directories contain everything required to build and package the application. The build
process for a project refers to the use of scripts and tools to perform compilation and deployment
steps in support of the overall development process. We recommend the use of the Apache Ant build
utility to script the build process for your WebLogic Server projects. A wealth of information is avail-
able on Ant, including books, white papers, example build scripts, and the Ant project home page at
http://ant.apache.org/. Consistent with the intermediate to advanced nature of this book, we assume
you have a basic knowledge of Ant and will concentrate on best practices related to its use in WebLogic
Server development.

You should organize your Ant build.xml build script based on the major steps required to build, pack-
age, test, and deploy the application. These steps or tasks generally fall into five categories: compilation
and related activities; creating web application, EJB, and application archives; deploying locally; creating
official deployment packages for promotion to test or production; and miscellaneous tasks used during
development.

In each category you are likely to have multiple Ant targets, or high-level tasks, that perform a series of
steps. The main Ant targets in the build.xml file for bigrez.com projects are listed in Table 14-2.

701

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 702

Chapter 14: Development Environment Best Practices

There is no single correct way to name the targets in your build script, and to set up the dependen-
cies between each target. The Ant utility doesn’t mandate a particular scheme, and you’ll find many
different configurations in different development environments. Pick a scheme that makes sense for your
application, but be sure the target names are an accurate reflection of the tasks performed by the target.

Table 14-2: Build Targets for bigrez.com Projects

Task Purpose

compile Compile the Java sources. This may involve additional processing steps;
for example, JPA weaving.

package Package the compiled output into the appropriate archive. For example,
for a web application project, this creates a .war file.

test Run any defined unit tests. For bigrez.com, only the unit-tests project
defines tests.

clean Remove the output and intermediate build artifacts such as .class files.

deploy, undeploy,
redeploy

The ear project and the top-level build file define these targets that deploy
the application to a running server.

report Produce reports. For most projects, this generates Javadoc output. For the
unit test project, it also creates an HTML report of the unit test results.

all Run the clean, compile, test, package, and report targets to do a full
build and test of the project.

initialize-database The top-level build file defines this utility target that recreates the database
schema.

Best Practice
Use the Apache Ant build utility to manage the build process for developer worksta-
tions and to create deployment archive files destined for test and production. Choose a
consistent naming convention for your build targets, and keep each target focused on a
single activity.

Continuous Integration
As you will see shortly, IDEs such as Eclipse and JDeveloper provide rich features for compilation, pack-
aging, and deployment of Java EE projects. Although IDEs can greatly increase developer productivity,
you should maintain a set of Ant build files and treat these as the authoritative way of building the appli-
cation. Throughout this book we’ve advocated the use of Ant to create a cross-platform, generic build
process that is not dependent on a particular IDE’s build facilities. There are several important reasons
for this. First, different developers prefer to use different IDEs. If you standardize on one particular IDE,
you will undoubtedly please some developers and upset others, and there is nothing so unproductive as

702

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 703

Chapter 14: Development Environment Best Practices

an unhappy developer. Second, the configuration of an IDE for a particular set of projects can be hard to
automate, and the alternative of having every developer be responsible for setting up his or her environ-
ment by hand is time-consuming and error-prone. Third, it is usually not possible to automate the IDE
build process through a script, so you cannot easily perform regular builds on a central build server.

By having a standard Ant build, you can support multiple IDE products in the same development team.
If IDE-specific features are used for building applications it may be difficult to keep all dependencies,
steps, and outputs consistent across multiple IDE products. Modern IDEs provide good integration with
Ant, so can be used to trigger the standard build scripts as well as supporting interactive development
with their own compilation tools.

Best Practice
Use Ant to implement the compile and build process for your application.

It is conventional practice to use a separate build server to run regular builds, unit tests, and report
generation, typically overnight. When a build is triggered, an Ant script on the server checks out the
latest version of the code from the SCM repository, does a full build, and runs all the unit tests. The build
server usually hosts a web server from which the output of the last few builds can be downloaded, and
the unit test reports can be browsed.

Teams following a continuous integration approach go one step further, and configure the build
server using tools such as Cruise Control (http://cruisecontrol.sourceforge.net/) or Hudson
(https://hudson.dev.java.net/) to trigger builds and run unit tests automatically when changes
are checked into the SCM repository. Both Cruise Control and Hudson integrate well with Ant.
Continuous integration provides quick feedback about problems that break the build, and enables an
agile development approach where the team strives continually to evolve a working system, rather than
commit major changes at once.

As your portfolio of application projects grows, you will find the management of dependencies
between the projects quickly becomes more complex and time-consuming. You may have the need
to use different versions of libraries, modules, and third-party components when building different
applications. The traditional answer to these problems has been to use SCM features to provide
different views or branches on the source code repository; this works, but the overhead of maintaining
the SCM configuration can be considerable. More recently, alternative approaches using tools such
as Apache Maven (http://maven.apache.org/) and Apache Ivy (http://ant.apache.org/ivy/)
have become popular. Using such a dependency management tool in conjunction with a continuous
integration server can result in a powerful build system that not only rebuilds an application project
when one of its files has changed, but also triggers builds of all the downstream projects that depend
on the changed project, deploys the resulting components to a server, and runs the appropriate
unit tests.

Best Practice
Use a tool such as Cruise Control or Hudson to create a continuous integration build
server that provides a central service for creating authoritative builds.

703

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 704

Chapter 14: Development Environment Best Practices

Code Inspection and Reporting Tools
We recommend you run code quality reports as part of your standard build. Many high-quality reporting
tools are freely available.

Checkstyle (http://checkstyle.sourceforge.net/) can be used to enforce a coding standard. Develop-
ers’ passions can run high about the best formatting style, but it is indisputable that a team working on a
common code base is more productive if each member uses the same code format conventions. Enforcing
conventions with an automated tool such as Checkstyle works much better than using a manual code
review process, and allows code reviews to focus on higher-level problems. As well as enforcing a stan-
dard source code formatting approach, Checkstyle can perform static code inspection and alert about
questionable Java coding practices that may indicate bugs; for example, classes that implement equals()
but not hashCode(). You may even consider applying Checkstyle as part of your SCM check-in rules so
that developers can’t commit incorrectly formatted code.

FindBugs (http://findbugs.sourceforge.net/) is another code inspection tool that analyzes your code
for a large number of common problems.

JDepend (see Link 14-4) is a more specialized analysis tool that focuses principally on the identifying
coupling and cyclic dependencies between the various components in your code. It is useful to encourage
the development of well-defined, loosely-coupled components that are easy to reuse.

Finally, don’t forget to generate JavaDoc API documentation. The javadoc tool will produce warnings
about incorrectly formatted or annotated documentation. Regularly generating and publishing the docu-
mentation encourages developers to keep it up to date.

Each of these tools is best applied as an integral part of your development process. They are easy to
integrate with Ant. By addressing the problems they identify as early as possible, you will build quality
into your code as it grows. In contrast, trying to address a long list of warnings after the code has been
written is highly tedious. You should also obtain and install the appropriate IDE plug-ins so developers
have access to these tools at their fingertips.

Best Practice
Integrate code inspection and reporting tools such as Checkstyle, FindBugs, JDepend,
and JavaDoc into your build process. Fix problems as soon as these tools identify them.

Integrated Development Environments
At this point you have development hardware, software, WebLogic Server domains, a working directory
structure, and a basic build process. Next comes the interesting and often difficult choice of development
tool or integrated development environment (IDE) appropriate for your project. Let’s face it: every devel-
oper has his or her favorite tool, whether it’s a full-blown IDE, or a minimalist approach using Emacs,
TextPad, or some similar editor. Each has its pros and cons, and there is no right answer for all projects
or all developers.

Common IDEs used to develop WebLogic Server applications include Eclipse, Oracle JDeveloper,
IntelliJ IDEA, and Sun’s NetBeans. All four provide powerful, Java-aware editing, support remote

704

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 705

Chapter 14: Development Environment Best Practices

debugging, and have features for working with Java EE, such as JSP editing and JPA object relational
mapping tools.

In this section, we’ll look at how to configure two of these IDEs: Eclipse and JDeveloper. We don’t attempt
to provide an exhaustive tutorial on each IDE, or to play one off the other. Rather, we show the steps to
configure each tool to work well in a WebLogic Server development environment. As a developer, you’ll
find that the time taken to set up your IDE to support fast, interactive development will quickly be repaid.

Prerequisites
In the discussion that follows, we assume you have obtained the bigrez.com source code, installed
WebLogic Server 11g, suitably configured a database, and also set up a WebLogic Server domain.

The bigrez.com source code is distributed in a .zip file, which you should expand into a directory. The
directory will contain subdirectories for each of the six components of bigrez.com (refer back to Table 8-5
for details), a directory containing the libraries and descriptors to be packaged in the .ear file, a directory
containing unit tests, and an etc directory that contains common build and setup scripts.

The source code contains a README file that describes how to build bigrez.com using Ant, and how to con-
figure the database and a suitable WebLogic Server domain. You should work through the instructions
in the README file and check that you can build and run bigrez.com before proceeding.

Configuring Eclipse for bigrez.com
The next few pages describe how to set up Eclipse and the Oracle Enterprise Pack for Eclipse for
bigrez.com development.

The Oracle Enterprise Pack for Eclipse
The standard version of Eclipse has only basic support for WebLogic Server, and for that you must
download a separate server adapter.

The Oracle Enterprise Pack for Eclipse (OEPE) extends Eclipse to be fully WebLogic Server–aware. If you
are an Eclipse user, but don’t use OEPE to develop WebLogic Server applications, you are missing out.
A full version of Eclipse together with OEPE can be installed using the WebLogic Server 11g installer.
Updates to OEPE may be available for download from the Oracle Technology Network (Link 14-5).

OEPE is the successor to the BEA WebLogic Server Tools project, replaces the former BEA WebLogic
Workshop IDE, and rolls up several other major contributions to Eclipse by Oracle such as object-
relational mapping support. The current version is the Oracle Enterprise Pack For Eclipse 11g, which
fully supports WebLogic Server 9.2 and newer, and has limited support for WebLogic Server 8.1, 9.0, and
9.1. Its primary features include:

❑ Support for an enhanced form of WebLogic Server split directory development — a feature it
refers to as Virtual EARs. We cover this feature later.

❑ Deployment to servers running on local and remote machines, and remote debugging of appli-
cations running within a server.

❑ Support for WebLogic Server shared libraries. You can register shared libraries in OEPE, and
use them in web application, EJB, and library projects. OEPE will then provide the classes in the
libraries to the other Eclipse tools, and maintain the appropriate deployment descriptor entries.

705

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 706

Chapter 14: Development Environment Best Practices

❑ Editing support for WebLogic Server deployment descriptors.

❑ Enhanced wizards for creating and working with web services.

❑ The Oracle Database plug-in for Eclipse, which provides interactive browsing and editing of
database schemas.

❑ OEPE has inherited support for Apache XMLBeans (http://xmlbeans.apache.org/) and
EJBGen (an annotation-based programming tool for EJB 2.x — see Link 14-6) from WebLogic
Workshop. Over time, Oracle plans to move additional WebLogic Workshop features into
OEPE.

❑ OEPE also bundles the Spring IDE project, which provides editing support for Spring configura-
tion files.

Installation
Eclipse is available as several different distributions. We started with Eclipse Ganymede Ser-
vice Release 2, which is Eclipse 3.4 with the Java EE support. This is available online at
http://www.eclipse.org/ganymede/. We then installed the Oracle Enterprise Pack for Eclipse
11g from the OEPE site. Experienced Eclipse users will most likely want to take this approach of
installing OEPE as a set of plug-ins to their existing Eclipse installation.

If you don’t have an Eclipse 3.4 installation, or simply want to try out OEPE without modifying an exist-
ing installation, the WebLogic Server 11g installer contains all you need, including the base Eclipse IDE.

Configuring a Target Runtime
We start by configuring our WebLogic Server installation and the domain directory as a target runtime
for Eclipse. This allows Eclipse to provide the right classes to projects that use the target runtime, to start
and stop the server, and to deploy code to the server.

First, configure a runtime environment — this corresponds to a WebLogic Server installation. Open the
workspace preferences dialog, and choose Server ➪ Runtime Environments. Click Add, and then select
Oracle WebLogic Server 11gR1. Work your way through the rest of the dialog. You’ll need to enter
the WebLogic Home directory. This is the directory below the Oracle Middleware Home directory that
contains the WebLogic Server installation, and is usually called wlserver_10.3.

Now, choose File ➪ New ➪ Other and select Server. This allows you to create a target server that corre-
sponds to a particular domain. The dialog is fairly self-explanatory — apart from specifying the domain
directory, you should accept the default settings for now.

Importing the bigrez.com Projects
We’ll create a project in Eclipse for each of the six bigrez.com components, and one for the enterprise
application. We’ll set up dependencies between the projects so that Eclipse understands that they are a
single application.

First create the enterprise application project. Select File ➪ New ➪ Enterprise Application Project.
Enter bigrez-ear for the project name. For the Contents, deselect Use default and navigate to the ear
subdirectory in your expanded bigrez.com distribution. The project will be populated automatically
with the existing files. Ensure the Target Runtime is the set to the one you configured for WebLogic
Server 11g, and leave all other settings at their default values.

706

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 707

Chapter 14: Development Environment Best Practices

Tip to Remember
Don’t use spaces in project names. We’ve seen several bugs in Eclipse that arise from
doing this.

Now create a project for the JPA domain model bundled library. Select File ➪ New ➪ Other, and select
Utility Project. Name your project bigrez-domain, and ensure the Contents points to the domain
subdirectory in your expanded bigrez.com distribution directory. Finally, check Add project to an EAR
and select bigrez-ear. Before you move on, note how the project classpath has automatically been set
up for WebLogic Server. It includes WebLogic System Libraries — that is, the various modules and APIs
that make up WebLogic Server itself, as well as all of the libraries that the EAR has contributed through
its APP-INF/lib directory.

Tip to Remember
To set up JPA tooling for the domain project, add the JPA facet in the project properties,
and then configure the JPA properties to use a connection to your database. Be sure
also to set Discover annotated classes automatically, because we haven’t listed the
entities in persistence.xml.

Configure the remaining projects in a similar manner, according to Table 14-3. In each case, change the
contents directory to be the corresponding one in the bigrez.com expanded directory, and be sure to add
the projects to the bigrez-ear EAR.

The Ant build for webservices project follows a two stage process. In the first stage, the web service
stubs are generated using the wsdlc and jwsc Ant tools. This creates various Java classes used by the
application code, and only needs to be repeated should the WSDL change. The second stage is to compile
the application code and package the output as a web application.

The Eclipse webservices project relies on the Ant build to perform the first stage and to generate the
classes below WEB-INF/classes. The classes will be included automatically in the Eclipse project build
path. It is possible to generate web service stubs in Eclipse, but this task is best automated using Ant.
Otherwise whenever the WSDL changes, each developer needs to regenerate the stubs, taking care to use
the same IDE options.

Best Practice
IDEs like Eclipse provide integrated tooling to generate web services from WSDL.
These features are useful for rapid prototyping, but have many options that must be
correctly set by the user, and cannot easily be automated. Formal projects should use
the Ant wsdlc and jwsc tasks instead.

Running bigrez.com from Eclipse
Right-click the bigrez-web-user project and select Run As ➪ Run On Server, check your server is selected,
and click Finish.

707

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 708

Chapter 14: Development Environment Best Practices

Table 14-3: Setting Up the bigrez.com Projects in Eclipse

Project Name Project Type Notes

bigrez-ear Enterprise
Application

bigrez-domain Utility

bigrez-services EJB On the second page, change the Source Folder to src and
deselect Create an EJB client jar module. After creating
the project, open the project properties and change to the
Java EE Module Dependencies Properties tab. Ensure that
bigrez-domain.jar is checked.

bigrez-web-common Utility

bigrez-web-user Dynamic Web On the second page, deselect Generate deployment
descriptor, and change the Context Root to user. Ensure
that bigrez-domain.jar, bigrez-services.jar, and
bigrez-web-common are checked in the Java EE Module
Dependencies properties.

bigrez-web-admin Dynamic Web On the second page, deselect Generate deployment
descriptor, and change the Context Root to admin. Ensure
that bigrez-domain.jar, bigrez-services.jar, and
bigrez-web-common are checked in the Java EE Module
Dependencies properties.

bigrez-webservices Dynamic Web On the second page, deselect Generate deployment
descriptor, and change the Context Root to webservices.
Ensure that bigrez-domain.jar and bigrez-services.jar
are checked in the Java EE Module Dependencies properties.

If you have followed the preceding steps carefully, Eclipse will start the WebLogic Server instance, deploy
the application, and load the welcome page for bigrez.com. See Figure 14-4.

Once you’ve played with bigrez.com a little, and browsed around the source code, you may want to
experiment with restarting the server in debug mode (right-click the server in the Servers view and
select Restart in Debug), and setting breakpoints within the code.

Partial Redeployment
In Eclipse terminology, deployment to a server is known as publishing. OEPE tracks the modules in an
application that have been modified since the last publish. For the next publish, it will perform a partial
redeployment — only deploying the modules that have changed.

As for any deployment, OEPE must acquire the edit lock for the domain when publishing. If you have
the WebLogic Console open at the same time, and it is set to automatically acquire the lock and activate
changes, you will be prevented from publishing from Eclipse.

708

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 709

Chapter 14: Development Environment Best Practices

Figure 14-4: bigrez.com running within the Eclipse IDE.

Tip to Remember
When using the WebLogic Console with OEPE, make sure the Automatically Acquire
Lock and Activate Changes option is unchecked in the WebLogic Console preferences.

One warning: A partial redeployment of a module that uses a JPA persistence context packaged in a
different, unchanged module may sometimes fail. You may find you need to also modify a file in the
module containing the persistence context to force the module to be redeployed, or alternatively right-
click the server in the Servers view and select Clean to republish the entire application.

If you edit a file in a module that uses a JPA persistence context packaged in
another module, you will occasionally need to touch a file in the JPA module, or
republish the entire application.

Partial deployment is a useful time saver, but you’ll find you don’t need to publish after each change.
A publish is required after changes to deployment descriptors and annotations. In most other cases you
can simply save your changes in Eclipse, and the application running in a WebLogic Server instance will

709

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 710

Chapter 14: Development Environment Best Practices

be updated. Three features enable this — WebLogic Server’s change-aware servlet and JSP classloaders,
FastSwap, and Virtual EARs. We’ve already considered change-aware classloaders and FastSwap, but
what’s a Virtual EAR?

Virtual EARs
Earlier in this chapter, we discussed WebLogic Server’s split directory development feature. This feature
speeds up development cycles by removing the need to merge source directories and generated output
directories into a single exploded application. Even better, the benefits of deploying in an exploded
format are inherited, including the ability to change HTML, JSP, other resources, and classes (if FastSwap
is enabled) without the need for a partial or full redeployment. However, the split directory development
feature relies on the source and build directories both being structured as a set of modules nested within
an enterprise application.

When we set up bigrez.com for Eclipse, we created an application consisting of a number of modules,
organized into seemingly independent project directories within the Eclipse workspace. OEPE deploys
the EAR without unnecessary copying of the source files to an exploded application directory, but with-
out nesting the module projects within the application project. How does it do this? It turns out that the
.beabuild.txt file has more secrets that allow OEPE to link together directories and files into a single
virtual EAR.

If you follow the previous steps to deploy an application from Eclipse, and then examine the source path
of the application, you’ll find it refers to a location below the Eclipse workspace .metadata directory.
That location contains a .beabuild.txt file that ties the various parts of the virtual EAR together. Part of
a typical file is shown in Listing 14-2.

Listing 14-2: The .beabuild.txt file generated by OEPE for a Virtual EAR.

/work/bigrez/ear/EarContent/APP-INF/classes = APP-INF/classes
/work/bigrez/domain/build/classes = APP-INF/lib/bigrez-domain.jar
/work/bigrez/services/build/classes = bigrez-services.jar
/work/bigrez/web-common/build/classes = APP-INF/lib/bigrez-web-common.jar
/work/bigrez/web-user/WebContent = bigrez-web-user.war
/work/bigrez/web-user/build/weboutput = bigrez-web-user.war
/work/bigrez/web-user/build/classes = bigrez-web-user.war/WEB-INF/classes
/work/bigrez/web-admin/WebContent = bigrez-web-admin.war
...
/work/bigrez/ear/EarContent/APP-INF/lib/commons-beanutils.jar = APP-
INF/lib/commons-beanutils.jar
/work/bigrez/ear/EarContent/APP-INF/lib/commons-codec.jar = APP-
INF/lib/commons-codec.jar
...

This is a properties file, like the simple .beabuild.txt file in Listing 14-1 for split directory development.
However, there are several differences.

❑ The file contains many properties, instead of a single beasrc.dir property, allowing many direc-
tories and files to be merged into the virtual EAR.

❑ The properties link sources, derived resources, and .jar files into the virtual EAR.

710

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 711

Chapter 14: Development Environment Best Practices

❑ The property keys are the absolute paths of the directories to merge into the virtual EAR, and
property values are the relative locations in the application. (For the beasrc.dir property, the
path to the source directory is the property value, not the key.)

We noted previously that the format of the .beabuild.txt file is not publicly documented by Oracle, and
so it might change in the future. The good news is that you don’t need to create or edit this file. OEPE
generates the file and keeps it up to date without you having to worry about it. You benefit from faster
development cycles with OEPE simply by using the standard Eclipse deployment commands. Virtual
EARs are the ideal complement to FastSwap. In most cases, you simply modify and save a file, Eclipse
will compile it if necessary, and a running server will automatically pick up the changes.

Configuring JDeveloper for bigrez.com
We’ll now look at how to set up JDeveloper for bigrez.com development. The high level steps are similar
to those for Eclipse, but JDeveloper has a different model of applications and projects.

Oracle JDeveloper
Oracle JDeveloper is Oracle’s principal development platform. It is free to download and use, and runs
on many platforms including Microsoft Windows, Linux, and Apple Mac OS X. In addition to supporting
Java and Java EE development, JDeveloper is the IDE for Oracle’s SOA Suite and WebCenter Suite fam-
ilies of products, and provides additional tools for web service, XML, and database development. Most
notably, JDeveloper is the tool set for the Oracle Application Development Framework (Oracle ADF).
ADF is a commercial framework which extends Java EE and provides a visual and declarative rapid
application development approach for enterprise applications.

Installation
Download the latest version of JDeveloper from the Oracle Technology Network site (see Link 14-7).
Select the installer appropriate for your operating system.

The installation process is straightforward and similar to that for WebLogic Server described earlier in
this chapter.

The JDeveloper 11g installer includes WebLogic Server 11g. This embedded version of WebLogic Server
is preconfigured for easy testing and debugging of applications from JDeveloper. To save disk space
on developer workstations, you can install JDeveloper into the Oracle Middleware Home directory of
an existing WebLogic Server 11g installation. Alternatively, you might chose to rely on the version of
WebLogic Server installed by JDeveloper. If you are considering doing so, be aware that the JDeveloper
installer is missing several optional components available in the full WebLogic Server installation, includ-
ing the HTTP Pub-Sub server, third-party JDBC drivers, web server plug-ins, and the WebLogic Server
examples.

We prefer to install JDeveloper and WebLogic Server into separate Oracle Middleware Homes. Although
this requires more disk space, we benefit from having a full WebLogic Server installation that can be
patched and upgraded separately from JDeveloper.

You can now start JDeveloper. If you are using Windows, a suitable menu item will be added to the Start
menu. On Linux, run the command jdeveloper/jdev/bin/jdev. JDeveloper will start and prompt you

711

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 712

Chapter 14: Development Environment Best Practices

to select a role to enable a subset of the JDeveloper features and so simplify the menu options. For now,
you should select Default Role to enable all features.

Creating an Application and the First Project
Eclipse uses a separate project to represent the enterprise application. In contrast, in JDeveloper an appli-
cation configuration is defined to which projects representing the application’s modules and libraries are
added.

To create the application, choose File ➪ New from the main menu and create a new Generic
Application. Name the application BigRez, and set the directory to the top-level directory of your
expanded bigrez.com distribution (where the README.txt file is).

If you like, you can set the application package prefix to com.bigrez. This is a convenience that saves
typing when creating new Java classes for the application.

The new application dialog creates an initial project. We’ll configure this to contain the domain model
project, and configure the other projects later. On the second page of the dialog, call the initial project
domain, which will set the directory to the bigrez.com domain subdirectory. Also, select the EJB project
technology. The default settings on the remaining dialog pages are acceptable, so choose Finish.

JDeveloper uses deployment profiles to control the packaging of project output. Create a deployment profile
to complete the configuration of the domain project. Open up the project properties by selecting the
domain project and choosing Application ➪ Project Properties. Select Deployment, then New, and
change the archive name to bigrez-domain. The remaining defaults are acceptable, but to be tidy you
may wish to modify the file filters to exclude the Ant build.xml file.

You can now compile the domain project by selecting the Build ➪ Make All menu option, and create the
bigrez-domain.jar file by selecting Build ➪ Deploy, then choosing the deployment profile.

Configuring a Server Instance
Select Tools ➪ Preferences from the main menu, then chose Run in the preferences dialog, and select
Edit Server Instances. You’ll see that an existing Default Server is preconfigured. Rather than make
use of this default server, we want to use the WebLogic Server domain that we set up following the
instructions earlier in this chapter.

Select New to create a server instance, and change the name to BigRezServer. Check the box to let JDe-
veloper manage the life cycle of this instance (to start and stop it), and point the Domain Directory to the
directory containing your bigrez.com WebLogic Server domain. Replace the Server Instance text with
AdminServer. Select Startup and change the listen port to 7001.

Select the Application ➪ Application Properties menu item and choose the Run node in the tree. In
the Bind Application to Server Instance list, select the BigRezServer you have just created. When we
run the application using integrated WebLogic Server support, it will now use the external bigrez.com
domain.

One final bit of configuration is necessary to complete the integration with the external domain.
Choose View ➪ Application Server Navigator, right click on IntegratedWLSConnection, and select
Properties. Update the Authentication and Configuration settings to correct the administrator

712

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 713

Chapter 14: Development Environment Best Practices

user name and password (weblogic and weblogic1, unless you have changed them), port, and the
domain name.

You can now test that the server instance is correctly configured by selecting Run ➪ Start Server
Instance from the menu.

Creating the Remaining Projects
Next, create the services project. Open up the New Gallery using the File ➪ New menu option. Create a
new generic project, and select the Java project technology. Change the project name to services. This
will set the directory to correct subdirectory of the bigrez.com distribution. Change the default package
on the next page if you wish. The remaining project defaults are suitable, so select Finish.

The EJBs in the services project depend upon the domain project. Open up the project properties
and select Dependencies. Add a new dependency by clicking the edit icon, expanding the domain.jpr
project, and selecting the bigrez-domain deployment profile. The project also depends upon Java EE and
WebLogic Server classes. From the project properties dialog, select Libraries and Classpath in the tree,
and add the WebLogic 10.3 Remote-Client library.

While you have the project properties dialog open, change the Java compiler from the ojc compiler to
javac. This setting can be found under Compiler. We found runtime problems with the code produced
by ojc for the generic types used by the services project. Switching to javac avoids these problems.

The final step in the services project configuration is to create a deployment profile. Call the profile
bigrez-services, and change the archive type to EJB JAR File.

The bigrez.com web projects have dependencies on Spring MVC and Tiles. We begin by creating a user
library definition which includes all of the required libraries. Choose Tools ➪ Manage Libraries, select
User, then New. Name your library BigRez Dependencies. Add classpath entries for each of the .jar files
in the ear/EarContent/APP-INF/lib directory (you can select multiple files at once by holding down the
shift key). Finally, check Deployed By Default so that JDeveloper knows to deploy the library as part of
the application.

Now let’s create the web-common project. Create a new generic project called web-common, selecting the
Java project technology. The remaining project defaults are suitable, so select Finish. Open the proper-
ties dialog for the new project, choose Libraries and Classpath ➪ Add Library, and select the BigRez
Dependencies library. Also add the WebLogic 10.3 Remote-Client library. Create a deployment profile
for the project, using the JAR File artifact type.

Following the steps in the preceding paragraph, create the three remaining web projects: web-user,
web-admin, and webservices. Use the WAR File artifact type when creating the deployment profiles. For
each project, open the project properties dialog and set up the web content directories, the context root,
and the dependencies on other projects as follows:

❑ Locate the Web Application node under Project Source Paths. Browse and set the HTML Root
directory to the project’s WebContent directory.

❑ Go to the Java EE Application node and change the Java EE Web Context Root to user, admin,
or webservices, depending on the particular project.

❑ Under the Dependencies node, add dependencies to the deployment profiles of the domain and
services projects. For the web-admin and web-user projects, also add a dependency on the
web-common deployment profile.

713

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 714

Chapter 14: Development Environment Best Practices

If you now try to build the application, you should find that only the webservices project fails to build.

Generating the Web Service
When we set up Eclipse, we relied on our Ant build to perform the generate Web Service stubs below
WEB-INF/classes. We pointed out earlier that web service stubs can be generated in Eclipse, but that
web service generation is best automated using Ant. As you might expect, JDeveloper also provides
IDE options to generate web service stubs if you configure the project with the Web Services project
technology. However, it is still better to use Ant to generate the stubs, and we’ll do just that.

Unlike Eclipse, JDeveloper can’t use the generated classes directly, and requires the generated web ser-
vice source files to be part of the project. Our Ant build creates the source files in a generated-src
directory. If this directory doesn’t exist, please first build bigrez.com using Ant as we described in
the ‘‘Prerequisites’’ section. If you add the generated-src directory as a project source path for the
webservices project, you’ll find you can successfully build all of the projects.

There’s one final task to do before the webservices project will deploy correctly. Although not required
by Java EE 5, JDeveloper expects every web application to have a web.xml descriptor file and the
webservices project doesn’t have one. Fortunately, a trivial descriptor file will do — it doesn’t even
need any servlet declarations or mappings. You can generate a suitable descriptor by right clicking
on the webservices project and selecting New ➪ Deployment Descriptors ➪ Java EE Deployment
Descriptor, and then web.xml.

Running and Deploying from JDeveloper
You can now run bigrez.com web projects from JDeveloper by right clicking on the web.xml, and select-
ing Run. JDeveloper will build the application, start WebLogic Server if necessary, deploy the code, and
open the first page of the application in a browser.

To create the bigrez.ear file, set up a deployment profile for the application. Add the modules to the
application in the Application Assembly part of the deployment profile dialog. You should also add the
ear/EarContent directory as a contributor so the application libraries are packaged in the EAR.

Debugging with an IDE
All modern IDEs support debugging of applications running in a remote WebLogic Server instance, and
make a debugging session easy to set up. Using Eclipse, for example, it is as simple as right-clicking an
application and selecting Debug On Server.

Under the covers, IDEs perform three steps when debugging a WebLogic Server application.

1. Compile the Java components with debugging information included in the .class files.

2. Start WebLogic Server with debug options set in the Java command line used to start the
server instance.

3. Attach to the WebLogic Server instance for remote debugging, and set up the breakpoints.

You can perform each of these tasks manually without an IDE. For example, if you compile with javac
you can use the -g switch to include debug information, and you can use the command-line jdb debugger

714

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 715

Chapter 14: Development Environment Best Practices

to attach to a process. However, this is a somewhat Spartan approach, and using an IDE’s debugging
capabilities is much easier.

In summary, remote debugging is easy to configure and use with modern IDE products and will save
you time when you need to debug your application.

Starting WebLogic Server in Debug Mode
WebLogic Server must be started with the Java Platform Debugging Architecture (JPDA) remote debug-
ging capability enabled. This capability is defined by the Java platform itself, and a JPDA-compliant
debugger can debug any Java application running in this mode.

The standard WebLogic Server scripts will start WebLogic Server in debug mode if the debugFlag envi-
ronment variable is set. If this flag is set, the following switches are added to the Java command line.

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,address=
${DEBUG_PORT},server=y,suspend=n -Djava.compiler=NONE

If you are running multiple WebLogic Server debug sessions on a shared development machine, you
should edit the setDomainEnv file to set a unique DEBUG_PORT for each server.

The WebLogic Server instance will boot up and wait for a debugger to connect to the running application
at the port specified or via shared memory. You may notice an increase in server boot time when running
in debug mode and a significant slowing of the application when a debugger is attached to the server
instance.

Debugging and Transaction Timeouts
One problem to watch out for: If you set a breakpoint inside transactional code such as an EJB compo-
nent or presentation-tier component with a user-defined transaction, the WebLogic Server transaction
manager will time out the transaction after a fairly short period of time. The default transaction timeout
is 30 seconds. You should increase the timeout value to at least 600 seconds for development domains
to give yourself enough time to examine variables, step through EJB code, and perform other debugging
tasks without having the operation time out and roll back.

Best Practice
Increase the Java Transaction API (JTA) timeout value in the domain to at least 600 sec-
onds to provide enough time to step through transactional code and examine variables
in the debugger without causing transaction timeouts.

Creating a Unit Testing Infrastructure
Before discussing techniques for unit testing a Java EE application, we provide a brief review of unit
testing.

Unit testing is the process of testing an individual software component or program to identify, isolate,
and remove software deficiencies as early as possible in the development process. The developer respon-
sible for programming the component is also responsible for unit testing. The component under test is

715

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 716

Chapter 14: Development Environment Best Practices

exercised in partial isolation from other parts of the application, and the services it depends upon may
be simulated with other test components. This yields a white box approach to testing that leverages the
developer’s knowledge of the component’s inner workings to create tests that exercise all critical paths
through the code.

The Importance of Unit Testing
A primary goal of unit testing is to detect errors early, at the point where they are easy to fix. Bugs
found early in the development process are much cheaper to fix, in terms of time and money, than bugs
discovered later in system or user testing. Unit testing has many other benefits as well.

The process of writing unit tests forces a developer to think about how the code should be used, and leads
to better interfaces. By exercising the code earlier, a developer can identify and correct inconsistencies in
the design before investing in writing a large amount of code.

Unit tests should have repeatable results, and be self-contained to the extent possible. Although the
developer creates and initially executes the unit tests as part of the component-development process,
the same tests can and should be used as a suite of regression tests that is regularly executed. A strong
regression test suite makes design changes and other refactoring efforts less risky. You have the ability
to regression test everything after a code change is made. If all the unit tests pass, you have a strong
degree of assurance that the changes have not broken previously working code. This is very important
if a developer is refactoring code that he or she did not write. Good unit tests also allow you to switch
between different third-party implementations of libraries and frameworks with confidence; for example,
to change your JPA implementation from Kodo to TopLink.

Unit tests are an effective communication mechanism. They improve the maintainability of code, by
providing future developers with solid definitions of expected behaviors and the ability to regression
test the application after making changes. They also act as examples that complement the JavaDoc of
an API.

Finally, unit tests provide quality assurance before releasing code to other teams. You’ll sleep much
better going into system and user-acceptance testing knowing that the candidate build has passed the
entire suite of unit tests.

Best Practice
Fix unit test failures as soon as possible. If you delay, the cost to fix will increase, trust
in the unit test suite will be reduced, and the overall value of your unit tests will be
diminished.

Write Unit Tests with the Code
It is easy for developers to delay or eliminate the creation of unit tests when the schedule gets tight.
Don’t allow this to happen! The result will be lower-quality code that is less maintainable and can’t be
regression tested, and this will cost you more in the long run.

The Extreme Programming (XP) methodology advocates writing unit tests before writing the component
itself, as a means to clarify the expected behavior of the component and facilitate good design before

716

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 717

Chapter 14: Development Environment Best Practices

coding begins. Although unit tests are valuable for XP and non-XP development efforts, by requiring
unit tests before coding you are more likely to have complete unit tests at the end of the process. Whether
or not you start with the test code, we recommend co-developing tests alongside the code. Write a little
code, write and execute unit tests to check that it does what you expect, and then repeat. Insist that
unit tests be available and that the code successfully passes all unit tests before considering the work
complete. A formal code review is a good time to review and sign off on these tests.

A good way to encourage co-development of unit tests with code is to provide developers access to a
code coverage tool. We are fans of Atlassian’s Clover commercial product (see Link 14-8), but several
free, open source coverage tools are also available, including EMMA (http://emma.sourceforge.net/)
and Cobertura (http://cobertura.sourceforge.net/). You should set an acceptable unit test coverage
goal for all new code — 80% is a typical figure. Developers then have a score to aim for, and unit testing
becomes more of a game and less of a chore.

Best Practice
Create unit tests for all business components in the system, and require all code to
pass the tests before considering it complete. Use the code review process and a code
coverage tool to ensure compliance.

Often the problem isn’t that developers disagree with the value of unit testing — they just find it burden-
some and time-consuming to write and organize the tests. In other words, the cost of writing a detailed
unit test often seems to outweigh the apparent benefits. That’s where a unit testing framework comes into
play by reducing the tedious work of creating, managing, and running unit tests. With a good framework
the value of unit testing will always outweigh the cost.

The JUnit Testing Framework
JUnit is by far the most popular Java unit testing framework. It is widely supported, and has strong
integration with IDEs, Ant, and other development tools.

JUnit has a small API, and is very simple to use. Unit tests are written as Java methods. From JUnit 4,
each unit test method is identified using the @org.unit.Test annotation. Here’s an abbreviated example
from the bigrez.com unit tests.

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.fail;
import org.junit.Before;
import org.junit.Test;

import com.bigrez.domain.GuestProfile;
import com.bigrez.service.NotFoundException;
import com.bigrez.testutilties.AbstractEntityManagerTests;

public class TestProfileServices extends AbstractEntityManagerTests
{

private ProfileServicesImpl profileServices;

@Before

717

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 718

Chapter 14: Development Environment Best Practices

public void setUp() throws Exception
{

profileServices = new ProfileServicesImpl();
profileServices.setEntityManager(getEntityManager());

}

@Test
public void testFindByLogonAndPassword() throws Exception
{

GuestProfile guestProfile1 = new GuestProfile();
guestProfile1.setLogon("logon");
guestProfile1.setPassword("password");
GuestProfile createdGP =

profileServices.createOrUpdate(guestProfile1);
GuestProfile guestProfile2 =

profileServices.findByLogonAndPassword("logon", "password");
assertEquals(createdGP, guestProfile2);
try {

profileServices.findByLogonAndPassword("logon", "blah");
fail("Expected NotFoundException");

}
catch (NotFoundException e) {}

}
}

Unlike previous versions of JUnit, there is no requirement for a JUnit 4 test class to extend a standard
JUnit superclass. Instead, the integration with the JUnit framework is specified using Java annota-
tions. The preceding example actually does extend a common superclass that is used by several of the
bigrez.com unit tests. The AbstractEntityManagerTests class contains convenience functions that set
up a JPA EntityManager before each unit test is run, and close it after a test, as well as utility functions
for creating instances of various bigrez.com JPA entities.

In our abbreviated example, the unit test class has a single test method testFindByLogonPassword(),
indicated by the @Test annotation. Typical unit test classes have tens of such test methods. There is
also a setUp() method indicated with the @Before annotation that will be called before each of the test
methods. When the test class is run with JUnit, the following will happen for each @Test method.

1. An instance of the class will be created.

2. Any @Before methods will be executed.

3. The @Test method will be called.

4. Any @After methods will be called.

There are also @BeforeClass and @AfterClass annotations that can be used to mark methods that should
be called once before or after any test methods defined in a test class.

The other items of interest in our test class are the assertEquals() method, which checks that its
arguments are equal, and the fail() method, which will mark a test as failed if it is called. The
org.junit.Assert class provides a rich set of other assertion methods.

This short example has demonstrated the principal features of the JUnit API. Complete documentation
and examples are available from the JUnit home page at http://www.junit.org/.

718

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 719

Chapter 14: Development Environment Best Practices

Out-of-Container Testing
Before EJB 3.0, EJB applications could only be tested in-container; that is, the code to test had to be
deployed within a running WebLogic Server instance. To achieve this, one of two techniques was used.

The first technique involves calling EJBs over RMI from JUnit test code running in a remote JVM. This
approach clearly can only be used to test EJB methods exposed through a remote interface. It prevents a
test case from setting up additional test conditions by making direct Java calls, and from fully asserting
the effects of the tests on the internal state of the application. This is black box testing, rather than the white
box testing required for effective unit tests.

The second technique involves running JUnit test code within the server. This can be achieved by call-
ing JUnit directly from a servlet, or using tools such as Jakarta Cactus (http://jakarta.apache.org/
cactus/), which automate the process for you. Objections to this approach include that it is complicated
to set up, and that the test cycle takes a significant amount of time to run.

Nowadays it is common for all unit tests to be completely run out-of-container. This is possible thanks to
the changes toward a POJO-based coding style, embodied in technologies such as EJB 3.0, JPA, and the
Spring Framework. The discipline of writing application components to be tested outside of a container
promotes good coding practices and results in loosely-coupled, reusable code.

We strongly encourage you to write unit tests that run out-of-container whenever possible. This leads to
better code, and test suites that are faster and easy to execute, and so improve productivity.

Best Practice
Unit tests should run out-of-container wherever possible.

Mocking Frameworks
Of course, components do have dependencies on other components and runtime services provided by
a container. To test a component outside of a container, stubs may need to be provided that simulate
the behavior of the component or service. Often, it is better to use a mock object rather than a stub. Like
a stub, a mock object simulates a component but also provide facilities to check that the component’s
methods have been called in the expected manner.

Several good mocking frameworks are available, including JMock (http://www.jmock.org/), EasyMock
(http://easymock.org/), and Mockito (http://mockito.org/). Mockito is a relatively new framework,
and is our favorite of the three. We used Mockito 1.6 in many of the bigrez.com unit tests.

To give you an understanding of how easy it is to use a mocking framework, let’s look at an example
using Mockito. When using Mockito, you create mock objects, wire them into the classes you want to
test, execute the tests, and then verify that the mocks were called in the expected manner. We’ll con-
sider the unit tests for the LoggingInterceptor, a class we first encountered in Chapter 6. Recall that
LoggingInterceptor is an EJB interceptor that has a single audit() method that logs the entry and exit
points of method calls to any EJB to which it is applied. Our test case will simply set up an instance of the
interceptor class, call it with an appropriate javax.ejb.InvocationContext, and then check that these
two logging messages are written out.

719

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 720

Chapter 14: Development Environment Best Practices

Here’s the setup. We first create java.util.Logger and InvocationContext instances using the Mockito
mock() method. The mock() method takes a class or interface as a parameter and creates a special type of
object, a mock, that can be substituted for an instance of the class or interface.

import static org.mockito.Matchers.eq;
import static org.mockito.Matchers.startsWith;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.verify;
import static org.mockito.Mockito.verifyNoMoreInteractions;
import static org.mockito.Mockito.when;
//... public class TestLoggingInterceptor
{

private Logger logger = mock(Logger.class);
private InvocationContext ic = mock(InvocationContext.class);

We then complete the setup in a @Before method that modifies the behavior of the InvocationContext
mock’s implementation of getMethod() to return a particular method. If we didn’t do this, the
default behavior of the mock would be to return null when getMethod() was called. In this test
we’re making fairly minimal use of the InvocationContext mock. The interceptor class does call
getMethod(), but only uses the result in log message output, so the method we return is not particularly
important.

@Before
public void setup() throws Exception
{

Method method = TestLoggingInterceptor.class.getMethod("setup");
when(ic.getMethod()).thenReturn(method);

}

Note how clean the Mockito interface is. Some other mocking frameworks would require method names
to be passed as strings. Mockito’s design uses method names directly, and this means that IDE code
completion and refactoring support work naturally.

Now look at a test method. First we create an instance of our interceptor, and stub it with our mock.

@Test
public void testLoggingInterceptorGood() throws Exception
{

LoggingInterceptor loggingInterceptor = new LoggingInterceptor();
loggingInterceptor.setLogger(logger);

Then, we execute the method we want to test. Here we’re passing the InvocationContext mock as a
parameter. We haven’t changed the behavior of the mock’s proceedMethod(), so when our interceptor
class calls that method, it will do nothing.

loggingInterceptor.audit(ic);

Finally, we verify that the test method called log() on the Logger stub wrote out exactly twice, passing
a suitable message each time.

verify(logger).log(eq(Level.INFO), startsWith("entering"));
verify(logger).log(eq(Level.INFO), startsWith("exiting"));
verifyNoMoreInteractions(logger);

}

720

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 721

Chapter 14: Development Environment Best Practices

Best Practice
Use a mocking framework, such as Mockito. It’s a lot easier than writing stubs by hand.

Dependency Injection and Unit Tests
It is common to have to add unit test accessor methods so that unit tests can set up the test. In the pre-
ceding example, you may have noticed that we called the setLogger() method to inject the Logger mock
into the class under test. The setLogger() method exists simply to support the unit test.

// Obtain default logger using WebLogic Server API
private Logger logger = LoggingHelper.getServerLogger();

// Allow unit tests to override logger.
void setLogger(Logger logger)
{

this.logger = logger;
}

Tip to Remember
Unit test accessor methods need not infect the public interface of your classes. Make the
unit test accessor methods package scope, and place the unit test in the same package
as the class under test.

Accessor methods are also needed to set up any fields that normally would be populated by a Java
EE container; for example, an EntityManager field annotated with @PersistenceContext. If you are
using the Spring Framework, or another dependency injection framework, you might consider using the
framework to inject the appropriate dependencies. For unit tests, we find it is usually both clearer and
simpler not to do this, and instead wire together the appropriate test context using plain Java.

Database Services as Part of the Unit Test Context
Some things are impractical to stub or mock for unit tests. A relational database is a good example. An
application’s interaction with a database is usually complicated, and you are as interested in testing that
the database does what you expect as you are in the behavior of the application code. In some sense, the
database is intrinsically coupled to the class that you are testing.

We’ve not attempted to mock the database in the bigrez.com unit tests. Consequently, some of the
unit tests require access to a running database with the correct schema. Further, the tests should have
exclusive access to a unique part of the database so they can execute independently of any other use of
the database. This is typically straightforward to arrange, following the advice given at the beginning of
this chapter.

For bigrez.com, we’ve assumed that the database is pre-populated with a small, standard set of data.
Some applications require very large sets of reference data, which are not possible to reload before
every unit test run. Unit tests that use a database must take care to restore it to its initial state. For
example, the testFindByLogonAndPassword() unit test in the TestProfileServices test class that we

721

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 722

Chapter 14: Development Environment Best Practices

examined creates a GuestProfile with a given name. We want to be able to run the test repeatedly, with-
out encountering a database constraint violation. TestProfileServices, and most of the bigrez.com
database tests, achieve this by running each unit test in a transaction, then rolling back the transaction
at the end of the test. The AbstractEntityManagerTests base class provides support for this transaction
management.

Best Practice
Unit tests that use a database should leave its state as they found it, so they can be
executed repeatedly.

Time and Other Variable Factors
If unit tests depend on variable factors, such as the current time, or values produced by a random number
generator, they may produce different results every time they are called. This makes assertions harder to
write, and leads to weaker unit tests.

Where possible, your application code should wrap access to this variable information so that the
unit tests can fix the behavior. For example, a class that relies on current time might depend on a
TimeServices component. Unit tests can then supply an implementation of TimeServices that supplies
a known fixed time.

This is not a hard and fast rule. Sometimes it is useful for a unit test to generate random input data,
because it cannot possibly test the full range of inputs. However, in general, you should aim to write
repeatable, well-behaved unit tests. Your goal is to test the application code, not spend forever debugging
complicated unit test code.

Best Practice
Allow unit tests to override variable, external factors, such as the current time and
random number generators, so they are repeatable.

Testing Web Interfaces
The correct behavior of web interfaces is hard to unit test out-of-container. Of course, there should be no
complex business logic in the web components themselves; it should be located in EJBs or in Java helper
objects. Still, there remains the need to unit test the user interface of a web application. This is usually
achieved by deploying the application to a running server and running some automated external tests
that simulate the actions of a web browser.

Two mature, free, open source libraries are available that can make this process easier — HttpUnit
(http://httpunit.sourceforge.net/) and HTMLUnit (http://htmlunit.sourceforge.net/).
HttpUnit is the older of the two, but HTMLUnit has better support for JavaScript. Many higher-level
frameworks are also available, such as JWebUnit (http://jwebunit.sourceforge.net/) and Canoo
WebTest (http://webtest.canoo.com/). Both JWebUnit and Canoo WebTest use the HTMLUnit library
under the covers.

722

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 723

Chapter 14: Development Environment Best Practices

A full review of these various tools is beyond the scope of this chapter; so let’s satisfy ourselves with
looking at a simple JWebUnit test case for bigrez.com. This is shown in Listing 14-3, and is included in
the bigrez.com test suite.

Listing 14-3: : An example JWebUnit test case.

public class ExampleJWebUnitTestCase extends WebTester
{

@Before
public void setUp() throws Exception
{

setBaseUrl("http://localhost:7001/");
}

@Test
public void testFrontPage()
{

beginAt("/user");
assertTitleEquals("Welcome to BigRez.com!");
assertLinkPresentWithText("Choose Property");

}

@Test
public void testSearchProperties()
{

beginAt("/user");
clickLinkWithText("Choose Property");

assertTextNotPresent("45 Main Street");

selectOption("stateCode", "MN");
selectOption("city", "Duluth");
submit();

assertTextPresent("45 Main Street");
}

}

JWebUnit is designed for use with JUnit, and our unit test is a JUnit test class. The JWebUnit support is
provided through the WebTester class, which we’ve chosen to extend to so that we can call its methods
directly from our test methods.

If you look at the testSearchProperties() method in Listing 14-3, you can see that the WebTester meth-
ods almost form a domain-specific language, allowing us to express concisely the browser actions we are
simulating. This test starts at the /user home page, then navigates through the chooseProperty.do
link. It then sets up the form options and submits the query, and finally asserts that the resulting page
now contains the address of the expected property. JWebUnit deals with the details of translating the
WebTester method calls into remote HTTP requests, capturing the resulting HTML page, and receiving
and resending cookies so each unit test can have its own HTTP session on the server.

How useful is this type of testing in your overall development and unit testing process? We believe
all unit testing is valuable, but the benefits must be weighed against the cost. In the case of standard
unit tests, the benefits easily outweigh the costs of creating and managing the test cases. The answer is

723

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 724

Chapter 14: Development Environment Best Practices

not as clear with web component unit tests. Writing JWebUnit test classes and methods to test every
link, form submission, and behavior in the web site can be extremely tedious. Creating form data for
submission requires a substantial number of method calls, and many pages respond properly only after
many preliminary steps and pages required by the application. For example, the ReservationThankYou
page in bigrez.com cannot be tested without walking through the entire reservation process.

When writing web unit tests, focus on the correctness of the application logic, rather than the aesthetics
of the pages, and be sparing with assertions. If you make too many assertions about the page layout, your
unit tests will be brittle and will break whenever your page designer decides to reformat the look and
feel of your application.

We recommended that web component unit testing be limited to a small number of tests, preferably one
test for each page in the application. The resulting test suite can be used as a simple regression test when
major changes are made to the application to ensure that all pages build properly (catching runtime
JSP compile errors) and generate valid content. Testing critical navigation logic and presentation-layer
functionality may also be worthwhile. Leave the complete testing of the web site to the Quality Assurance
team during formal system and user acceptance testing.

Best Practice
Create a limited number of unit tests to verify the basic operation of web components
in the application. Use the resulting test suites for regression testing.

Web Services
A web service has a well-defined, coarse-grained interface with its own contract, and is quite amenable
to unit testing. However, web services need to be tested in-container, just like web applications. Just as
for web applications, complex business logic should be located outside of the web services components
themselves, but you must still test the translation of Java objects to and from their XML representation.

Because a web services interface usually exists to provide a vendor-neutral interface to your application,
interoperability testing is also a concern. We recommend that you test using a variety of client web service
stacks and tools, rather than just coding tests that use the WebLogic Server libraries.

Best Practice
Test your web services using a variety of client web service stacks.

soapUI from eviware (http://www.soapui.org/) is a popular tool for functional testing of web services.
It is available in both a free version and a more fully featured commercial version. soapUI provides a user
interface that allows simple web services test cases to be created. You can supply the service’s WSDL to
the tool, and it will create prototypical messages and requests, and allows these to be composed into test
cases, which you can then replay against a deployed service. Different types of assertions can be added

724

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 725

Chapter 14: Development Environment Best Practices

to each request to check whether the response complies with the schema, or contains expected content,
for example. The resulting test cases can be executed using a command-line tool that is easy to integrate
with Ant.

Performance and Concurrency Testing
So far in this section we have considered functional testing; that is, testing that aims to simulate the
actions of a single user or system actor. Although not strictly unit testing, it is useful also to provide a
load testing facility in the development environment. This allows developers quickly to prove whether
a new architectural approach will scale, and to investigate problems that only occur when multiple
users access the system. For example, scalability bottlenecks due to a poorly designed synchronization
strategy, or database deadlocks that occur because separate parts of the application acquire locks in a
different order.

Sometimes it is appropriate to write JUnit tests that spawn threads, or use multiple session objects, to
simulate the effect of multiple users. For example, bigrez.com has a TestOptimisticLocking unit test
that uses several JPA EntityManagers. This technique can work where you suspect there may be a con-
currency issue, but does not find problems that you were not already expecting.

Commercial load testing products can be expensive, and organizations often only license them for
use by the test team that runs the formal pre-production performance tests. An application will not
reach that team until it is mostly complete, and by that time a concurrency issue may be costly to
address. To protect against this risk, we recommend the development team regularly use a lightweight
load testing framework, such as The Grinder (http://grinder.sourceforge.net/) or Apache JMeter
(http://jakarta.apache.org/jmeter/) to test for concurrency problems. Both products are free and
open source, and are written in Java. They are more suited to an application developer than to a profes-
sional tester. For example, they both require some coding or scripting skills to get the best out of them.
However, unlike many commercial tools, they support testing of many types of application interfaces,
including HTTP, remote EJB, web services, and JMS. One of the authors of this book is the primary
developer of The Grinder.

Such a setup also allows the development team to do performance testing. Often you are not interested in
the absolute numbers (for example, the maximum number of transactions per second you can achieve),
because the development environment probably does not provide the same capacity as the target pro-
duction environment, but regularly measuring relative numbers will allow you to identify performance
regressions. Mature development projects often schedule a series of key tests to run every night, when
the development server is not needed for other tasks, providing the development team with a regular
report on the changing performance of their application.

Best Practice
Provide the development team with a lightweight load test framework, such as The
Grinder or JMeter, to allow informal load tests. Get into the habit of regularly using
these tools to check that the application performs well and has no concurrency-related
bugs. Consider automating these tests, and running them every night.

725

Patrick c14.tex V3 - 09/18/2009 12:21pm Page 726

Chapter 14: Development Environment Best Practices

Chapter Review
This chapter presented a number of best practices to help you create and organize your development
environment. The first section covered the necessary hardware and software in a typical development
environment and discussed mechanisms for supporting multiple builds and databases in the same envi-
ronment. Subsequent sections described the proper way to install WebLogic Server in the development
environment, configure your working directory structure, establish an Ant-based build process, and
choose the proper development tools for your project. The final section discussed unit testing techniques
and frameworks to help increase the quality and maintainability of your application code.

These recommendations should provide a strong starting point in the definition of your development
environment and development process. Now all you have to do is build the system. Get to it!

726

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 727

Production Environment
Best Practices

In this chapter, we discuss strategies and best practices for deploying WebLogic Server applications
in a production environment. Our discussion focuses on three strategies:

Deployment Determining the clustering approach, planning the production site configuration,
and choosing the number and types of server machines.

Global Traffic Management Utilizing local and global load balancers.

Production Security Securing your production environment and production WebLogic Server
applications.

Designing, configuring, and running production systems represent complex topics, those far too
broad for us to cover in a single chapter. Unfortunately, it is difficult to refer you to other sources
because there just aren’t that many books written on the topic. Given the limited space available
here, we have chosen these three areas of focus because these are the topics that customers fre-
quently ask us about. We hope that this information proves useful to you in making these types of
decisions.

Deployment Strategies
In Chapter 13, we discussed performance tuning and testing strategies. In this section, we examine
a number of deployment strategies you can use to meet your requirement for a secure, around-
the-clock accessible, high-performance, reliable system in the presence of unpredictable usage and
changing market conditions. We focus primarily on two areas: selecting the number and size of
machines for running the application server and designing your WebLogic Server clusters to meet
your availability requirements.

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 728

Chapter 15: Production Environment Best Practices

When deploying highly available, high performance systems, we recommend that you follow the
guidelines shown here to allow your system to adapt to the ever-changing needs and complexities
of enterprise computing:

❑ Choose solutions that are highly available and manageable.

❑ Choose systems that offer performance regardless of load and can scale to meet new
requirements.

❑ Make sure that data is available and protected from corruption.

❑ Look at availability from the user’s perspective. Understand that data is only one compo-
nent of availability and all layers of your system must be available and resilient to failures.
In most enterprise systems, achieving high availability will mandate providing redundancy
at all layers of the system to avoid single points of failure.

By combining these guidelines with the system’s business and technical requirements, you can
deploy a system that meets your current and future requirements. In the sections that follow we
discuss best practices for selecting and designing a robust deployment environment using these
guidelines. Before we jump into the strategies, let’s think about how to evaluate the different strate-
gies to come to some conclusion about what works best for your particular situation.

Evaluating Deployment Strategies
As with most architectural decisions, the selection of an appropriate production deployment envi-
ronment involves trade-offs. Business and technical requirements must be understood in order to
select the appropriate deployment environment. When trying to determine the appropriate deploy-
ment strategy, we recommend the following steps:

1. Map the business requirements into a technical architecture that allows the system to meet
these requirements.

2. Using this technical architecture and the application’s additional technical requirements,
develop the criteria that your deployment architecture must meet.

3. Assemble a cross-functional team to explore the wide range of possible deployment architec-
tures and narrow them down to a few that best meet the deployment architecture criteria.

4. Wherever possible, reuse existing deployment architectures, or pieces of them, to jump-start
your selection criteria.

5. Use proof of concept evaluations to verify that the deployment architecture you’ve selected
can meet the most difficult business and technical requirements.

First and foremost, the deployment architecture must meet the requirements of the business now
and in the future. Once you understand the business requirements, you can map them to the
technical architecture required to support the business. For example, you may have a business
requirement to provide 99.9 percent availability where failing to live up to this will result in non-
compliance of service-level agreements (SLAs) imposed on the system. This business requirement
maps directly to a technical requirement for high availability that requires software, hardware, and
network redundancy, as well as failover capabilities.

728

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 729

Chapter 15: Production Environment Best Practices

The application itself will have additional technical requirements defined by application user
groups, operations, security, and any other group that interacts with or supports the system. By
combining all of these requirements, you can develop criteria for the deployment architecture and
apply weights to these criteria depending on the importance to your business. Common criteria
include performance, manageability, scalability, flexibility, cost, security, administrative complex-
ity, and maintenance. You can evaluate candidate deployment strategies developed in the next step
against this weighted matrix of criteria to determine their appropriateness for your business and
application.

Next, work with a group of interdisciplinary architects or technical personnel to select a few can-
didate deployment architectures that are likely to meet the business and technical requirements.
Depending on the complexity of the requirements, scope of the deployment, and the group’s expe-
rience with similar systems, you can evaluate each candidate either on paper or by doing a proof of
concept (POC). One common practice is to select the best paper option and then use a POC to prove
that the chosen architecture meets your requirements. It may sometimes be possible to combine this
effort with pre-production functionality and performance testing of the application.

Your job is easier if an enterprise deployment environment is already in place and available for
testing, requiring only a validation that the existing environment can meet the demands of the new
system. Often this approach will not be appropriate because hardware, monitoring, and failover
solutions are either not in place or have not yet been chosen. In this case, you should identify and
develop an end-to-end slice (or portion) of the application that touches every layer of the system to
use in testing the various candidate deployment architectures. This slice of the application should
include the most challenging parts of the application and test the most challenging or strictest oper-
ational requirements. You can then compare these results with the requirements selection matrix.

By performing POC tests and mapping the results against the requirements matrix, you can choose
the best deployment architecture with a high level of certainty that it will meet all requirements.
Unfortunately, it is not always possible to run your system in the best deployment environment. In
many cases, you will have to make trade-offs. For example, you may have to deploy a more tightly
coupled system than you would like in order to meet your users’ performance requirements. Or you
may not be able to use the best availability strategy due to cost considerations. These decisions and
trade-offs are best made once you clearly understand the requirements of your business and you
are able to differentiate these from other selection criteria.

Best Practice
Evaluate deployment strategies by identifying and prioritizing business and tech-
nical requirements for the system, then mapping these requirements against
candidate deployment strategies. Use proof of concept tests to validate new or
unproven designs.

Now, let’s look at a number of key strategies that you should consider when designing and selecting
the best, or at least the appropriate, deployment architecture for your application.

Server Deployment Strategies
The first deployment strategies to consider are the size and type of server hardware to use in your
environment, as well as the way to deploy your WebLogic Server applications on this hardware.

729

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 730

Chapter 15: Production Environment Best Practices

Determining the JVM-to-Processor Ratio
One of the most frequently asked questions is how many instances of WebLogic Server to run on
a particular piece of hardware; the next is whether it is better to use a few larger SMP machines or
more smaller machines. In an ideal world, applications would scale linearly as you add CPUs to the
machine so that a single JVM would use all available CPUs and provide maximum performance.
In the real world, many factors can contribute to the nonlinear scalability of a Java application,
including things such as I/O bottlenecks, garbage collection, cache memory latency, and thread
synchronization.

Garbage collection is of particular interest because it can have a dramatic effect on the applica-
tion. Many older JVM implementations do not support parallel or concurrent garbage collection so
the negative effect of garbage collection on performance grows considerably as we add CPUs on
multiprocessor servers. For example, an application that spends 10 percent of its time performing
single-threaded, stop-the-world garbage collection will lose 75 percent of its throughput on a 32-
processor machine, according to testing performed by Sun Microsystems (see Link 15-1 in the online
Appendix on the book’s web site at http://www.wrox.com). Even on a smaller machine having only
five CPUs this same application will lose approximately 20 percent of its throughput.

Most newer JVMs have options to enable either parallel or concurrent garbage collection, though
these are not typically the default settings. These can make significant improvements in the effects
of garbage collection on JVM scalability across processors. Other factors, though, may still prevent
you from achieving the level of scalability you need across a large number of processors.

Determining the ideal JVM-to-CPU ratio for a given application is an iterative process that is ideally
done when stress testing the application for acceptance testing or capacity planning. On a multi-
processor machine, you should start by taking all CPUs offline except one and then tune the system
until you achieve maximum throughput for that application on one CPU. This testing will provide
the throughput information for one CPU to use as a baseline for determining linear scalability. From
there, bring another CPU online and repeat the process. Continue this process until you cannot fully
utilize the CPUs on the node or the linear scalability falls below an acceptable point. Remember, you
will need to make sure that you have sufficient load to drive the number of CPUs available and that
you watch for bottlenecks in other parts of the system. The goal is to determine the optimal number
of CPUs for a single WebLogic Server instance. If you fail to achieve acceptable scalability during
this testing, explore the possibility of running multiple instances of WebLogic Server on a machine.

Vertical Scaling
Scaling an application by simply adding more CPUs to a machine is often referred to as vertical scal-
ing. Application server vendors have borrowed this term and have expanded it to include scaling an
application by adding both processors and application server instances to a machine. A WebLogic
Server instance consists of an application server running in its own Java Virtual Machine (JVM),
so vertical scaling also implies multiple JVMs on the same machine. Vertical scaling can lead to
better utilization of the server hardware and increased application throughput. You should bal-
ance this increase in utilization and throughput against the added configuration, maintenance, and
monitoring overhead associated with running multiple server instances.

Running multiple instances of WebLogic Server on the same machine can also help minimize the
effect of nonparallelized, stop-the-world garbage collection. Because multiple JVM instances will
typically not all run garbage collection at exactly the same time, this means that you will almost
always have at least one JVM available to schedule application-related work on other processors

730

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 731

Chapter 15: Production Environment Best Practices

while another JVM does its stop-the-world garbage collection with a single thread. We recommend
using the parallel or concurrent garbage collectors available with the Sun HotSpot JVM, or bet-
ter yet use the Oracle JRockit JVM that selects the most appropriate garbage collection strategy
dynamically, at runtime.

Best Practice
Use parallel or generational garbage collectors to limit the scalability effect that
garbage collection has on the application. Even then, you may want to explore
the performance benefits of running multiple WebLogic Server instances on
larger SMP machines. Before formalizing multiple instances per machine as your
deployment strategy, make sure that you understand the effect this will have on
configuration, maintenance, and monitoring so that you can make an informed
decision.

Horizontal Scaling
Scaling an application by simply adding more machines to your environment is often referred to
as horizontal scaling. Typically, horizontal scaling is more specifically associated with the practice of
employing multiple, relatively small server machines (generally four CPUs or fewer) in a production
environment. In this scenario, each machine usually hosts a single instance of WebLogic Server and
the application itself. Through the use of WebLogic Server clustering or external load balancers, this
approach allows WebLogic Server–based applications to span several machines yet still present a
single system view to the end users. You can use this strategy not only to increase scalability but also
to improve the failover characteristics of your application. It also provides you with the flexibility
of adding more machines on demand to handle increasing throughput requirements.

In many cases, you may want to combine horizontal and vertical scaling techniques to use multiple
machines, each running multiple instances of WebLogic Server. This can make it easier to achieve
both high CPU utilization and good failover and flexibility characteristics.

Best Practice
Horizontal scaling gives you some failover and flexibility that you normally
cannot get with only vertical scaling. Depending on your hardware, you might
also want to consider combining the two techniques to increase CPU utilization.
Whether this makes sense will depend on your hardware, application, and JVM.

Now, we move on to look at single-site deployment strategies.

Single-Site Deployment Strategies
The next set of strategies relates to the deployment of scalable and highly available systems in a
single site or data center. We concentrate on clusters that reside in the application server layer of
our system, but we consider other layers where appropriate.

731

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 732

Chapter 15: Production Environment Best Practices

Two different scenarios are discussed in the sections that follow. These scenarios reflect different
sets of availability requirements:

❑ A simple WebLogic cluster representing basic availability requirements

❑ A complex WebLogic cluster representing more demanding availability requirements

Many other deployment strategies are possible, of course, each offering varying degrees of avail-
ability. It is important that you have a firm understanding of your requirements before choosing a
strategy from among the many options available. You must also consider your cost structure and
current enterprise standards.

For the purpose of this discussion we make the following assumptions:

1. Local clusters are defined as a grouping of two or more servers residing in the same site or
data center with WebLogic Server acting as the middleware.

2. Software, hardware, or a combination of software and hardware are utilized to achieve a
high level of availability.

3. The minimum configuration involves at least two instances of WebLogic Server running in a
cluster with each instance residing on a different server. This configuration allows protection
against failure at the both the node level and the WebLogic Server instance level and is a
good, basic configuration for discussing local clusters.

4. Load balancers are used to provide message distribution and failover of requests to the clus-
ter of WebLogic Server instances. In all cases, you could configure web servers as proxy
servers to perform the same functionality.

5. Components resident in other layers of the system are redundant and provide high avail-
ability.

6. We discuss only symmetric hardware configurations, which are also called active-active con-
figurations. Asymmetric, or active-passive, configurations are also a viable solution. This type
of deployment, though, is not typical at the application server level due to its higher cost
caused by the use of passive servers.

Simple WebLogic Server Clusters
First, we will consider a simple WebLogic Server cluster, which provides a basic level of high avail-
ability. Figure 15-1 shows a simple cluster that provides a simple, cost-effective, and highly available
deployment architecture.

This type of configuration is commonly used under the following situations:

❑ A flexible and cost-effective solution is desirable.

❑ There are no disk-sharing requirements across the WebLogic Server cluster.

❑ Local data storage does not require high availability.

❑ The applications do not use, or participate in, XA transactions because the transaction logs
will typically require high availability and failover. In certain situations, WebLogic Server’s

732

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 733

Chapter 15: Production Environment Best Practices

Last Logging Resource optimization may be an appropriate way to relax this constraint
without requiring shared disk because it uses a database table to store all transaction logs.

❑ The applications do not use file-based JMS persistent messages because the JMS message
stores will typically require high availability and failover.

Figure 15-1 depicts an active-active cluster running under normal conditions. Both instances of
WebLogic Server are used during normal operation, with load balancing at the connection level
provided by load-balancer hardware located between the clients and the WebLogic Server cluster.

Client

Load
Balancer

Server-Attached
Storage

Client

WebLogic Server

Machine 1

Client

WebLogic Server

Machine 2

Figure 15-1: Simple cluster before failure.

Figure 15-2 shows the same cluster after a failure of either the WebLogic Server instance or the
machine on which it is running.

The load balancer is now providing failover at the connection level, while WebLogic Server clus-
tering software provides a single homogenous system view across both WebLogic Server instances.
The key features that WebLogic Server clustering provides are these:

❑ Failover and load balancing of JNDI, RMI, EJB (stateless session beans, stateful session
beans with in-memory state replication, and entity beans), and JMS

❑ In-memory HttpSession replication

❑ Cluster-wide replication of the JNDI naming service

❑ Cluster membership discovery and cluster health monitoring

❑ Automatic migration of services and servers due to software or hardware failures.

When a failure takes place on either the WebLogic Server instance or the hosting node itself, the load
balancer quickly notices that the WebLogic Server listen port is no longer responding to requests.
The load balancer then removes that failed server from its list of healthy servers and begins rout-
ing all requests to a different, healthy WebLogic Server instance. This failure detection can be

733

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 734

Chapter 15: Production Environment Best Practices

achieved in a more intelligent manner by having the load balancer periodically check the health
of the WebLogic Server instance using the weblogic.Admin PING command, or by making standard
HTTP requests for a small static HTML page that just returns OK. If you choose this latter approach,
you might even use a JSP to create this HTML page so that it is loaded into memory once, thus min-
imizing the overhead on the server. Once the WebLogic Server instance is back up and listening on
the appropriate port, the load balancer will discover this fact and will once again start distributing
requests to that WebLogic Server instance. Refer to Chapter 12 for more detailed information on
WebLogic Server clustering.

Client

Load
Balancer

Server-Attached
Storage

Client

WebLogic Server

Machine 1

Client

WebLogic Server

Machine 2

Figure 15-2: Simple cluster after failure.

This simple clustering configuration is a form of horizontal scaling, discussed earlier, in which
additional nodes are added to the environment to increase processing capability. When horizontal
scaling is used in conjunction with WebLogic Server clustering, it offers a cost-effective method to
achieve both flexibility and availability. Servers can be added to the cluster dynamically; once the
new WebLogic Server is added to the distribution list of the load balancer, traffic will begin routing
to the new instance. If a server fails, the remaining servers will take over the load for the failed
server until it can be restarted, thus allowing better utilization of hardware than an active-passive
configuration.

Tip to Remember
A simple WebLogic Server cluster is an appropriate strategy for a single-site
installation, providing good scalability and failover characteristics.

Complex WebLogic Server Clusters
The second scenario we consider has more demanding availability requirements, such as the fol-
lowing:

❑ The system must support global transactions between local and distributed resources such
as JMS destinations and databases.

734

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 735

Chapter 15: Production Environment Best Practices

❑ JMS messages are persisted to the file system and must support failover and be highly
available.

❑ Failover of both the node and any WebLogic Server instance-specific functionality, such as
JMS destinations and JTA transaction recovery, must take place transparently.

❑ Distributed transactions must be recoverable and restarted in case of node or WebLogic
Server failure.

Figure 15-3 presents one possible solution to these more demanding requirements. This solution
would utilize the following components:

❑ WebLogic Server instances running in a standard WebLogic Server cluster.

❑ Redundant load balancers (not shown in the figure), which provide load balancing and
failover of requests at the connection level.

❑ WebLogic JMS using multiple distributed destinations, providing high availability to both
JMS producers and consumers.

❑ Veritas Cluster Server (VCS) or an equivalent product to provide transparent failover
across nodes in the hardware cluster. VCS will manage and control both hardware and
software resources, bringing resources online and taking them back offline when necessary.

❑ Some type of network- or server-attached storage solution to provide highly available
shared disks for JMS queue storage.

❑ Veritas or another highly available file system for high performance and flexible volume
management.

Client

Load
Balancer

Server-Attached
Storage

Fibre
Channel Switch

Fibre
Channel Switch

Client

WebLogic Server
A

Machine 1

Ve
rit

as
 C

lu
st

er
So

ftw
ar

e
Ve

rit
as

 C
lu

st
er

So
ftw

ar
e

Client

WebLogic Server
B

Machine 2

Figure 15-3: Complex cluster before failure.

Should one of the WebLogic Server instances fail, the VCS system will automatically migrate the
instance to the other hardware, as depicted in Figure 15-4.

735

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 736

Chapter 15: Production Environment Best Practices

Client

Load
Balancer

Server-Attached
Storage

Fibre
Channel Switch

Fibre
Channel Switch

Client

WebLogic Server
A

Machine 1

Ve
rit

as
 C

lu
st

er
So

ftw
ar

e
Ve

rit
as

 C
lu

st
er

So
ftw

ar
e

Client

WebLogic Server
B

WebLogic Server
B

Machine 2

Figure 15-4: Complex cluster after failure.

As noted previously, Veritas Cluster Servers are being used to monitor and control applications
running in the configuration, and these clusters respond to a variety of hardware and software
faults. Because VCS will be managing and controlling the WebLogic Server cluster, you will need to
produce various scripts and determine what type of health monitoring is required. This discussion
concentrates on scripts and monitoring of WebLogic Server only, although VCS is actually monitor-
ing and controlling other resources such as IP addresses, disks, and network-interface cards. See the
Veritas Cluster Server documentation for a complete description of these activities. Minimally, you
will need to develop the following scripts:

Start Scripts Scripts that start the administrative server as well as all managed servers running in
the WebLogic Server cluster.

Stop Scripts Scripts used to shut down WebLogic Server administrative and managed servers.

Forced Stop Scripts Scripts that shut down WebLogic Server instances that are not responding to
administrative shutdown commands.

Health Monitoring Scripts Scripts used to determine the health of various subsystems in
WebLogic Server.

VCS will use an agent to monitor and control the WebLogic Server resources. This agent will start the
servers, stop the servers, and fail over the servers after a node failure. You will need to determine
the appropriate response when a failure is detected in any monitored resources. We recommend
a tiered availability approach concentrated on keeping the active server as available as possible
and failing over the cluster only when it cannot be restarted. This approach relies primarily on
WebLogic Server’s clustering infrastructure and fails over only after a hard failure of a disk, node,
or non-redundant device.

You will also need to determine which failures should be handled automatically and which should
only be reported so that manual action can be taken. In this scenario, the VCS agent will either
perform the appropriate action itself or will propagate the information to a person through a page
or send the alert itself to an enterprise monitoring console that will either take action itself or pass
the alert to the appropriate personnel.

736

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 737

Chapter 15: Production Environment Best Practices

With our example scenario, no JTA or JMS migration is required during failover. The instances
running on a failed VCS node will be migrated by VCS and then brought back online on the targeted
node. The instance will come up and start processing just as it would when restarted locally. We
should note that this is only one possible approach. We could just as easily have VCS migrate the
JMS servers and JTA recovery service from the failed WebLogic Server instance to the other instance
running on the other node.

Best Practice
A complex WebLogic Server cluster will cost more than a simple cluster and
require additional configuration and testing, but it is appropriate if your installa-
tion requires higher levels of availability.

In our solution, we use Veritas Cluster Server because it provides a framework to integrate moni-
toring and failover of any number of hardware and software resources. However, WebLogic Server
also provides two lower-cost options that will typically meet our needs when only failing over
WebLogic Server–based resources: service migration and whole server migration.

Manual service migration has been around in WebLogic for a number of releases. It allows you
to invoke administrative commands that tell WebLogic Server to migrate JMS servers and JTA
transaction managers from one WebLogic Server instance to another. Today, WebLogic Server also
supports automatic migration of JMS and JTA services, as well as application-defined singleton
services.

Whole server migration provides a framework by which a WebLogic Server cluster will detect
the death of a machine and restart the failed WebLogic Server instance on another machine. The
framework migrates the virtual IP address of the failed machine to the new machine as part of
migrating the WebLogic Server instance.

Although these frameworks only focus on WebLogic Server migration, the gaining popularity of
technologies like network-attached storage and Oracle RAC databases significantly reduces the need
for larger HA frameworks in many HA architectures. Please see the ‘‘WebLogic Server Failures’’
section of Chapter 12 for a more complete discussion of these capabilities.

Multiple Site Deployment Strategies
Multiple site deployment strategies are often discussed in the context of a continuous business
paradigm, combining high-availability solutions with advanced disaster recovery techniques. The
ultimate goal is to be able to manage both planned and unplanned outages with minimal disruption.
These strategies allow continuous availability during failures as well as software and hardware
migration without affecting availability. A complete discussion of this topic is beyond the scope of
this chapter, so we limit our discussion to key concepts and examine some configuration options.

Even though local clusters, in which all of the nodes and storage subsystems are in a single data cen-
ter, offer good protection against smaller disasters such as single node failures or disk crashes, they
do not protect against major disasters that could destroy or damage the entire facility. To protect
against these kinds of failures you need to make sure that the cluster components are geographi-
cally dispersed. Whereas most local clusters are designed around a shared disk-storage architecture
where storage resources are either physically connected to all nodes via SCSI or Fibre Channel or

737

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 738

Chapter 15: Production Environment Best Practices

connected directly to the network, multi-site clusters usually rely on some type of replicated data
architecture.

Designing Multiple-Site WebLogic Clusters
Including WebLogic Server applications in the design of a multi-site cluster is fairly straightforward
as long as you ensure that the associated data is properly replicated to all data centers. It becomes
more complicated when file-based JMS is used in a distributed transaction environment with mul-
tiple resources involved in a two-phase commit transaction (2PC) due to the exactly once nature of
these services.

Additional design considerations covered in this section include the following:

❑ Active-passive or active-active cluster design

❑ HttpSession state management and replication

❑ Transaction collocation requirements

❑ Data replication

Cluster Design Options
It is possible to use both active-active and active-passive clusters with WebLogic Server applica-
tions. We recommend that you follow the same design that you used for your data-replication
solution. For example, if the data replication between the two data centers is bidirectional, then an
active-active design of your WebLogic Server applications may be desirable. If data replication is
unidirectional, however, it may force you to stick with an active-passive design.

Session Replication
Managing and replicating HttpSession state is a major consideration for most WebLogic Server
applications and has been discussed at length in earlier chapters. It tends to be less important in
the design of the overall multiple site cluster, however, because the loss of HttpSession data in
the event of a data-center loss is often acceptable to the business. If the loss of HttpSession data is
not acceptable, several options exist, depending on your situation.

As with all disaster recovery and high availability planning, we recommend that you begin by first
examining business requirements and then applying the proper deployment strategy that will meet
the requirements. All data is not created equal, and it is likely that only a portion of application data
is critical to the basic operation of the application.

Now, let’s look at the options for handling HttpSession data replication across data centers. As dis-
cussed in Chapter 13, you should never use the HttpSession to store data that you cannot afford to
lose. Even so, business requirements may still make losing all user session data during a data center
failure undesirable. WebLogic Server provides four possible options for replicating HttpSession
data across data centers.

JDBC-Based Session Persistence WebLogic Server supports a JDBC-based session persistence
mechanism that stores the HttpSession data in a database. Storing the session data in the database
allows it to be replicated between data centers using your existing database replication technology.

738

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 739

Chapter 15: Production Environment Best Practices

Single Cluster In-Memory Replication As described in previous chapters, the most popular
form of session persistence is in-memory replication. In certain situations, it is possible to create
a single cluster that spans two data centers. WebLogic Server uses a primary-secondary replication
scheme. To ensure that the primary and secondary are in different data centers, you will typically
need to define replication groups. However, some limitations are imposed by this approach; see
the ‘‘Implementing Clusters That Span Multiple Sites’’ section later in this chapter for more details.

Cross-Cluster In-Memory Replication Starting in WebLogic Server 9.0, WebLogic Server sup-
ports in-memory replication between clusters; this feature is known as MAN replication in the
WebLogic Server documentation. Essentially, it gives applications deployed in two different data
centers the ability to keep the primary and secondary copies of the HttpSession objects in two dif-
ferent data centers, each running in a different cluster. This eliminates many of the limitations of
implementing a single cluster across sites. However, you still need low network latency between
data centers to prevent performance and scalability limitations due to the synchronous nature of
the replication that happens as part of processing each request.

Cross-Cluster Database-Backed Replication WebLogic Server 9.0 also introduced support for
a feature known as WAN replication in the WebLogic Server documentation. In addition to pro-
viding in-memory replication within the local cluster, it provides an asynchronous replication of
session data between data centers. Rather than the replication happening during normal request
processing, WebLogic Server sends the session data to the remote cluster asynchronously, either
by writing to a local database that uses third-party database replication to push the data to the
remote data center or by batching RMI calls to the remote cluster, which writes the data to its local
database.

It is possible to use a single cluster with in-memory replication across sites. The primary issue is
network bandwidth and latency, not only for the replication itself but also for the UDP traffic needed
for JNDI replications and cluster membership and monitoring. If using multicast-based clusters, this
means that you really need complete control over the link between the sites because most Internet
and ISP routers are not configured to forward multicast packets. With unicast-based clustering,
this generally isn’t an issue. Nevertheless, we have found that if your connection between the data
centers has a tendency to lose packets or the latency is over a few hundred milliseconds, this can
cause problems with WebLogic Server’s clustering mechanisms. With in-memory replication, even
a latency of a few hundred milliseconds can have a significant impact on application response times
and scalability.

We recommend not clustering between data centers if you can avoid it. When data centers are within
the same metropolitan area, WebLogic Server can use synchronous in-memory session replication
between two clusters running in different data centers. Though this requires some additional con-
figuration, the mechanism is essentially the same as intra-cluster in-memory replication. Just make
sure you have sufficient network bandwidth and low latency to prevent this cross-site replication
from becoming a performance bottleneck in your applications.

With geographically distributed data centers where the network bandwidth between the data cen-
ters is generally lower and latency generally higher, WebLogic Server supports database-back,
asynchronous session replication between data centers. We urge you to carefully weigh the benefits
of this option before selecting it as your session replication strategy.

One big advantage of the normal synchronous in-memory replication technique is that it completes
the replication before returning the response to the browser. This means that if the primary server
were to fail immediately afterwards, the browser would failover to the other server transparently

739

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 740

Chapter 15: Production Environment Best Practices

because the other server would have the expected session state. The same is not necessarily true
for WAN replication because it is asynchronous. Because the remote updates are performed asyn-
chronously, a data center failure will cause some of your clients to failover only to find stale session
state because their latest changes did not get replicated before the data center failure occurred.

As web application programmers, we have no way of knowing when the session data is stale with-
out creating a mechanism to detect this in the application itself. In the worst case, this stale data
might cause your web application to fail if the target URL expects to find some session data that is
not there. It is possible to come up with web application designs that are more resilient to this sort
of anomaly. For example, if you have a multiple forms flow, you might store some identifier in the
session to indicate the last form’s data that the session contains and transparently redirect the user
to the point in the flow reflected by the session. Though a user would likely find it annoying to fill
out the same form again, this is certainly better than starting over because of an error that invalidates
the session. Frankly, it isn’t clear to us that the potential performance gain of WAN replication is
worth the added complexity for all applications. Carefully consider your application requirements
and choose the appropriate model that best fits your requirements while minimizing complexity.

Best Practice
Prefer architectures that do not require using WebLogic Server clusters that span
data centers. If you do need to support HttpSession failover between data cen-
ters, consider using WebLogic Server MAN clustering, where practical. Where
MAN replication is not practical, weigh the benefits of WAN replication versus
straight JDBC-based persistence in conjunction with your existing data replication
technology.

Transaction Collocation Requirements
Your multiple site design should also consider that the application may use certain WebLogic Server
services, such as JMS servers and JTA transaction recovery services, which are designed with the
assumption that there is only one active instance of the service running in a cluster at any given
time. You need to be able migrate the data associated with these services, data that is usually critical
for the normal operation of the applications. Additionally, to take advantage of WebLogic Server
transaction collocation optimization, it is also desired that all such operations from a specific user
be directed to the same data center.

Data Replication
Finally, to provide data center failover capabilities, your design needs to ensure that all critical data
is replicated to the secondary data center where the services will be restored in the event of primary
data center failure. To determine the data-replication requirements, start with the following items:

❑ Domain configuration data stored in the $DOMAIN_HOME/config directory

❑ JTA transaction logs, usually located in the server’s default persistent store directory — for
example, for a server named Server1, the default persistent store resides in the
servers/Server1/data/store/default directory underneath the domain’s root directory

❑ JMS persistent messages, which can be stored in an RDBMS or the file system, if
applicable — for example, for a server named Server1, the default location for a custom

740

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 741

Chapter 15: Production Environment Best Practices

persistent file store is the servers/Server1/data/store/<file_store_name> directory
underneath the domain’s root directory

❑ Data associated with the application business logic, usually stored in an RDBMS

You need to identify the items that must be available at the secondary data center to restart your
application and recover all critical data, messages, and transactions.

Implementing Clusters That Span Multiple Sites
Implementing a multiple site WebLogic Server cluster requires reliable, high-speed networking
technologies to support the cluster-wide communication used to monitor cluster members and
replicate HttpSession contents, JNDI naming service information, and other application-level data.
This is usually done in a campus cluster where great distances do not separate the cluster nodes.

In the past, one of the primary reasons for considering a single cluster that spans data centers is
to achieve cross-data center HttpSession in-memory replication. The addition of MAN replication
provides a more desirable alternative if the only requirement is session replication across data cen-
ters. Even so, there might be other reasons for considering a single cluster across multiple sites.
Before settling on this architecture, you should consider the drawbacks to this approach, which
include the following:

Network Latency, Bandwidth, and Reliability As discussed previously, WebLogic Server
clustering relies heavily on good, fast, and reliable intra-cluster communication. In addition to
in-memory HttpSession replication traffic, all JNDI and cluster heartbeat messages will need to
traverse the inter-data center network link. Low latency and sufficient bandwidth is critical to
proper cluster functionality and good performance. To minimize potential problems, you must
ensure reliable connectivity between data centers — this implies redundant network links that are
unlikely to go down at the same time.

Inter-Data Center Network Configuration WebLogic Server clusters use two styles of commu-
nication between servers in the cluster. JNDI replication and cluster heartbeat messages use either
TCP unicast or UDP multicast messages. Except for a few optional multicast-based features like
JMS message multicast delivery, all other server-to-server communication uses normal TCP/IP
socket-based protocols like T3. As such, the network links between the data centers must support
sending WebLogic Server cluster-related messages between data centers; typically this is only an
issue for multicast messages because most network administrators do not allow multicast message
forwarding across subnets. Additionally, any firewalls between the data centers will need to allow
server-to-server T3 communication.

Highly Available Shared Storage Requirements As we discussed earlier, certain types of appli-
cations may require shared disk access to provide failover when a WebLogic Server node fails.
Providing shared disks across data centers typically implies either low-level disk replication (for
example, EMC’s SRDF) or storage-area network technology.

WebLogic Server Web Server Plug-in Considerations When using a multi-site cluster, you
typically want to process requests that enter one data center inside that data center and not have
request processing traversing the inter-data center network link. Because your network adminis-
trator must configure each data center’s local hardware load balancers, the local load balancer can
easily route to only cluster nodes in the local data center. With the web server plug-ins, the plug-in
is preconfigured, but they normally update their cluster membership list with data returned by the

741

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 742

Chapter 15: Production Environment Best Practices

WebLogic Server cluster. This causes a problem because now the plug-in will try to load balance
requests across both data centers instead of just the local one, putting more load and stress on the
network channel between the data centers. You can turn off the plug-in’s dynamic configuration
update feature by setting DynamicServerList to OFF in the plug-in configuration; however, this
means that the plug-in cannot react to server failures as quickly or elegantly.

Single Admin Server Dependency A WebLogic Server cluster is, by definition, part of a single
domain; therefore, the domain’s admin server manages the entire cluster. Because each domain
supports only a single admin server, the admin server will always need to manage nodes in the
remote data center. You will also need to enable failing over the admin server to the other data
center, in the case where a data center goes off-line because the nodes in the remaining data center
will have limited manageability until the admin server comes back up.

Figure 15-5 illustrates a possible configuration for a single WebLogic Server cluster that spans both
sites.

WebLogic
Server A

WebLogic
Server B

Data

WebLogic
Server C

WebLogic
Server D

WebLogic
Cluster

Firewall Firewall

Local Load
Balancer

Global Load
Balancer

Site 1 Site 2

Local Load
Balancer

Replication

WebLogic
Server E

WebLogic
Server F

Data

Firewall Firewall

Figure 15-5: One WebLogic Server cluster spanning multiple sites.

To support cross-site HttpSession failover properly, you will need to use replication groups to
ensure that the HttpSession object’s primary and secondary copies are in different data centers.
Clearly, cross-site session replication adds some latency, but it does provide seamless failure of
user sessions in the event of a site failure. All you then need to worry about is the proper repli-
cation of application data in the database, JTA transaction logs, and so on. For simplicity, we
did not include JMS servers in this design because the exactly once nature makes it more diffi-
cult and the appropriate architecture is very dependent on your application’s use of JMS and your
requirements.

Again, we need to reemphasize the importance of high-speed, reliable, low-latency network con-
nectivity between the sites for this architecture to work successfully. As the distance between the
data centers grows, it becomes more difficult and more costly to achieve this type of connectivity.
Wherever possible, we strongly recommend that you consider using separate clusters in each data
center, the topic of the next section.

742

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 743

Chapter 15: Production Environment Best Practices

Best Practice
Always prefer architectures that do not use a cluster that spans multiple sites.
MAN/WAN replication provides cross-site HttpSession replication without the
challenges imposed by the single cluster approach.

Implementing One Cluster per Site
The previous section described a multiple-site WebLogic Server cluster that used high-speed net-
working to achieve a single cluster across multiple sites. A single cluster is typically not desirable,
however, and this section explores one alternative.

In this alternative design, each site is configured with an independent WebLogic Server cluster.
By defining an individual cluster for each site, you immediately eliminate all of the WebLogic
Server–specific inter-site communication requirements. Of course, the application may have its
own inter-site communication requirements, which will almost certainly include data replication. If
it meets your requirements, we believe this multiple cluster design provides a simpler, more flexible
architecture while still taking advantage of WebLogic Server clustering features locally in each site.
Figure 15-6 illustrates this alternative multiple-site, multiple-cluster design.

When a client first requests the URL for a web application, the global load balancer will route
the request to one of the data centers. The local load balancer will then route the request to one of the
available servers in the WebLogic Server cluster at that location, and a user session will be created
in a primary and secondary server in that cluster. The global and local load balancers remember
where they sent the last request for a particular user session and will always attempt to route all
subsequent requests from that user to the same data center and server. To accomplish this behavior,
you will need to configure the global load balancer using a static persist policy and the local load
balancer using a sticky load balancing algorithm, topics discussed in detail later in this chapter.

WebLogic
Server A

WebLogic
Server B

Data

WebLogic
Server C

WebLogic
Server D

WebLogic
Cluster 1

WebLogic
Cluster 2

Firewall Firewall

Local Load
Balancer

Global Load
Balancer

Site 1 Site 2

Local Load
Balancer

WebLogic
Server E

WebLogic
Server F

Data

Firewall Firewall

Replication

Figure 15-6: One WebLogic Server cluster per site.

743

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 744

Chapter 15: Production Environment Best Practices

When using HttpSession replication in a multiple cluster design, you might choose to use normal
in-memory replication within the clusters, knowing that data center failover will cause the users
to lose their session data. JDBC-based HttpSession persistence is another option that enables you to
store a user’s session in the database and use your normal cross-data center database replication
strategy to allow cross-data center failover of user’s session data. However, the most interesting
options are WebLogic Server’s MAN and WAN replication features for replicating session data
across clusters.

Using MAN Replication
MAN replication is very similar to normal intra-cluster in-memory replication. WebLogic Server
creates the primary session on the server where the user first accesses a page that needs access
to the HttpSession object. At the end of the request but before the response is returned to the
user, the server selects a secondary location on the other cluster, replicates the session data, and
encodes location information in the session ID returned with the response. The global load balancer
should always redirect requests for that session to the primary data center — the one where the
primary copy of the session exists. As usual, the local load balancer uses sticky routing to route
the subsequent session requests back to the primary server. When that server fails, the local load
balancer redirects the request to another server in its local cluster. That new server reaches out to
the secondary server in the other cluster to get a copy of the session data, becomes the new primary
server, and generates a new session ID.

If the primary data center fails, the global load balancer directs the request for the session to the
other data center and the local load balancer in that data center directs the request to any server in
the cluster. When the server receives the request, it reaches out to the secondary server for a copy
of the session data, establishes itself as the new primary, picks a new local secondary (assuming
that the other data center is still down), and generates a new session ID to return with the response.
Once the other data center comes back up, the next request for the session will trigger WebLogic
Server to relocate the secondary copy of the session to the other cluster as part of processing the
request.

MAN replication gives you all the benefits of in-memory replication within a cluster without the
drawbacks of trying to create a single cluster that spans multiple sites. Because the replication is
synchronous and done as part of normal request processing, the network bandwidth and latency is
important to prevent poor performance and scalability problems. In situations where the network
is not sufficient, WebLogic Server offers a WAN replication option that removes the cross-cluster
replication from the normal request processing and makes it asynchronous.

Using WAN Replication
WAN replication uses normal in-memory replication within the local cluster and provides asyn-
chronously updated session data stored in the remote cluster’s database. As with MAN replication,
the global and local load balancers should maintain session-based data center and server affinity
under normal conditions. In the event of data center failover, the global load balancer will redi-
rect requests to the other data center; the local load balancer will direct the request to any server
in the cluster. Upon receiving the request, the server loads the session data from its local database,
becomes the primary for the session, processes the request, selects a secondary in the local clus-
ter and replicates the session, creates a new session ID to attach to the response, and buffers any
changes that should be sent to the remote data center once it comes back online.

WebLogic Server supports two models for pushing session data to the remote data center’s database.
The first model writes the session data to a local database and relies on you to set up database

744

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 745

Chapter 15: Production Environment Best Practices

replication between the two data centers using whatever replication technology you desire. Alter-
natively, WebLogic Server can periodically call out to the remote cluster and push the session data
updates via RMI, in which case the remote cluster member receiving the updates writes them to
its local database. Regardless of what model you choose, there is a larger window of failure in
which updates to session data may be lost if data center failure occurs. When WebLogic Server is
pushing the cross-data center updates, the Session Flush Interval and Session Flush Threshold
parameters define the size of the window. When relying on external database replication, the repli-
cation technology may increase the size of the window from that defined by your WebLogic Server
configuration. See the ‘‘Cross-Cluster Replication’’ section of Chapter 12 for more details.

Best Practice
The multiple-site, multiple-cluster architecture is a very good candidate archi-
tecture for applications requiring high availability and good disaster-recovery
characteristics.

As we mentioned earlier, applications that use persistent JMS messages or JTA distributed transac-
tions complicate this model. For example, you may need to bring up the JMS server from a failed
WebLogic Server instance on another instance, or even another site. Though there are many differ-
ent ways to use JMS and JTA distributed transactions, the common theme that is usually present is
that you need to bring up the JMS server or JTA recovery service from the failed node to process
messages or do recovery of the in-flight transactions.

For intra-site failures, typical strategies include either migrating the service to another WebLogic
Server instance in the cluster or having another machine bring up the failed instance. For complete
site failures, you typically need to have the ability to bring up the entire WebLogic Server cluster at
the other site so that it can drain any messages in the JMS persistent stores and recover any in-flight
transactions. This is relatively easy to set up provided that you do not need the failed cluster to
interact with your users; configuring it to interact with your users is possible, just more difficult.

Unfortunately, space prevents us from going into detailed discussions of the different scenarios. It’s
time to move on to talk about load balancers and how they work with WebLogic Server.

Global and Local Traffic Management
Global and local load balancers figure prominently in many production environments. Their proper use
is the subject of this section. We start with a quick look at some basic configurations that show how
load balancers are used in production environments. Next, we discuss using local load balancers with
WebLogic Server. We end by discussing the use of global load balancers to load balance and fail over
between sites.

Using Load Balancers
As global enterprises have continued to open their systems to new customer channels, system designers
have been forced to deal with unpredictable user demands while retaining high performance and high
availability. These requirements have driven designers to the use of global and local traffic management

745

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 746

Chapter 15: Production Environment Best Practices

devices, or load balancers, to better manage wide area network (WAN) and local area network (LAN)
traffic.

Figure 15-7 illustrates a simple example of local traffic management using a set of redundant local load
balancers to manage traffic to a cluster of servers.

Figure 15-8 extends this example to global traffic management by adding a global load balancer in front
of two identical configurations of servers and local load balancers. Similar configurations were utilized
in many of the design strategies discussed in the previous section.

Internet

Load
Balancer

Load
Balancer

Router

Server Server Server Server

Figure 15-7: Local traffic management using
local load balancers.

Many vendors offer these local and global traffic-management devices, including F5, Cisco, and Radware.
Although they are commonly called load balancers, most of these devices offer features such as content
switching, traffic management, and SSL acceleration in addition to load balancing. You should choose a
product that provides at least the following features:

Intercept The device must be able to intercept the incoming traffic.

Inspect Once traffic is intercepted it must be inspected to determine its type and how it should
be handled. Inspection is performed at different network layers depending on the requirements
of the system. Simple inspection is performed at Layer 4, one of the seven layers in the ISO Open
Systems Interconnection (OSI) Reference Model, and involves IP and port information. For many
applications this type of inspection is sufficient to route or transform the message properly. More
demanding systems may require inspection of HTTP headers or even the payloads in the packets
to handle the traffic properly.

746

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 747

Chapter 15: Production Environment Best Practices

Internet

Load
Balancer

Load
Balancer

Router

Server Server Server Server

Load
Balancer

Load
Balancer

Router

Server Server Server Server

Global Load
Balancer

Figure 15-8: Global traffic management using global load balancers.

Transform The load balancer may be required to transform the traffic in some manner, the sim-
plest example being a change to the destination IP address and port. Advanced transformations
can involve re-encryption of traffic, rewriting URL values, or even inserting cookies into HTTP
headers.

Direct The final step involves the actual directing of the traffic to the appropriate resources.

While performing all of these tasks, load balancers must also support multiple IP-based protocols, han-
dle high levels of traffic, and perform very quickly with little overhead. Most load balancers support
multiple distribution algorithms, such as round-robin, geography, round-trip time, random, ratio, least
connections, application availability, and user-defined quality-of-service (QoS). The simpler algorithms
often produce better results. Most commonly used algorithms include round-robin or least connections
for local area networks, and user-defined QoS, geography, and application availability for wide area
networks and disaster recovery.

Using Local Load Balancers with WebLogic Server
Load balancers can be used to manage traffic to both clustered and non-clustered WebLogic Server
instances. Any load balancing algorithms can be used with these configurations, although limitations
are associated with certain protocols, SSL support, and stateful HttpSession data.

When using a hardware load balancer with HTTP requests, the load balancer sits in front of the web
application and is used to distribute the load across the members of the cluster and provide failover
capability. Load balancers present one IP address for all clients and then distribute load to available
WebLogic Servers in the cluster.

747

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 748

Chapter 15: Production Environment Best Practices

Load balancers are also used to provide session affinity, routing user requests to the WebLogic Server
instance containing the primary copy of that user’s session data, a technique known as sticky sessions.
Once a user establishes a session on a primary server, that user will be pinned to the same WebLogic
Server instance for the entire session. As described earlier in the chapter, a failure of the server hosting
the primary copy of the user session data will be handled transparently by WebLogic Server using the
secondary copy of the session data replicated to another server in the cluster.

If you are using HttpSession data with a WebLogic Server cluster, you must use a load balancer that
supports a compatible passive or active persistence mechanism, unless you happen to be using JDBC-
based session persistence. Even with JDBC-based session persistence, maintaining session affinity has
potential performance benefits. The proper configuration for this hardware load balancer depends on the
type of persistence you choose:

❑ Passive cookie persistence refers to the ability of WebLogic Server to write a cookie containing ses-
sion information and pass it through the load balancer to the client. The hardware load balancer
must be configured to inspect the HTTP header and read the WebLogic Server cookie to route
the request to the correct server instance properly.

❑ Active cookie persistence exists when the load balancer either creates its own session cookie or
overwrites the existing session cookie. The load balancer then examines this cookie to route the
request to the proper server instance during subsequent requests. Although active cookie persis-
tence is generally compatible with WebLogic Server, a cluster will work properly only with load
balancers that do not modify the WebLogic Server session cookie.

Hardware load balancers can also be used in front of a group of managed servers that are not clustered
and do not replicate HttpSession data. Traffic will be distributed to the WebLogic Servers according
to the load balancing algorithm, and the load balancer will again provide the sticky session capability.
Should a server instance fail, subsequent requests will be routed to another available managed server.
Unless your applications are using JDBC-based session persistence, any session data will be lost. If the
session is lost, the user will have to authenticate again and he or she will lose any in-memory state the
server was maintaining.

Using Global Load Balancers with WebLogic Server
Unlike local load balancers used for distributing traffic among multiple servers, global load balancers
are used to distribute traffic among different sites. Global load balancers can be used with or without
clustering software and are often used in conjunction with local load balancers to eliminate single points
of failure and route traffic away from poorly performing sites. Global load balancers are also vital for
disaster recovery; most products provide policies to ensure that all traffic will be sent to a primary site
unless that site is suffering an outage. During an outage, traffic can be manually or automatically routed
to a secondary site.

Most global load balancers work by becoming the authoritative DNS server, which means that when a
client requests a URL, the query returns the IP address of the global load balancer itself rather than the
address of a local load balancer or server. When a client contacts that IP address, the global load balancer
then provides the client with the IP address of the data center best suited to serve the request. Global
load balancers usually sit outside the LAN and intercept requests before they hit the firewalls at the sites
themselves, although configuration options exist for balancing in firewalls as well.

Most global load balancers provide numerous configuration options. For example, the 3-DNS Controller
from F5 Networks provides both static and global load balancing policies with various options. In the

748

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 749

Chapter 15: Production Environment Best Practices

static mode, connections are distributed according to predefined rules, such as global availability, which
chooses the server based on the order defined by the administrator, and static persist, which ensures
that transactions requiring persistence are always routed to same server or data center. Round-robin and
return DNS policies behave like a normal DNS server, whereas random and ratio modes can be used to
do weight-based load balancing. The load balancer also collects various performance metrics that can be
used to define dynamic load balancing policies.

Production Security Strategies
In this section, we review some of the key concepts and practices associated with locking down and
securing your WebLogic Server installation above and beyond the WebLogic Server and Java EE security
topics covered in Chapter 11. First, we review the importance of understanding your application architec-
ture and the potential security threats. We then proceed to discuss firewall and DMZ design, connection
filtering, locking down web applications, some miscellaneous security practices, and SSL acceleration
approaches.

Understanding Application Data Flow
It’s important to first understand the underlying data flow of your application architecture to better
define the overall network layout and potential security threats. Once this review is complete you can
begin defining and mapping application security requirements to the WebLogic Server Security Service
and Java EE security features. As discussed in Chapter 11 and depicted in Figure 11-1, two general types
of clients will be calling into the server: Web, or thin, clients and application, or fat, clients.

The first client type is the thin client, typically a browser or other web services client. Thin clients may
call in to the application via the HTTP protocol using direct connections with the WebLogic Server or
through a web server running a WebLogic Server proxy plug-in component. Thin clients normally call
web application components and web services in the server’s servlet engine.

The second client type is the fat client, or application client. Fat clients may use the HTTP, T3, IIOP, or
COM protocols to call directly into the server, invoking web application components, web services, EJB
components, or JMS services in the server. Both thin- and fat-client calls can be routed through a single
firewall or a set of firewalls for security. We talk about suggested firewall layouts later in this section.

To define the specific security threats, also known as the threat model, you need to define both what you
are protecting and who you are protecting it from. Once you have identified all of the client types and
request paths for your application, you should then identify the data and operations on the server that
they will be accessing and the required security for those resources. The security requirement could be as
simple as requiring only SSL connections for all authentication or as complex as requiring an X.509 client
certificate signed by a specific certificate authority for access. Consider each type of operation or data that
will be used by clients and the ramifications if that resource were compromised in some way. Once you
understand the security requirements for the server-side data and operations, the various clients, and the
network types they will use, you have defined your threat model.

Tip to Remember
One assumption we make in this discussion is the security of the underlying machine
on which WebLogic Server runs. The physical security of the machine, the operating
system, the user accounts on the machine, and other programs running on the machine,
are critical to good security and should be thought through meticulously.

749

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 750

Chapter 15: Production Environment Best Practices

Understanding Firewall Layouts
Firewalls provide a high level of security from untrusted traffic if used and configured properly. In this
section, we discuss the positives and negatives of some of the common firewall layouts used to separate
corporate resources from the Internet and provide a layered security approach. The specific firewall used
in this discussion could be any of the major firewall types. The most basic firewall is a stateless, packet-
filtering firewall that performs network address translation (NAT). You can also use the more complex,
stateful, packet-inspection firewalls if circumstances warrant their use. Regardless of type, by grouping
our network layout in firewalls, we define specific, contiguous regions of a network that operate under a
single, uniform security policy.

Another important point about using NAT firewalls is that you need to configure your WebLogic Server
instances to be aware of the external addresses that the clients use to contact WebLogic Server. See
Chapter 12 for a thorough discussion of this topic.

The simplest and most common firewall layout is a single perimeter firewall protecting the entire appli-
cation from the untrusted zone, a configuration depicted in Figure 15-9. This untrusted zone might be
the Internet, your company’s extranet, or even anything outside your data center. This layout is typical
of a small enterprise or division. The disadvantage of a single firewall is the lack of a layered approach to
security — a single implementation flaw or configuration error in the firewall can lead to a complete loss
of security.

Servlet and Web
Services Containers

Load Balancer
and/or

Web Server
w/ WebLogic

Plug-In
(HTTP, HTTPS)

WebLogic Server

Firewall

EJB Container,
JMS, and jCOM

Web and/or
Application Client Database

Figure 15-9: Single perimeter firewall layout.

Some corporate security policies can be very strict and may require several well-defined network regions,
commonly referred to as demilitarized zones (DMZs), having their own security policies. The concept
is simple: Putting servers or network appliances, with or without application code, in the DMZ limits
your overall security exposure if the machines in that area were somehow compromised. A DMZ could
include anything from only a router or hardware load balancer to the entire application; in the latter
case, the application has a lower level of protection than other corporate resources not in the DMZ. Typi-
cally, the DMZ contains only a hardware load balancer or web servers configured with a WebLogic Server
web server plug-in. Figure 15-10 shows a conceptual overview one of the most common configurations.

Of course, we have barely scratched the surface of what is possible with firewall configuration. Most
companies have their own policies about how the network should be laid out. Therefore, we will move
on to talk about connection filters.

750

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 751

Chapter 15: Production Environment Best Practices

Servlet and Web
Services Containers

Load Balancer
and/or

Web Server
w/ WebLogic

Plug-In
(HTTP, HTTPS)

WebLogic Server

Firewall

EJB Container,
JMS, and jCOM

Web and/or
Application Client

Firewall

Database

Figure 15-10: Typical DMZ firewall layout.

Using a Connection Filter
One of the first rules of security is to refuse connections from unknown or untrusted sources, denying
these sources any foothold in the environment. Connection filters are a powerful way to control the types
of connections that can access your WebLogic Server instances. Both software- and hardware-based fire-
walls offer the ability to restrict access to IP/port combinations based on the requestor’s IP address, the
protocol being used, and so on. For example, many Linux distributions include the iptables software-
based firewall that allows you to define connection filters.

WebLogic Server also provides a connection filtering facility that allows you to specify what types of
connections your WebLogic Server instances will accept, providing a programmatic control over every
new connection with the server. You can configure a WebLogic Server connection filter in two primary
ways: use the built-in connection filter in WebLogic Server or write a custom implementation of the
ConnectionFilter interface.

WebLogic Server’s Built-In Connection Filter
The first and easiest way to filter connections uses WebLogic Server’s built-in connection filter facility.
You can enable and configure this facility using the domain’s Security Filter tab in the WebLogic
Console by defining rules that govern the types and sources of network connections to be accepted or
denied. By default, no rules are defined in the built-in connection filter, so all connections are accepted.
Rules are very specific in format, and ordering is also very important. The first matching rule wins, even if
another rule further down contradicts it. Because performance can also be a concern, place more general
rules at the top of the list to allow most new connections to be identified quickly and allowed or denied.

To use the default connection filtering, simply set the Connection Filter field’s value to
weblogic.security.net.ConnectionFilterImpl and define the appropriate rules. Each rule is
defined using the following syntax:

target localAddress localPort action [protocols]+

The target parameter defines the source IP address, including any subnet mask, to be filtered; the
localAddress and localPort parameters define the WebLogic Server IP address and port for this rule,
making it possible to filter connections on some network channels and not on others. You must set the

751

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 752

Chapter 15: Production Environment Best Practices

action argument to either allow or deny, and the optional protocols parameters must be one or more
of the following values: http, https, t3, t3s, ldap, ldaps, iiop, iiops, or com.

Let’s look at a couple of examples. Imagine that you want to deny access to any port on your WebLogic
Server listening on 216.148.48.51 from anyone using an IP address that starts with 192.168 for both the
HTTP and IIOP protocols. The following entry would accomplish this:

192.168.0.0/255.255.0.0 216.148.48.51 * deny http iiop

While our entry using the subnet mask is fine, the best practice is to use the Classless Inter-Domain
Routing (CIDR) notation, as shown here.

192.168.0.0/16 216.148.48.51 * deny http iiop

You can also block access specifically to port 7001 on your site to anyone trying to access the site from any
host in the baddomain.com domain. The following entry accomplishes this by denying access regardless
of the protocol:

*.baddomain.com * 7001 deny

Note that this rule requires a runtime DNS lookup to evaluate the rule properly for each network con-
nection attempt, potentially creating a performance problem. Try to use IP addresses rather than domain
names whenever possible.

This rule-based technique for configuring the connection filter provides significant flexibility. By combin-
ing allow and deny rules, you can configure the connection filter to refuse connections of certain types,
perhaps http or t3, from all external IP addresses while allowing these connections from other servers
in the cluster, web servers, or hosts in the corporate LAN subnet.

Custom Connection Filters
The second way to filter connections involves writing a custom implementation of the weblogic.
security.net.ConnectionFilter interface and configuring WebLogic Server to use this filter rather
than the built-in connection filter. Your custom implementation class will receive a ConnectionEvent
object via the accept() callback method whenever a new connection attempt takes place. This
ConnectionEvent object contains information regarding the inbound connection, including the
remote address and port, the local address and port, and the protocol. Your implementation of the
accept() method should interrogate this object and determine whether to accept the connection,
returning from the method without an exception if the connection should be accepted and raising a
FilterException if the connection should be refused.

What follows is an example implementation of the ConnectionFilter interface that accepts all connec-
tions from the IP address 127.0.0.1 but refuses all other connection attempts:

class SimpleConnectionFilter implements ConnectionFilter
{

public void accept(ConnectionEvent event)
throws FilterException

{
String target =

event.getRemoteAddress().getHostAddress();

752

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 753

Chapter 15: Production Environment Best Practices

if (! "127.0.0.1".equals(target))
throw FilterException("Connection refused!");

}
}

Locking Down Web Applications
Several security considerations related to web applications are not obvious and can lead to confusion
if not understood. This section supplements the general security information in Chapter 11 with some
additional topics related to web applications.

Access Control Checks during Server-Side Forwards
A web application deployed on WebLogic Server will restrict access to specific pages and resources based
on the various <security-constraint> elements defined in its web.xml deployment descriptor. If the
web application sends an HTTP redirect to the client with a new resource URL, the client will send a new
request to the server for the new URL. This second request will be required to pass any access control
checks using the same <security-constraint> elements in the deployment descriptor.

If the web application does a server-side forward to a new resource URL, however, the client is never
involved and no second request is made and checked against the security constraints. The same HTTP
request is simply moved on to the next resource on the server side, evading a full access control check.
In many web applications, this is fine because the web application development teams understand the
access restrictions in place for, and forwarding mechanisms used by, various parts of their application.
However, you should be aware that server-side forwarding will not, by default, check authorization to
access the target resource. This means that applications that use server-side forwarding can unknowingly
create backdoors to allow unauthorized users to access protected resources.

You can configure the web application to perform a full access control check for all server-side for-
warding using the <check-auth-on-forward> element in the WebLogic Server–specific weblogic.xml
deployment descriptor:

<weblogic-web-app>
<container-descriptor>
<check-auth-on-forward/>

</container-descriptor>
...

</weblogic-web-app>

Oracle recommends that you not use this mechanism and instead rely on proper application design
and security auditing. Though we agree with this recommendation, we felt compelled to point out this
potential security hole and a mechanism to prevent it.

Session ID Cookies Safety
Web applications that run over both secure (HTTPS) and insecure (HTTP) sockets must be designed
very carefully to avoid compromising the session ID stored in the cookie. Recalling previous discus-
sions in Chapter 1 and elsewhere, the cookie is a token that is generated on the server and sent to the
browser client for the purposes of identifying that browser session during subsequent HTTP requests.
The browser will resend the cookie with every subsequent request it makes to that domain, and the server
will identify the client by the uniquely generated session ID contained in the cookie. In other words, if the

753

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 754

Chapter 15: Production Environment Best Practices

browser has authenticated itself, either via FORM or BASIC HTTP authentication, the session ID in the
cookie serves as the only information the server needs for proof of the client’s identity.

The problem is that if a user begins accessing a web application over a plain text, or insecure, socket, the
cookie and the session ID in it are sent in plain text in the HTTP headers. This scenario is very common,
and it could represent something like a catalog and shopping cart area in an e-commerce site where it is
perfectly acceptable to begin the session over plain text because no private information is being sent over
the wire.

The real security problem occurs if the web application later switches to a secure socket and allows the
same cookie and session ID to be used during secure operation, the default behavior of a web appli-
cation. Continuing the e-commerce example, the site might switch to secure mode once a shopping
cart is full and the user must log in or provide credit card information to complete the transaction.
This new user information and authentication context is still associated with the original session ID
and cookie transmitted over plain text even though the secure protocol was used to perform the sub-
sequent authentication or data gathering steps. This is obviously a major concern because anyone who
sniffed, or intercepted, the original session ID from the plain text socket cookie can now impersonate the
newly authenticated user with it, perhaps gaining access to user information or the data gathered dur-
ing the secure communication. Note that the problem described here is nothing specific to WebLogic
Server, but rather a problem in the way secure and insecure HTTP communication is used in typical web
applications.

Fortunately, WebLogic Server by default uses a separate secure cookie for HTTPS access. All
HTTP requests continue to use the standard JSESSIONID cookie. Any HTTPS requests use a new
_WL_AUTHCOOKIE_JSESSIONID cookie that is never transmitted over HTTP. A user that starts by accessing
the web application via HTTP will obtain and continue to use the JSESSIONID as normal, with all
subsequent requests being treated as authenticated by the session ID. Upon first access to an HTTPS
resource, the user must re-authenticate to obtain the _WL_AUTHCOOKIE_JSESSIONID cookie. This is the
default behavior starting in WebLogic Server 8.1 SP1. See Link 15-2 for more information.

Examining Other Security Considerations
This section offers additional recommendations and best practices for locking down various parts of a
WebLogic Server installation. These include the following:

Use Separate Development and Production Systems This eliminates any inconveniences asso-
ciated with production environment security during application development and early stage
testing. Areas such as the physical security of the machine, the operating system, the user accounts
on the machine, and other programs running on the machine should all be as secure as you can
make them. Having separate environments and a specific transfer audit will significantly reduce
the risks of improper installation often associated with vulnerabilities.

Precompile All Java Server Pages (JSPs) on the Production System Some corporate secu-
rity policies do not allow any source code on live systems. By using the weblogic.jspc or
weblogic.appc utilities to precompile all JSPs into the web application’s WEB-INF/classes
directory, you not only improve the initial response time of the web application but also have a
cleaner security audit. To totally eliminate the need for JSP source files on your production system,
precompile all of your JSPs and use the WebLogic Server–supplied JspClassServlet instead of

754

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 755

Chapter 15: Production Environment Best Practices

the default JspServlet. By using the JspClassServlet, WebLogic Server will no longer look for
the JSP source files.

Use JSP Comments Rather Than HTML Comments Also consider using only JSP comments in
your JSP code, because the JSP comments are removed from the final class at compile time whereas
HTML comments are sent to the client and may provide internal implementation details.

Use SSL/TLS Whenever Possible Though it is certainly true that the performance of SSL is not as
good as a plain text socket, the security benefit cannot be overlooked. SSL is a top-heavy protocol.
The initial handshake, which uses asymmetric cryptography, is the real performance bottleneck.
After the handshake is complete a shared secret exists, and better performing symmetric cryptog-
raphy is used. This is why it is important to understand SSL session resumption, a technique that
allows an SSL client to remember specific SSL session information for reuse when connecting back
to an SSL server. The client will then be able to present its SSL session information to the server and
skip the expensive SSL handshake.

Using Two-Way SSL Can Prevent Man-in-the-Middle Attacks If possible, distribute client cer-
tificates and set up the server to verify them. By telling the server which certificate authority to use,
you know precisely what SSL clients are connecting to the server. This is commonly called a public
key infrastructure (PKI). Though some significant management concerns are associated with PKI,
the authentication is very secure and could be worth the management and configuration invest-
ment.

Modify the Timeout and Maximum Size Values for the Incoming Protocol Ports on the Server
to Prevent Denial-of-Service Attacks The values for some of the main server protocols of T3,
HTTP, COM, and IIOP can be adjusted via the server’s Protocols tab in the WebLogic Console.
The settings are located in the General and HTTP subtabs. The default timeouts are typically accept-
able, but the default maximum message size should likely be lowered, subject to the needs of your
business applications.

Understand the User Password Lockouts The default user password lockout values are probably
fine, but looking them over is always a good idea. This configuration resides in the security realm’s
User Lockout Configuration tab in the WebLogic Console. If a user does become locked out, you
can manually unlock the account before the lockout time is up using the domain’s Unlock User
Security tab.

Use the Underlying Operating System File System Security to Protect the Various Applications
and Libraries of the WebLogic Server Though we have already recommended running with a
secure and audited operating system on your production environment, you can also gain superior
protection for the applications by using the file system security. Adjusting the ownership of the
applications directory for access only by the user account that runs the server can be very helpful,
and never install or run your WebLogic Server software as root. If you need to bind to a privileged
port, make sure to configure the server to switch to a non-privileged user using the machine’s
General Configuration tab in the WebLogic Console.

Use External System Security Facilities When Possible When connecting to a database
from the WebLogic Server, you should specify a username and credential to use. By locking down
the database to that specific user, you have reduced the threat against the database significantly.
Using a firewall around the database will also limit the threat. The same recommendations hold
true for any type of external system we might use from the WebLogic Server. Many backend EIS
systems have credentials applied via the Credential Mapper in the WebLogic Server security
framework.

755

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 756

Chapter 15: Production Environment Best Practices

Audit the WebLogic Server Log File Often By routinely monitoring the WebLogic Server sys-
tem log and the security audit log, you will become familiar with normal operation and be able to
identify abnormal use more readily. Without a baseline to compare against, the usefulness of the
log files and audit trails is greatly reduced. You might also consider using the audit provider in the
security framework as a non-repudiation framework, useful in case an attack succeeds and legal
proof of identity is required.

Have a Security Audit Performed by an Internal or External Auditing Group This can help
catch security flaws overlooked in the design, implementation, or deployment of an application.
An audit can also qualify the current application deployment and help develop a longer-term secu-
rity policy for your group or company.

Oracle has an email notification list for vulnerabilities found on the WebLogic Server platform. Email
notifications contain information on the vulnerability as well as patching information. This is extremely
valuable information for any WebLogic Server production system. You can find more information online
at Link 15-3 .

Using SSL Hardware Acceleration
There are at least two good ways to increase your server’s SSL performance:

❑ Use a load balancer with built-in SSL support.

❑ Run WebLogic Server on a machine having SSL hardware via the Java Cryptography Extension
(JCE).

The first technique uses an external load balancer to handle the SSL. In this solution, the SSL socket
is between the client and the load balancer, and all encryption and decryption take place on the load
balancer’s specialized hardware. The load balancer then uses the plain text HTTP cookie in the decrypted
socket to associate the session with a specific standalone server or a server in a cluster. This feature of
load balancers is called SSL persistence, and many load balancers, such as Nortel and F5, incorporate it in
their product offerings.

The second way to accelerate SSL with hardware is via the Java Cryptography Extension (JCE). The Java
Cryptography Extension is part of Java SE. WebLogic Server SSL packages use JCE for all cryptographic
functions in the server. JCE is a pluggable framework for various cryptographic implementations. New
providers for specific features can be added seamlessly and used without requiring modifications to
application code. By configuring JCE with a hardware provider, WebLogic Server will be able to use
accelerated cryptographic functions available on that platform. This pluggable JCE feature has been
supported in WebLogic Server only since version 7.0 Service Pack 2. Prior to that, JCE providers were not
configurable in any way.

One thing to remember is that to use specialized JCE hardware, the hardware, the device drivers, and
the JCE classes all need to be installed and working correctly. See the WebLogic Server documentation at
Link 15-4 for more information about setting up JCE providers.

756

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 757

Chapter 15: Production Environment Best Practices

Chapter Review
This chapter focused on topics and techniques you need to consider when designing a production envi-
ronment that must be scalable, secure, and highly available. We discussed a number of clustering and
multiple-site design strategies, the use of hardware load balancers for global and local traffic manage-
ment, techniques for employing full-featured clustering solutions with WebLogic, and best practices for
securing your production environment and applications.

WebLogic Server provides a wealth of configuration options to support the most demanding require-
ments. The right combination of hardware, software, and networking strategies is certain to yield a
production system that meets all business and technical requirements. It is up to you to identify and
document these requirements and choose the proper strategy for achieving your goals.

757

Patrick c15.tex V3 - 09/18/2009 12:22pm Page 758

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 759

In
de

x

Index

A
AbstractController class, 82
AbstractEntityManager, 259
access control
admin and, 152
server-side forward and, 753

acknowledgement strategy, JMS, 403–404
action classes, servlet-centric (Struts) architecture and, 49
action pages, JSP, 47
active cookie persistence, 748
Active Directory, 466–467
Active Server Pages (ASP), 7
admin

access control and, 152
server states, 542

admin channels
configuring, 572–575
overview of, 546

admin ports
configuring, 572–575
default, 529

admin servers
communication with node manager, 562
configuring ports and channels, 572–575
managing servers in a domain, 538–541
migrating, 640–641
overview of, 520
setting up new domains, 549–550

administration, WebLogic Server
application configuration, 575
application deployment, 590–592
bigrez.com Data Source configuration, 583
cluster configuration, 553–555
creating JMS connection factories, 588
creating JMS distributed destinations, 586–588
creating JMS servers and persistent stores, 584–586
cross-cluster replication, 555–557
database resource configuration, 575
domain configuration, 547–549
JavaMail session configuration, 588–589
JDBC DataSource configuration, 577–580
JDBC driver configuration, 576
JMS resource configuration, 583–584
JVM configuration, 567
locating data sources in Java EE applications, 582–583
modifying application configuration using deployment plans,

592–595
network channel configuration, 557–560
network channels, 545–547
operating system configuration, 566–567

overview of, 542
port and channel configuration, 572–575
security, 447–449
self-health monitoring, 544–545
server configuration, 551–553
server states, 542–543
setting up new domain, 549–551
setting up node manager, 560–566
transaction options for JDBC DataSource, 580–582
web server plug-in configuration, 567–572
work manager, request classes, and constraint configuration,

589–590
administration components, web applications, 105
administration controller form view overrides, 122–123
administration site
bizgrez.com, 58
display and source components, 74
weblogic.xml descriptor file, 133–137
web.xml descriptor file, 128–133

administrative privileges, for running WLST
commands, 597

advanced queuing (AQ), 438–440
aggregation, cascading operations and, 176
AIX, tuning, 649
alarms, WLDF, 627
annotation-based programming, in EJB 3.0, 156
annotations

cascading operations and, 176
dependency injections and, 223–225
vs. deployment descriptors, 221–222
referencing EJBs, 197–198
simple packaging and, 266
SLSB (stateless session beans) and, 159

Ant build tool
from Apache Software Foundation, 125
bigrez.com projects, 291–292
clientgen task, 319
creating web application archive file, 144–145
jwsc task, 311
persistent class enhancement, 173
wlappc and, 137
wldeploy task, 150
wsdl task, 321
wsdlc task, 314–316

AOP (Aspect Oriented Programming)
AspectJ, 623
Java SE and, 334

Apache
Ant build tool from, 125
Commons Logging API, 620–621
JMeter, 725

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 760

Apache web servers

Apache web servers
common parameters, 570
debugging parameters, 571–572
plug-in configuration, 567–570
response time parameters, 571

appc
compiler utility, 137–139
dynamic compilation feature and, 192–193
persistent class enhancement, 173
production builds with, 293–294

APP-INF directory, 285
application components, web applications, 73–75
application container, WebLogic Serve, 529–530
application design

application requirements, 55–56
business domain models, 56–57
business-tiers interfaces, 67–68
controllers for calling business services, 68–69
controllers for populating forms for JSPs, 69–70
designing MDB-based applications, 431–432
external view assembly using Tiles framework, 66–67
master page assembly approach, 64–66
overview of, 55
presentation approach, 60–61
presentation requirements, 57–59
relationships in presentation components, 71–72
review, 72
self-assembly approach, 61–64
updates requiring explicit service calls, 71
Web application architecture and, 59

application design, JMS. See JMS applications, designing
application hotspots, 644
Application Library Directory, Java EE, 285
application management, WebLogic Server

Commons Logging API, 620–621
database failure management, 630–632
exporting diagnostic data, 626
failure management, 630
harvesting metric information, 625–626
instrumenting bigrez.com, 622–625
logging services, 617–618
message catalog logging, 618–619
migrating admin server, 640–641
migrating custom singleton services, 637–638
migrating JMS services, 633–636
migrating JTA service, 636–637
migrating whole server, 638–640
non-catalog logging, 620
overview of, 615
server failure management, 632
troubleshooting, 615–617
versioning applications, 628–630
watches and notifications, 627–628
WLDF (WebLogic Diagnostic Framework) and, 621–622

application monitoring, WebLogic Server
command-line tool for, 600–601
JMX programmatic monitoring, 603–606
overview of, 595
SNMP for, 607–614
WebLogic Console for, 601–603
WLST for, 595–600

application security, WebLogic Server
managing EJB security, 493–495
managing users and groups, 496
models, 487
overview of, 487, 496
securing enterprise applications, 496
securing J2EE CA resource adapters, 495
securing resources, 496–497
securing web applications, 488–493
security models for, 454
working with roles and policies, 497–500

application servers, troubleshooting
identifying and correcting bottlenecks, 679
throughput, 682–683

application servers, tuning, 661–665
configuring connection-related parameters, 661–662
optimizing thread management, 662–664
overview of, 661
resource pools and cache sizes, 664–665
using native I/O muxer, 662
verifying/adjusting settings, 665

application tiers, Java EE, 31–32
applications

building EJB applications. See building EJB applications
deploying Web Logic Server applications, 590–592
enterprise. See enterprise applications
system requirements when designing, 55–56
web. See web applications

applications, WebLogic Server
authentication with SSL, 486
configuring, 575
deployment, 590–592
modifying application configuration using deployment plans,

592–595
tuning, 645–646
types of modules in, 287
web application clustering, 531–536

application.xml descriptor file, 265, 278–280
application.xml file, 136
AQ (advanced queuing), 438–440
architecture

business layer. See business layer architecture
presentation-tier, 67–71
web application. See web application architecture
web services containers, 303–304

architecture, WebLogic Server
deployment. See deployment architecture, WebLogic Server
server. See server architecture, WebLogic Server

archive files
creating EJB archive file, 265–266
web application archive. See .war (web application archive)

file
archives, managing diagnostic archive, 627
arguments, remote start attributes for WebLogic Servers, 563
ASP (Active Server Pages), 7
Aspect Oriented Programming (AOP)

AspectJ, 623
Java SE and, 334

AspectJ, 334, 623
assertions, SAML, 502
associations

760

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 761

In
de

xbuilding web applications

bi-directional vs. unidirectional, 248
mapping, 231–233

asynchronous web services
calling, 343–344
creating one-way web services, 344
returning multiple asynchronous web services, 344–346

Atlassian’s Clover, 716
attachments, SOAP, 338–341
attribute statements, SAML, 502
audit trails, in business layer requirements, 235
AuditFilter, 130
auditing

using WebLogic Server log file, 756
in WebLogic security, 459–460

authentication
application authentication, 486
Basic Authentication, 302
choosing components for web application, 105–108
configuring web service security and, 359
custom authentication providers, 516
managing external LDAP authentication, 465–467
managing RDBMS authentication, 467–469
node manager and, 562
node manager requiring, 562
presenting role-based views of data, 36
providers, 455–457
servlet authentication filters, 517
transport-level security and, 350–351
WS-Security, 352

authorization
choosing components for web application, 105–108
creating own authorization framework, 36
security providers, 458–459

AUTO_ACKNOWLEDGE, JMS, 366
autodeploy directory, 146
automatic deployment

of admin server, 539
bigrez.com application, 297
disabling, 540
of web applications, 145–148

automatic failover, JMS servers, 380
availability

display for reservation process, 94–101
HA (high availability) in failure management, 630
maintenance pages, 117–122
simple WebLogic Server clusters and, 732

AvailabilityAndRates objects, 98, 100–101

B
backups, replication and, 205
bandwidth, clustering and, 741
bare document style, SOAP, 324–325
basic authentication

securing web applications, 488
transport-level security and, 350–351
WS-Security and, 302

basic navigation, 42
batch updates, databases, 675
BEA Home, remote start attributes for WebLogic Servers, 563

BEA WebLogic Server Tools project, 705
bearer, SAML Token Profile, 507
bi-directional relationships

associations, 248
managing in OpenJPA, 219–220
mapping and managing, 175
mapping associations, 231

BigRez channel, 557
bigrez.com

adding web services to, 359–361
altering to use shared library, 292–293
build targets for, 702
compiling production builds with appc, 293–294
components, 291
configuring Eclipse as IDE for, 705–710
configuring JDeveloper as IDE for bigrez.com, 711–714
Data Source configuration, 583
deploying, 297–298
importing into Eclipse, 706–707
instrumenting, 622–625
logical database design, 56–57
resources, 296
running from Eclipse, 707–708

bigrez.com implementation, 244–245
database schema, 245–247
domain model, 247–249
email integration, 255–258
generating JPA classes from database schema, 249–250
generic JPA functionality, 250–252
logging interceptor, 258
optimistic locking, 259–260
service implementation, 253–255
services, 252
session façade service, 252–253
TopLink and. See TopLink
unit tests, 258–259

binary files, sending as SOAP attachments, 338
black box testing, 719
bookmarks, presentation-tier controls, 44–45
booting WebLog Server, 500–501
bottlenecks, identifying and correcting, 678–680
buffering JSP responses, 11–12
build process, 701–702
building EJB applications

business layer architecture. See business layer architecture
business layer requirements. See business layer

requirements
converting application for use with TopLink. See TopLink
implementing bigrez.com example. See bigrez.com

implementation
overview of, 227
review, 264

building web applications, 71
administration components, 105
administration controller form view overrides, 122–123
application components, 73–75
authentication/authorization components, 105–108
availability display and room-type selection page, 94–101
availability maintenance pages, 117–122
choosing basic controller components, 82–84
choosing form-processing controller components, 84–85

761

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 762

building web applications (continued)

building web applications (continued)
choosing handler and resolver components, 85–88
choosing Spring MVC components, 81
constructing, 75–76
constructing application skeleton, 75–76
constructing user site components, 76
core reservation process components, 79
date selection page, 91–94
defining navigation paths, 79–81
Java servlets. See Java servlets
JSP pages. See JSP (JavaServer Pages)
overview of, 1, 73
property main form, 109–114
property maintenance components, 108–109
property search/selection pages, 88–91
rate maintenance pages, 114–117
reservation creation process, 101–103
reservation information components, 76–79
review, 30, 123
targeted offers components, 103–105

build.xml file
creating exploded file, 140–142
creating web application archive file, 144–145
establishing a build process, 701–702
precompiling JSP components, 137

bulk updates, JPQL, 179–180
bundled libraries

enterprise application directory structure, 277
overview of, 284–286

business domain models, 56–57
business keys, 170
business layer architecture

overview of, 235–236
SLSBs and session façade requirements, 236–237
SLSBs with CMP entity beans, 238, 240–242
SLSBs with JDBC, 237–239
SLSBs with JPA, 242–245

business layer interface, 228–229
business layer requirements

additional requirements, 235
business logic, 228–230
data access, 234–235
ORM, 230–234
overview of, 227–228
table of, 236

business logic
controllers and, 83
domain model and DTOs, 229–230
encapsulating in session beans, 98
encapsulation and, 228–229
overview of, 228
transaction management and security and, 229
validation and, 230

business processes, SLSB (stateless session beans) and, 159
business services, bigrez.com

email integration, 255–258
implementing, 253–255
logging interceptor, 258
overview of, 252
session façade, 252–253
unit tests, 258–259

business-tier
controllers for calling business services, 68–69
controllers for populating forms for JSPs, 69–70
interacting with presentation tier for updating model objects,

41–42
interfaces with presentation-tier, 67–68
Java EE application tiers, 32
updates requiring explicit service calls, 71

BytesMessage object, JMS, 370, 401–402

C
C Client, JMS clients, 381
CA (certificate authority), 470–472, 574–575
CacheFilter, servlet filtering, 24–26
Cache-Flush policy, writing to persistent stores, 390
caching. See also data caches

cache size, 664–665
dynamic content caching of JSPs, 669
GemFire product for, 217
HTTPResponse caching, 24–26
idle-timeout-seconds property and, 203–204
increasing performance and throughput with, 645
LRU (least recently used), 203, 579
NRU (not recently used), 203
prepared statement caching, 220–221, 673–674
SFSB (stateful session bean), 202–204, 271

Cactus, Jakarta, 719
call router objects, 536
Canoo WebTest, 722
capacity constraints, work managers, 524
cascading operations, JPA, 176–177
certificate authority (CA), 470–472, 574–575
Certificate Revocation Lists (CRLs), 476
certificates, WS-Security and, 355–357
certification path, for X.509 certificates, 460–461
CGI (Common Gateway Interface), 2
change detection/propagation, in WebLogic Server clusters,

535–536
channels

configuring admin channel, 572–575
configuring network channels, 557–560
default, 529
network channels, 545–547

Checkstyle, 704
Class D addresses, for multicast messages, 419
classes

customizing class loading, 289–291
generating JPA classes from database schema, 249–250
Java classes as servlets, 2–3
mapping simple classes, 230–231
Spring MVC controller classes, 51

classloaders
customizing, 289–291
stand-alone deployment and, 275–276
system classloader, 530

classpath, remote start attributes for WebLogic Servers, 563
Class-Path header, bundled libraries and, 284–286
client identifiers, for JMS subscribers, 379
Client Reconnect attributes, JMS connection factories, 386

762

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 763

In
de

xContainer Managed Persistence (CMP)

client tiers, Java EE, 32
CLIENT_ACKNOWLEDGE, 366
client-cert, 489
clientgen task, Ant build tool, 319
clients

associating service handlers with service clients, 338
developing web service clients, 318–322
fat and thin, 749
JMS. See JMS clients
security-aware Java clients. See Java clients, security-aware
WebLogic Test Client, 313

client-side validation, 38–39
Clover code coverage tool, Atlassian’s, 716
cluster-aware stubs, 536
clustering, JMS. See JMS clustering
clustering, WebLogic Server

configuring clusters, 553–555
cross-cluster replication, 555–557
design options, 738
designing multiple-site WebLogic clusters, 738–741
detecting and propagating changes, 535–536
implementing clusters that span multiple sites, 741–742
implementing complex cluster for single-site deployment,

734–737
implementing one cluster per site, 743–745
implementing simple cluster for single-site deployment,

732–734
increasing performance and throughput with, 645
monitoring with WebLogic Console, 602
overview of, 520, 530–531
for RMI-based applications, 536–538
selecting secondary server, 534–535
session-based routing, 532–534
for web applications, 531

CLV (certificate lookup and validation) framework, 460–461
CMP (Container Managed Persistence)

entity beans, 238, 240–242
in JPA history, 163–164

Cobertura code coverage tool, 716
code, co-developing unit tests with, 716–717
code coverage tools, 716
code inspection tools, 704
code-first web services

developing, 307–314
overview of, 306

Coherence, Oracle
overview of, 217
using, 218–219

Cold Fusion, 7
columns, retrieving database columns explicitly, 673
command classes, Spring MVC, 51
command pattern, 667
command-line tool, for monitoring WebLogic Server

applications, 600–601
comments, JSP vs. HTML, 755
commit protocols, 581–582
commitment control level, database access best practices,

675
Common Gateway Interface (CGI), 2
Common Secure Interopenability Version 2 (CSIv2), 445
Commons Logging, WebLogic Server logging services,

620–621

community names, SNMP, 608–609
compiling production builds, with appc, 293–294
composite view pattern, for bizgrez.com example, 60–61
composition

cascading operations and, 176
mapping associations and, 232–233

compression, JMS, 402
concurrency

data access requirements, 235
locking options and, 181–182
MDBs (message-driven beans) and, 427–428
optimistic locking, 182–186

concurrency testing, unit tests, 724–725
concurrent collectors, garbage collection, 654, 659
confidentiality, WS-Security, 352
Config MBeans, WLST, 598
configuration files, controlling navigation with, 49
configWss.py, 359
connection factories, JMS

attributes of, 385–386
creating, 588
overview of, 365

connection filters, 751–753
built-in, 751–752
custom, 752–753
overview of, 751

connection pools, database
contention, 662
database access best practices, 676
identifying and correcting bottlenecks, 680

connection routing, in JMS clustering, 371–372
connection-related parameters, tuning application servers,

661–662
connections

controlling access to WebLogic Server, 751
JMS, 365
monitoring with WebLogic Console, 602

Connector Architecture, J2EE, 495
ConnectRetrySecs, web server plug-in parameters, 570
ConnectTimeoutSecs, web server plug-in parameters, 570
Consensus-based leasing, 634
console extension component, of WLDF, 622
constraints

configuring, 589–590
defining, 525–526
specifying security constraints, 462
work managers, 524–525

consumers, JMS
asynchronous, 368
balancing with producers, 664
consuming messages from a distributed

queue, 375–377
consuming messages from a distributed topic, 378–380
overview of, 364, 367–369
zero consumer queues, 375

Container Managed Persistence (CMP)
entity beans, 238, 240–242
in JPA history, 163–164

763

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 764

containers

containers
component technologies and, 155
EJB container. See EJB container, WebLogic Server
web services container architecture, 303–304

context request class, WebLogic Server, 523
context root, application.xml file and, 136
continuous integration, in development process, 702–703
control flags, authentication providers, 455–456
controller classes, Spring MVC, 51
controllers

administration controller form view overrides, 122–123
for calling business services, 68–69
choosing components for web application, 82–84
choosing form-processing controller components, 84–85
for populating forms for JSPs, 69–70
PropertyAvailabilityController, 119–121
PropertyMainController, 109–113
PropertyRatesController, 114–117
PropertySearchController, 88–90
ReviewReservationController, 101–102
SelectDatesController, 92
SelectRoomTypeController, 96–97
Spring MVC, 51

cookies
persistence, 748
session ID cookie safety, 753–754
session tracking and, 5

cookies, session tracking and, 342–343
Copying collector, garbage collection, 654
core dumps

defined, 685
reading, 686–687

core library, JSLT, 19
core reservation process components. See reservation

process
correlation IDs, request/reply messaging and, 422–423
CPUs

JVM-to-processor ratio, 730
troubleshooting CPU utilization, 682–683
vertical scaling, 730–731

create, read, update, delete (CRUD)
data access requirements, 234
encapsulating repetitive CRUD operations, 255

createNamedQuery(), EntityManager, 178
createQuery(), EntityManager, 178
createQueue(), 400
createReservation service, 103
createTopic(), 400
credential mapping, in WebLogic security, 460
CRLs (Certificate Revocation Lists), 476
cross domain security, setting up, 510–511
cross domain user, 511
cross-cluster replication, 555–557
CRUD (create, read, update, delete)

data access requirements, 234
encapsulating repetitive CRUD operations, 255

Cruise Control, 703
CSA (customer services agents), configuring network

channels, 557–559
CSIv2 (Common Secure Interopenability Version 2), 445
CSR (Certificate Signing Request), 470–471

custom authentication providers, 516
custom tags

calling in JSP pages, 16
components of, 20
development and use, 21–22
directory structure and, 126
sources for, 22
‘‘tag files’’ differentiated from, 20–21
unique capabilities of JSP pages, 12
using JSTL tags to reduce scriptlet code, 15

customer services agents (CSA), configuring network
channels, 557–559

customizing class loading, packaging enterprise applications,
289–291

D
Dali utility (Eclipse IDE), 249
DAOs (data access objects), 254–255
data access, business layer requirements, 234–235
data access objects (DAOs), 254–255
data caches

configuring for multiple JVMs, 218
overview of, 217–219
tuning, 217–218
using Oracle Coherence, 218–219

data flow, in application architecture, 749
data replication requirements, in multiple site deployment

strategy, 740–741
data sources

configuring for bigrez.com, 583
configuring JDBC data source for use with WebLogic Server,

577–580
locating in Java EE applications, 582–583
monitoring with WebLogic Console, 602
Multi Data Source support, 631–632
transaction options for JDBC data source, 580–582

data tier, 32
database access best practices

batch updates, 675
caching prepared statements, 673–674
commitment control level, 675
connection pools, 676
overview of, 672
principles of, 673
releasing JDBC resources, 676–677
retrieving columns explicitly, 673
transaction model, 674

database schema
bigrez.com, 245–247
embedded entity classes and, 248
generating JPA classes from, 249–250
making changes to BigRez schema, 252

database servers
development environment hardware and software

requirements, 692
identifying and correcting bottlenecks, 680
sharing between developers, 693–694

database-backed replication, for cross cluster
replication, 739

database-based leasing, 634

764

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 765

In
de

xdevelopment environment

databases
bulk updates, 179–180
configuring for use with WebLogic Server, 575
database services in unit test context, 721
failure management, 630–632
locking, 181–182
mapping inheritance in, 233–234
transaction isolation levels, 199–201

date selection page, 91–94
DCR (dynamic class redefinition), 700
Debug parameter, web server plug-in, 571–572
DebugConfigInfo parameter, web server plug-in, 571–572
debugging

with IDEs, 714–715
SAML, 510
security framework debug scope, 464
SSL (Secure Sockets Layer), 477–478

deep fetches, ORM, 232
default channels, 546
Default Message Delivery attributes, JMS connection

factories, 385
default network configuration, 529
DefaultFileName, web server plug-ins, 570
delivery overrides, JMS messages, 392–393
demilitarized zones (DMZ), 750–751
denial-of-service, server configuration and, 551
Denial-of-Service attack, 755
dependency injection

annotations, descriptors, and plans and, 223–225
in EJB 3.0, 157
unit tests and, 721

Deployer utility, WebLogic, 148–150
deploying enterprise applications

automatic deployment, 297
creating required services, 295–296
overview of, 294
review, 298–299
WebLogic Console deployment, 298
weblogic.Deployer, 297–298

deploying web applications
automatic deployment, 145–148
creating required users and groups, 152–153
overview of, 145
review, 154
WebLogic Console deployment, 150–151
WebLogic Deployer utility, 148–150

deploying Web Logic Server applications, 590–592
deployment architecture, WebLogic Server

admin server, 538–541
application container, 529–530
clustering for RMI-based applications, 536–538
clustering for web applications, 531–536
domain architecture, 519–521
execute queues, execute threads, and work managers,

521–527
listen ports and listen threads, 529
node manager, 541–542
overview of, 519
server architecture, 521
server clustering architecture, 530–531
socket muxer, 527–529

deployment descriptors
vs. annotations, 221–222
binding to logical JMS message destination, 268–270
dependency injections and, 223–225
free pool settings, 271
JNDI bindings and references to EJBs and other resources,

267–268
in Kodo, 209–210
MDB settings, 272
overview of, 266–267
security settings, 270
SFSB cache settings, 271
transaction settings, 270–271
tuning and optimization settings, 272–273

deployment plans
dependency injections and, 223–225
EJB, 222–223
modifying application configuration with, 592–595

deployment strategies
complex cluster for single-site deployment, 734–737
designing multiple-site WebLogic clusters, 738–741
evaluating, 728–729
implementing clusters that span multiple sites, 741–742
implementing one cluster per site, 743–745
multiple site deployment strategies, 737–738
overview of, 727–728
server deployment, 729–731
simple cluster for single-site deployment, 732–734
single-site deployment, 731–732

deployment/redeployment feature, EJB container, 192
DER (Distinguished Encoding Rules), for certificates, 472
descriptor files, enterprise applications
application.xml descriptor file, 278–280
overview of, 278
weblogic-application.xml descriptor file, 280–282

descriptor files, web applications
overview of, 128
weblogic.xml, 133–137
web.xml, 128–133

design patterns
designing for performance, 665–666
Java EE, 33
MVC (model-view-controller), 32–33

designing Java EE application. See application design
destinations, JMS

choosing destination type, 398
connecting to distributed destinations, 430–431
consumers/producers exchanging messages at, 365–366
creating distributed destinations, 586–588
destination keys, 387
distributed, 373–374
error destinations, 409
first-in-first-out ordering or last-in-last-out ordering, 387
locating, 399–400
reply to destinations, 421
terminal destinations, 416

developer workstations, 692
development environment

build process, 701–702

765

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 766

development environment (continued)

development environment (continued)
code inspection and reporting tools, 704
continuous integration, 702–703
creating/configuring WebLogic server domain, 696–697
FastSwap, 700–701
hardware and software requirements, 692–693
IDEs. See IDEs (integrated development environments)
installing WebLogic Server software, 695
overview of, 691
project structure, 697–698
review, 725
separating from production environment, 754
sharing database server, 693–694
split directory for, 698–700
streamlining development cycle, 698
unit tests. See unit tests

development servers, 692
diagnostic archive component, WLDF

managing diagnostic archive, 627
overview of, 621

diagnostics. See also WLDF (WebLogic Diagnostic
Framework)

diagnosing application errors, 617
exporting diagnostic data, 626
managing diagnostic archive, 627

diagnostics image capture component, WLDF, 622
directories
autodeploy directory, 146
enterprise applications and, 277
mapping information, 136
packaging and deploying web applications and, 126–128
split directory for development environment, 698–700

Direct-Write policy, writing to persistent stores, 390
Disabled policy, writing to persistent stores, 390
disaster recovery, 555
Discard, JMS message expiration, 408
disconnected objects, updates requirements and, 71
disk I/O, 684
Dispatch APIs (JAX-WS)

creating dynamic web services, 328–332
when to use Provider//Dispatch approach, 333–334

dispatch policy, work managers, 136
DispatcherServlet, startup and mapping information in,

131
display requirements, presentation-tier

displaying list of model objects, 35–36
displaying model data, 35
flexibility and maintainability of display, 37–38
internationalization and, 36–37
overview of, 34
presenting role-based views of data, 36

Distinguished Encoding Rules (DER), for certificates, 472
distributed applications, EJB supporting, 156
distributed destinations, JMS

clustering and, 373–374
connecting to, 430–431
creating, 586–588

DMZ (demilitarized zones), 750–751
DNS, 749
document, SOAP styles, 323–324
domain model

bigrez.com, 247–249
implementing business logic with, 229–230
superclasses in bigrez.com domain model, 252

domain objects, 74
DomainEntity

generic JPA functionality, 250–252
inheriting from, 259

domains, WebLogic Server
administering security at domain level, 447–448
architecture of, 519–521
configuring, 547–549
creating/configuring for development environment, 696–697
cross domain security, 510–511
managing servers in, 538–541
overview of, 520
setting up new, 549–551

DOM-based API
for dynamic web services, 331–332
getAttachments(), 339

Don’t Repeat Yourself principle, 175, 255
drivers, JDBC, 576
DTOs, domain model and, 229–230
DUPS_OK_ACKNOWLEDGE, JMS message acknowledgement,

366
durable subscriptions

dealing with, 429–430
JMS messages, 364, 368
message persistence and, 392

dynamic compilation
EJB container, 192–193
simple packaging and, 266

dynamic content caching, JSP, 669
dynamic queries, JPQL, 178
Dynamic Shared Objects, Apache support for, 568
dynamic web services, creating, 327–334

E
eager fetching

in JPA, 180–181
in Kodo, 212

.ear (enterprise application) files
bigrez.com application, 297
exploded deployment and, 282
packaging applications and, 265
packaging enterprise applications, 274
passing components by reference, 199
referring to EJB components in same application, 195–197
referring to external EJB components, 198

Eclipse
configuring as IDE for bigrez.com, 705–710
development tools, 704
importing bigrez.com, 706–707
publishing (deploying to server), 708
running bigrez.com from, 707–708
target runtime in, 706
Virtual EAR, 709–710

Eclipse IDE (Dali utility), 249
Eclipse Persistence Platform (EclipseLink), 164, 290
Eclipse Web Tools Platform Project, 249

766

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 767

In
de

xEntityManager

Edit MBean, WLST, 599
EJB (Enterprise JavaBeans)

application programming in JMS, 424–427
archive file, 265–266
bindings and references to, 267–268
building EJB applications. See building EJB applications
clustering EJB applications, 536–538
component types, 157
dependency injections, 223–225
deployment descriptors vs. annotations, 221–222
deployment plans, 222–223
ejb-local-ref elements, 132–133
interceptors, 162–163
managing EJB entities. See JPA (Java Persistence API)
MDB (message-driven bean) components, 161–162
monitoring EJB instances, 602–603
optimizing EJB 3.0 entities, 671
out-of-container testing, 718–719
overview of, 155
QL (query language), 177
review, 225
security management, 493–495
service components, 74
SFSB (stateful session bean) components, 159–161
SLSB (stateless session bean) components, 158–159
The Spring Framework, 157
technology of, 155–156
version 3.0, 156–157
web service standards, 302

@EJB annotation, 197
EJB container best practices

JNDI lookup strategies, 670–671
optimizing EJB 3.0 entities, 671
overview of, 670
pass-by semantics, 671–672

EJB container, WebLogic Server
calling EJB components by reference, 198–199
controlling flush behavior in OpenJPA, 219
deployment descriptors in Kodo, 209–210
deployment/redeployment feature, 192
dynamic compilation feature, 192–193
eager fetching in Kodo, 212
EJB lifecycle in, 190–192
fetch groups in OpenJPA, 210–212
handles to EJBs, 207
idempotent methods, 207
inheritance strategies, 220
JDBC transaction isolation levels, 199–201
large result set proxies in OpenJPA, 216
lock groups in Kodo, 214–215
managing inverses in OpenJPA, 219–220
MDB (message-driven bean) features, 208–209
OpenJPA and Kodo features, 209
overview of, 189–190
prepared statement caching in OpenJPA, 220–221
queries with large result sets in OpenJPA, 215–216
reference to external EJB, 198
references between EJBs in same application, 195–197
remote business interfaces and JNDI, 193–195
second level data caches in Kodo, 217–219
SFSB cache management, 202–204

SFSB in-memory replication, 204–207
SLSB pooling, 201–202
state comparison version strategy in OpenJPA, 213–214
support for version field types in OpenJPA, 212–213

EJB deployment descriptors
binding to logical JMS message destination, 268–270
free pool settings, 271
JNDI bindings and references to EJBs and other resources,

267–268
MDB settings, 272
overview of, 266–267
security settings, 270
SFSB cache settings, 271
transaction settings, 270–271
tuning and optimization settings, 272–273

EJBGen tool, 164
ejb-jar .xml

referring to EJB components in same application, 195–196
referring to external EJB components, 198

ejb-link, 196–197
ejb-local-ref

referring to EJB components in same application, 195–196
resource references and, 136

ejb-ref

referring to EJB components in same application, 195
referring to external EJB components, 198

ejb-reference-description, 198
EL (Expression language), used in JSTL calls, 16–18
email integration, in bigrez.com, 255–258
embedded entity classes

fine-grained object model with, 248
JPA, 180

embedded LDAP server, 450–451
EMMA code coverage tool, 716
Emulate Two-Phase Commit, transaction commit protocols,

581
encapsulation, business layer interface and, 228–229
encoded, SOAP and, 324
encryption

message-level security and, 357
web service security and, 359

enhancer tool, Kodo
disabling when switching to TopLink, 261
OpenJPA and Kodo and, 173

enterprise applications
deploying. See deploying enterprise applications
files. See .ear (enterprise application) files
packaging. See packaging enterprise applications
securing, 496
types of modules in, 287

Enterprise Service Bus (ESB), 348
entities

embedded entity classes in JPA, 180
JPA entities in Java SE environment, 171–173

EntityManager

createNamedQuery() and createQuery(), 178
creating, 168
find(), 177
getEntityManager(), 254

767

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 768

EntityManager (continued)

EntityManager (continued)
injecting into SLSB, 169
Java SE obtaining, 172
JPA (Java Persistence API), 165–166
lock(), 186
merge(), 181, 187

EntityManagerFactory, 168, 172
error destinations, JMS, 409, 411–412
error handling

data access requirements, 234
date selection and, 94
error pages in web.xml, 132
MDBs (message-driven beans) and, 258
presentation-tier mechanism for displaying errors, 40–41
web applications, 13–15

error-page element, web.xml, 15
ErrorPage parameter, web server plug-in, 570
ESB (Enterprise Service Bus), 348
Excel files, creating with servlets and JSP pages, 26–29
exceptions. See error handling
exclusive concurrency strategy, 183
execute queues, 521–527
execute threads, 521–527
expiration strategy, for JMS messages, 407–409
explicit invalidation, session management and, 668
explicit locking, JPA, 186
exploded deployment

overview of, 282–284
packaging enterprise applications, 274
split directory development and, 698

exploded web application, 139–144
exporting diagnostic data, 626
Expression language (EL), used in JSTL calls, 16–18
external LDAP servers, 465–467
external providers, JMS. See JMS (Java Message Service),

external providers
external view assembly, using Tiles framework, 66–67
Extreme Programming (XP), 716

F
failed server states, 542–543
failover

automatic failover of JMS servers, 380
in JMS clustering, 371–372
Multi Data Source support and, 632
replication and, 205
simple WebLogic Server clusters and, 733
WebLogic Server clustering and, 530

failure management, WebLogic Server
database failures, 630–632
migrating admin server, 640–641
migrating custom singleton services, 637–638
migrating JMS services, 633–636
migrating JTA service, 636–637
migrating whole server, 638–640
overview of, 630
server failures, 632

fair share request class, WebLogic Server, 523
FastSwap

classloaders compared to, 290
development environment and, 137
exploded deployment and, 283
lib classloader and, 276
redeployment with, 700–701

fat clients, 749
federation services, SAML, 504–506
fetch groups, OpenJPA, 210–212
fetch joins, fixing incompatibilities between Kodo and

TopLink, 262
field types, version strategies and, 212–213
FIFO (first-in-first-out), JMS, 387, 395
file-based stores, JMS persistent stores, 389–390
files

archive files. See archive files
descriptor files. See descriptor files
enterprise application files. See .ear (enterprise application)

files
filters
AuditFilter, 130
authentication filters, 517
classloader, 290
web service handlers compared with servlet

filters, 334
filters, servlet, 22–26
CacheFilter, 24–26
overview of, 22–23
SnoopFilter, 23–24

find(), of EntityManager, 177
FindBugs, 704
firewalls

identifying and correcting bottlenecks, 679
layout of, 750–751
network channels supporting, 546

first-in-first-out (FIFO), 387, 395
flexibility, of display, 37–38
flow control, JMS messages, 396–398
flush behavior, in OpenJPA, 219
fmt library, JSLT, 19
forced stop scripts, in WebLogic Server

clusters, 734–737
Foreign Server, JMS, 437–438
form beans, in servlet-centric (Struts) architecture, 49
form-based authentication, 488
form-processing controller, 84–85
forms

administration controller form view overrides, 122–123
controllers for populating forms for JSPs, 69–70
displaying model data in, 35
extracting form data, 39–40
session tracking and hidden fields, 5

form/update requirements, presentation-tier
client-side validation, 38–39
displaying errors, 40–41
extracting form data, 39–40
interacting with business tier for updating model objects,

41–42
overview of, 38
server-side validation, 40

free pool settings, EJB deployment descriptors, 271
functions library, JSLT, 19

768

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 769

In
de

xIDEs (integrated development environments)

G
GC (garbage collection)

JRockit models, 659
JVM-to-processor ratio and, 730
troubleshooting, 616–617
tuning JVMs, 652–654

GemFire, as caching product, 217
generated values, Person id field, 170–171
generational collectors, garbage collection, 654, 659
getAttachments(), in DOM-based API, 339
getSession() method, of HttpServletRequest, 6
GLI (globalization, localization, and internationalization),

36–37
global and local traffic management

overview of, 745
using global load balancers with WebLogic Server, 748–749
using load balancers, 745–746
using load balancers with WebLogic Server, 747–748

global load balancers
traffic management with, 747
using with WebLogic Server, 748–749

global reservation systems (GRS), configuring network
channels, 557

global transactions, data sources supporting, 580–581
global trust, 510–511
globalization, localization, and internationalization (GLI),

36–37
The Grinder, 725
groups

creating when deploying web applications, 152–153
managing, 496

GRS (global reservation systems), configuring network
channels, 557

H
HA (high availability), 630
handler mapping components, for web application, 85–86
handlers, web services, 334–338

associating with service clients, 338
compared with filters (servlets) and interceptors (EJB),

334–335
logical handlers, 336–337
protocol handlers, 337–338

handles, to EJBs, 207
happy path, through reservation process, 80
hard-coded navigation, avoiding, 44
hardware acceleration, SSL, 756
hardware requirements, for development environment,

692–693
harvester component, WLDF

harvesting metric information, 625–626
overview of, 621

hash-based routing, for JMS messages, 416–417
headers, HTTP, 325–326
health monitoring scripts, in WebLogic Server clusters,

734–737
heap size, HotSpot JVM, 654–658
Hibernate

JBoss, 164
JPA derived from, 189

hidden fields
session tracking and, 5
storing version information in, 187

high availability (HA), 630
HOK (holder-of-key), SAML Token Profile, 507
horizontal partitioning, options for mapping inheritance,

233–234
horizontal scaling

in server deployment, 731
simple WebLogic Server clusters as example of, 734

hostname verification, in SSL, 486
hot deployment, of applications, 529–530
HotSpot JVM, 654–658
HP-UX, tuning, 649–650
HTML form data, extracting, 39–40
HTTP (HyperText Transfer Protocol)

basic authentication, 350
headers, 325–326
redirection, 87–88
request/response model, 2
session ID cookie safety, 753–754
SOAP over HTTP, 303
tracking HTTP sessions, 342–343
transport-level security, 348
writing Java clients that use SSL, 484–485

HTTPS, 348, 753–754
HTTPServlet class, 2–3
HttpServletRequest parameter

accessing servlet request data, 5–6
extracting form data, 39–40
servlet capabilities available to JSP pages, 30

HttpServletResponse parameter, 9
HttpSession, 5–7

changes to session object, 535
replication and, 205–206
session sharing, 127
SFSB component, 205
storing reservation information in, 77–78
storing web service state in, 342

HttpUnit, 722
Hudson, 703
hyperlinks

directory structure and, 126
navigating web applications, 43

HyperText Transfer Protocol. See HTTP (HyperText Transfer
Protocol)

I
I18N (internationalization), 36–37
IDEA, IntelliJ, 704
idempotent methods, 207
Idempotent parameter, web server plug-in, 570
identity assertion, in WebLogic security, 457–458
identity provider partners, in SAML, 508–509
IDEs (integrated development environments)

configuring Eclipse for bigrez.com, 705–710

769

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 770

IDEs (integrated development environments) (continued)

IDEs (integrated development environments) (continued)
configuring JDeveloper for bigrez.com, 711–714
continuous integration and, 703
debugging with, 714–715
overview of, 704–705
prerequisites, 705

idle-timeout-seconds property, caching and, 203–204
include directives, directory structure and, 126
in-container testing, 718
Incremental collector, garbage collection, 654
indexed subscribers, JMS, 406
inheritance

JPA, 188
Kodo, 220
mapping, 233–234

init() method, servlet class, 4
initialization components, 131–132
InitializationListener, event listener in web.xml, 131
in-memory replication

selecting secondary server in clustering for, 534
session management and, 667
session persistence and, 531
SFSB and, 204–207
for single cluster and cross cluster replication, 739
WAN replication, 556–557

in-place redeployment
versioning applications and, 628
WebLogic Server models for redeploying applications, 530

instances, WebLogic Server
assigning to machines, 534
configuring, 551
managing, 541–542
overview of, 519

instrumentation component, WLDF
instrumenting bigrez.com, 622
overview of, 621

integration strategy, for external JMS providers, 440–441
integrity, WS-Security, 352
IntelliJ IDEA, 704
interceptors

logging interceptor, 258
MDB classes, 162–163
web service handlers compared with EJB interceptors, 334

interfaces, business-tier with presentation-tier, 67–68
internationalization (I18N), 36–37
InverseManager, 219–220
inverses (bi-directional relationships). See bi-directional

relationships
I/O, troubleshooting disk I/O, 684
I/O muxer, 662
IP addresses, for multicast messages, 419
isolation levels, JDBC transactions, 199–201

J
J2EE CA (Connector Architecture) resource adapters, 495
JAAS (Java Authentication and Authorization Service)

credential mapping, 460
overview of, 445
writing security aware Java clients, 479–482

JACC (Java Authorization Contract for Containers), 479
Jakarta Cactus, 719
.jar file

bundled libraries, 284–286
exploded deployment and, 282

jar command, creating web application archive file, 144–145
Java

comparing Java programming to EJB programming, 167
customizing mappings to XML, 346–347
Java classes as servlets, 2–3
mapping to XML, 306
object-oriented design and, 233–234
RMI, 159

Java API for XML Binding. See JAXB (Java API for XML
Binding)

Java API for XML-based Web Services. See JAX-WS (Java API
for XML-based Web Services)

Java Authorization Contract for Containers (JACC), 479
Java clients, security-aware

JAAS and, 479–482
overview of, 478–479
SSL and, 482–487

Java Cryptography Extension (JCE), 756
Java Data Objects (JDO), 164
Java EE (Enterprise Edition)

application design. See application design
Application Library Directory, 285
application security, 105
application tiers, 31–32
design patterns, 33
EJB 3.0 and, 156
increasing performance and throughput, 645
locating data sources in, 582–583
managing EJB security, 493–495
mapping EJBs to JNDI, 193–195
ORM products and, 164
securing enterprise applications, 496
securing web applications, 488–493
servlets. See Java servlets
setting up application security, 488
shared libraries and optional packages, 286–287
The Spring Framework and, 157
web applications, 1

Java Full Client, JMS, 381
Java Home, remote start attributes for servers, 563
Java Install Client, JMS, 381
Java Management Extensions (JMX)

call router making calls to, 536
programmatic monitoring with, 603–606

Java Naming and Directory Interface. See JNDI (Java Naming
and Directory Interface)

Java Persistence API. See JPA (Java Persistence API)
Java Persistence Query Language. See JPQL (Java

Persistence Query Language)
Java Platform Debugging Architecture (JPDA), 714
Java SE (Standard Edition)

AOP (Aspect Oriented Programming) and, 334
JPA entities in, 171–173
persistent class enhancement, 173
SSL package, 352

Java Secure Socket Extension (JSSE), 483

770

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 771

In
de

xJMS (Java Message Service)

Java servlets
accessing request data, 5
capabilities available to JSP pages, 9–11
characteristics of, 1
converting JSP pages to, 8
creating Excel files, 26–29
filtering common behaviors, 22–26
lifecycle of, 3–4
multiple parallel request processing, 4–5
as pure Java classes, 2–3
reference books for, 1
registering in applications, 3
request/response model, 2
session tracking by, 5–7
Spring MVC and, 50–53
Structs, 48–50
viewing servlet code generated for JSP page, 30

Java stack traces
overview of, 684
reading, 687–688

Java Thin Client, JMS, 381
Java thread dumps, 686
Java Transaction API. See JTA (Java Transaction API)
Java Vendor, remote start attributes for WebLogic Servers,

563
Java Virtual Machines (JVMs)

configuring, 567
data caches for multiple, 218

Java Web Service class. See JWS (Java Web
Service) class

Java Web Service Compiler. See JWSC (Java Web Service
Compiler)

javadoc, 704
JavaMail API, 588–589
JavaServer Pages Standard Tag Library. See JSTL (JavaServer

Pages Standard Tag Library)
JAXB (Java API for XML Binding)

data POJO class generated by, 320
mapping Java to XML, 306, 346–347
overview of, 302
web services container architecture, 304

JAX-RPC
support for SOAP style/use combinations, 324–325
web services container architecture, 304
working with, 322–323

JAX-WS (Java API for XML-based Web Services)
BindingProvider class, 350
classes and annotations in Java EE and Java SE, 309
creating dynamic web services, 328–332
creating one-way web services, 344
developing web service clients, 321–322
developing web services for WebLogic Server, 304–306
exception handling, 310
handlers, 334
implementing stateful web services, 342
JAX-RPC incompatible with, 322
mapping Java to XML, 346
overview of, 302
packaging web services, 306
Provider and Dispatch APIs for dynamic web services,

328–332

SOAP attachments and, 339
support for SOAP style/use combinations, 324–325
web services container architecture, 303–304
when to use Provider//Dispatch approach, 333–334

JBoss, 164
JCE (Java Cryptography Extension), 756
JDBC

configuring data sources for use with WebLogic Server,
577–580

connection pools, 676
JMS persistent stores and, 389–390
modules, 287–289
persistence, 667
releasing JDBC resources, 676–677
selecting/configuring drivers for use with WebLogic

Server, 576
session persistence, 738
SLSBs and, 237–239
transaction isolation levels, 199–201
transaction options for data sources, 580–582

JDBC Data Source Configuration Wizard, 577
JDepend, 704
JDeveloper, 711–714

configuring server instances, 712
creating first project, 711–712
creating remaining projects, 712–713
development tools, 704
generating web service, 713–714
installing, 711
overview of, 711
running/deploying projects from, 714

JDO (Java Data Objects), 164
JDOM, 333
JMS (Java Message Service)

balancing producers and consumers, 664
binding to logical message destination, 268–270
clients, 380–383
connection factories, 588
connections, 365
destinations, 365–366
distributed destinations, 586–588
MDBs and, 161–162, 208
message producers and consumers, 367–369
messages, 369–370
messaging models, 363–364
migrating JMS services, 633–636
modules, 287–289, 383–384
monitoring with WebLogic Console, 603
overview of, 363
persistent stores, 584–586
queue for retrying failed email attempts, 256–257
resource configuration, 583–584
review, 441
reviewing JMS API, 364
servers, 370–371, 584–586
sessions, 366–367
SOAP over, 303

771

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 772

JMS (Java Message Service), configuring

JMS (Java Message Service), configuring
connection factories, 385–386
delivery overrides, 392–393
destination keys, 387
flow control, 396–398
message paging, 395–396
modules, 383–384
persistent stores, 388–392
quotas, 393–395
templates, 387
time-to-deliver extension, 388

JMS (Java Message Service), external providers
choosing integration strategy, 440–441
integrating AQ (advanced queuing), 438–440
mapping external JMS objects to WebLogic

JNDI, 437–438
MDBs (message-driven beans), 436
messaging bridge and, 433
overview of, 432–433
store-and-forward service, 434–436

JMS applications, designing
choosing destination type, 398
choosing message expiration strategy, 407–409
choosing message type, 400–402
compressing large messages, 402
designing message selectors, 404–407
handling message ordering, 412–413
handling poison messages, 409–411
handling request/reply style message exchange, 420–424
locating destinations, 399–400
multicast session, 419–420
overview of, 398
Path Service and hash-based routing, 416–417
Redelivery Delay, Redelivery Limit, and Error

Destination, 411–412
selecting message acknowledgement strategy, 403–404
transactions, 417–419
unit-of-order messages, 413–415
unit-of-work messages, 415–416

JMS applications, programming
consuming asynchronous messages on server, 427
designing MDB-based applications, 431–432
MDBs (message-driven beans), 427–431
overview of, 424
servlets and EJBs, 424–427

JMS clients, 380–383
overview of, 380–381
types of, 381
WebLogic Server client URLs, 382–383

JMS clustering
connection routing, load balancing and

failover, 371–372
consuming messages from a distributed queue, 375–377
consuming messages from a distributed topic, 378–380
distributed destinations, 373–374
location transparency, 371
overview of, 371
producing messages to a distributed queue, 374–375
producing messages to a distributed topic, 377–378

JMS servers
automatic failover, 380

consuming asynchronous messages on server, 427
overview of, 370–371

JMX (Java Management Extensions)
call router making calls to, 536
programmatic monitoring with, 603–606

JNDI (Java Naming and Directory Interface)
bindings and references to EJBs and other resources,

267–268
deployment plans and, 222–223
EJBs referencing each other by global JNDI names, 196
JMS applications looking up destinations from, 365
JndiObjectFactoryBean utility, 133
lookup strategies, 670–671
mapping external JMS objects to WebLogic JNDI, 437–438
remote business interfaces and, 193–195

joined tables, inheritance strategies, 188
JPA (Java Persistence API)

architecture requirements analysis, 245
cascading operations, 176–177
concepts, 165–166
eager and lazy fetching, 180–181
embedded entity classes, 180
entities in Java SE environment, 171–173
explicit locking, 186
generated values, 170–171
generating JPA classes from database schema, 249–250
generic functionality, 250–252
history of, 163–164
importing project into Eclipse and, 707
inheritance, 188
JPQL bulk updates, 179–180
JPQL queries, 177–179
OpenJPA and Kodo components, 165
optimistic locking and version fields, 181–185
overview of, 163
packaging JPA persistent units, 273–274
persistence management, 67
persistent class enhancement, 173
relationship mapping and management, 174–176
review, 189
sample, 166–170
SLSBs and, 242–244
writing web layer suited to optimistic locking, 187–188

JPDA (Java Platform Debugging Architecture), 714
JPQL (Java Persistence Query Language)

bulk updates, 179–180
controlling flush behavior, 219
large result sets and, 216
queries, 177–179

JRA (JRockit Runtime Analyzer), 661
JRockit

monitoring server performance, 602
using, 658–661

JRockit Latency Analyzer, 661
JRockit Leak Detector, 661
JRockit Management Console, 661
JRockit Mission Control, 661
JSP (JavaServer Pages)

buffering JSP responses, 11–12
controllers populating forms for, 69–70
converting JSP pages to servlets, 8

772

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 773

In
de

xliteral, SOAP uses

creating Excel files, 26–29
display requirements and, 34
display tasks in servlet-centric architecture, 49
display tasks in Spring MVC, 52
implicit objects, 18
JSP-centric architecture, 46–48
overview of, 7
precompiling JSP components, 137–139
precompiling pages in production system, 754–755
reference books for, 1
as scripting technology, 7
servlet capabilities available to, 9–11
tags and scripting elements available with, 8–9
unique capabilities not present in servlets, 12
viewing servlet code generated for JSP page, 30
web container best practices, 669

JspBase class, 8
JSPClassServlet, 138–139
jsp-descriptor section, of weblogic.xml, 136
.jspf file extension, 139
JSPServlet, 138–139
JSSE (Java Secure Socket Extension), 483
JSTL (JavaServer Pages Standard Tag Library)

accessing data stored in JSP implicit objects, 10
Expression language (EL) used in JSTL calls, 16–18
tag libraries, 19
using JSTL tags to reduce scriptlet code, 15

JTA (Java Transaction API)
database transaction semantics, 575
global transactions, 580–581
JTA-aware transactions in JMS, 418
local and distributed transactions supported by WebLogic

Server, 674
migrating JTA service, 636–637

JUnit
overview of, 717–718
packaging bigrez.com, 291
testing bigrez.com, 258–259

JVMs (Java Virtual Machines)
configuring, 567
data caches for multiple, 218
JVM-to-processor ratio, 730

JVMs (Java Virtual Machines), tuning
garbage collection, 652–654
overview of, 652
tuning HotSpot JVM heap size, 654–658
using JRockit JVM, 658–661

JVM-to-processor ratio, in server deployment, 730
JWebUnit, 722–723
JWS (Java Web Service) class

developing code-first web services, 307
developing web services for WebLogic

Server, 304–305
developing WSDL-first web services, 316–317

JWSC (Java Web Service Compiler)
deciding which web service operation

to invoke, 325–326
developing code-first web services, 307–312
developing WSDL-first web services, 317

jwsc task, Ant build tool, 311
Jython scripting language, 596

K
KDC (Kerberos Distribution Center), 511–513
key stores

configuring one-way SSL, 472–473
configuring two-way SSL, 474–477

keytool, 471–472
Kodo

converting to TopLink. See TopLink, converting from Kodo to
deployment descriptors in, 209–210
eager fetching in, 212
features not in open source version, 165
features of EJB container, 209
JPA and, 164, 189
lock groups in, 214–215
mixing inheritance strategies, 220
persistent class enhancement, 173
runtime enhancer, 172
second level data caches in, 217–219
vs. TopLink, 260

kodoc tool, for persistent class enhancement, 173

L
L10N (localization), 36–37
L2 (second level) data caches, in Kodo. See data caches
large result sets

data access requirements, 234
proxies in OpenJPA, 216
queries in OpenJPA, 215–216

Last Logging Resource, transaction commit protocols,
581–582

layout, display flexibility and maintainability, 37
lazy fetching, JPA, 180–181
lazy instantiation, 232
lazy loading, OpenJPA and Kodo, 173
LDAP (lightweight directory access protocol)

embedded LDAP server, 450–451
managing external LDAP authentication, 465–467

leases, service migration and, 633–634
lib classloader, 276
libraries

bundled, 277, 284–286
custom tags, 22
Java EE Application Library Directory, 285
JavaServer Pages Standard Tag Library. See JSTL (JavaServer

Pages Standard Tag Library)
shared, 286–287, 292–293

libraries directory, 277
lifecycle, EJB, 190–192
LIFO (last-in-last-out), 387
lightweight directory access protocol. See LDAP (lightweight

directory access protocol)
Linux, tuning, 650
listen ports

deployment architecture, WebLogic Server, 529
network channels for defining, 545–547

listen threads, 529, 545–547, 688
lists, displaying list of model objects, 35–36
literal, SOAP uses, 324

773

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 774

load balancing

load balancing
identifying and correcting bottlenecks, 679
improving SSL performance, 756
in JMS clustering, 371–372
Multi Data Source support and, 631–632
overview of, 745–746
round-robin algorithm, 536
routing mechanisms and, 532–533
simple WebLogic Server clusters and, 733
using global load balancers with WebLogic Server, 748–749
using local load balancers with WebLogic Server, 747–748
WebLogic Server clustering, 530

Load Balancing Enabled, JMS, 386
load testing, 725
local load balancers

overview of, 746
using with WebLogic Server, 747–748

localization (L10N), 36–37
location transparency

distributed applications and, 156
EJB and, 671
in JMS clustering, 371

lock(), in EntityManager, 186
lock groups, optimistic locking strategy, 214–215
locking down web applications, 753–754
Log, JMS message expiration, 408
logging

activity on administrative site, 130
Apache Commons Logging API, 620–621
business layer requirements, 235
configuring, 136
configuring for WebLogic Server, 550–551
interceptor, 258
message catalog logging, 618–619
non-catalog logging, 620
overview of, 617–618
using WebLogic Server log file, 756

logical handlers, JAX-WS, 334, 336–337
Login Timeout, 552
login-config element, 106
Login.jsp page, 107–108
LRU (least recently used) algorithm, in caching, 203, 217,

579

M
machines

defining, 534
in WebLogic architecture, 519

maintainability, of display, 37–38
maintenance pages, availability and, 117–122
MAN (metropolitan-area network) replication

configuring, 556
implementing one cluster per site, 744
overview of, 535

managed server independence (MSI), 540
managed servers

overview of, 520
setting up new domain and, 549–551

man-in-the-middle attacks, 755
many-to-many associations, 231–233

many-to-one associations, 231–233
MapMessage object, JMS, 370, 401
mapped superclasses, JPA, 188
mapping

EJBs to JNDI, 193–195
external JMS objects to WebLogic JNDI, 437–438
Java to XML, 306, 346–347
reverse mapping tool for generating JPA classes, 249–250

mapping, ORM
associations, 231–233
inheritance and, 233–234
simple classes, 230–231

Mark-and-compact collector, garbage collection, 654
Mark-and-Sweep collector, garbage collection, 653
master page assembly approach, 64–66
max-beans-in-cache, 202–203
Maximum Messages per Session, JMS connection factories,

385
MDBs (message-driven beans), 427–431

components, 161–162
concurrency and, 427–428
connecting to distributed destinations, 430–431
dealing with durable subscriptions, 429–430
EJB deployment descriptors, 272
email management with, 257
error handling and, 258
features of EJB container, 208–209
interceptor classes, 162–163
overview of, 427
transactions, 428–429
tuning and optimization settings, 273
using with WebLogic Server, 436

merge(), of EntityManager, 181, 187
message acknowledgement, JMS, 366
message catalog logging, WebLogic Server, 618–619
message forwarding agents, 432
message selectors, JMS, 369
Message Transmission Optimization Mechanism (MTOM),

341
message-driven beans. See MDBs (message-driven beans)
message-level security

overview of, 348–349
web services, 352–358

message-passing model, 333
messages, JMS. See also JMS (Java Message Service)

overview of, 369–370
types of message objects, 370

messaging bridge
as message forwarding technology, 432
overview of, 433

messaging intermediaries, Provider//Dispatch approach,
333

messaging models, JMS, 363–364
metadata, providing deployment metadata, 221
META-INF directory, 277–278
metrics, harvesting metric information with WLDF, 625–626
Microsoft Excel files, 26–29
migration, 338

admin server, 640–641
custom singleton services, 637–638
JMS services, 633–636

774

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 775

In
de

xOEPE (Oracle Enterprise Pack for Eclipse)

JTA service, 636–637
service level migration, 633
whole server migration, 638–640

mocking frameworks, for unit tests, 719–720
Mockito

library, 259
as mocking framework for unit tests, 719–720

model data, displaying, 35
model objects, 35–36
models. See also MVC (model-view-controller)

application security, 487
displaying list of model objects, 35–36
displaying model data, 35
domain model. See domain model
JMS messaging models, 363–364, 392
message-passing model, 333
redeployment model, 530
request/response model. See request/response model
security model, 36
updating model objects, 41–42

model-view-controller. See MVC (model-view-controller)
modular approach, to project structure, 697–698
modularity, display flexibility and maintainability, 37
modules

defined, 265
descriptor files, 266
EJB, 265–266
exploded deployment and, 282–284
identifying when not descriptor provided, 279
JMS, 383–384
other types in enterprise applications, 287–289
security settings, 270
stand-alone, 274

monitor locks (mutex), 685
monitoring

self-health monitoring, 544–545
SNMP models for, 607
WebLogic Server applications. See application monitoring,

WebLogic Server
MSI (managed server independence), 540
MTOM (Message Transmission Optimization Mechanism),

341
Multi Data Source support, in WebLogic Server, 631–632
multicast messages, UDP, 741
multicast sessions, in JMS, 419–420
MULTICAST_NO_ACKNOWLEDGE, 403–404
multicast-based clustering, UDP, 553, 555
multiple site deployment strategies

designing multiple-site WebLogic clusters, 738–741
implementing clusters that span multiple sites, 741–742
implementing one cluster per site, 743–745
overview of, 737–738

mutex (monitor locks), 685
muxers (socket multiplexing)

managing server sockets, 527–529
using native I/O muxer, 662

MVC (model-view-controller)
controllers for calling business services, 68–69
controllers for populating forms for, 69–70
Java EE components mapped to, 32–33
servlet-centric (Spring MVC) architecture and, 50–53

N
named queries, JPQL, 178
naming conventions, for components, 79
NAT (network address translation), 546, 750
native I/O muxer, 662
navigation

controlling with configuration files, 49
defining navigation paths for web application, 79–81

navigation requirements, presentation-tier
basic navigation, 42
outcome-based navigation, 43–44
overview of, 42
submission/bookmark controls, 44–45

.NET Client, 381
NetBeans, Sun, 704
network address translation (NAT), 546, 750
network channels

configuring, 557–560
for defining listen ports and listen threads, 545–547

network latency, clustering and, 741
networks, tuning, 651–652
NIO (non-blocking I/O), in JDK 1.4, 528
NO_ACKNOWLEDGE, 403
no-args constructor, 306, 320
node manager, 560–566

authentication required by, 562
configuring in WebLogic Console, 562–563
installing and configuring on Unix OSs, 561
managing server instances with, 541–542
overview of, 520, 560–561
remote start attributes for servers, 563–564
scripts for starting, 564–566
X.509 certificates, 565

non-blocking I/O (NIO), in JDK 1.4, 528
non-catalog logging, WebLogic Server, 620
nonce, passwords and, 352
nondurable subscriptions, JMS messages, 364
non-persistent messages, JMS messages, 363
notifications, WLDF, 621, 627–628
NRU (not recently used) algorithm, caching and, 203

O
object graphs, ORM and, 232
Object Relational Mapping. See ORM (Object Relational

Mapping)
ObjectMessage object, JMS, 370, 401
object-oriented design

inheritance and, 188
mapping inheritance and, 233–234

OCSP (Online Certificate Status Protocol), 476
OEPE (Oracle Enterprise Pack for Eclipse)

application deployment plan, 593
importing bigrez.com, 706–707
overview of, 705–706
publishing (deploying to server), 708
running bigrez.com from, 707–708
target runtime in, 706
Virtual EAR feature, 698, 709–710

775

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 776

Offers.jsp page

Offers.jsp page, 104–105
One-Phase Commit, transaction commit protocols, 581
one-to-many associations, 231–233
one-to-one associations, 231
one-way SSL

configuring, 472–473
overview of, 469

one-way web services, 344
Online Certificate Status Protocol (OCSP), 476
OpenJPA

controlling flush behavior in, 219
features beyond those required by JPA, 165
features of EJB container, 209
fetch groups, 210–212
Kodo source code donated to, 164
managing inverses (bi-directional relationships) in, 219–220
persistent class enhancement, 173
prepared statement caching in, 220–221
reverse mapping tool for generating JPA classes, 249–250
state comparison version strategy, 213–214, 259
support for version field types in, 212–213

operating systems (OSs), configuring for use with WebLogic
Server, 566–567

operations, web services, 325–327
optimistic locking

adding to bigrez.com, 259–260
bulk updates and, 180
Kodo strategies, 214–215
locking options and, 182–186
OpenJPA strategies, 212–214
writing web layer suited to, 187–188

optimization
deployment descriptor settings, 272–273
when to use Provider//Dispatch approach, 333–334

Oracle
AQ (advanced queuing), 438–440
Coherence, 217–219
databases, 199–201
JDeveloper. See JDeveloper
JRockit, 602, 658–661
TopLink and Kodo, 164

Oracle Enterprise Pack for Eclipse. See OEPE (Oracle
Enterprise Pack for Eclipse)

ORM (Object Relational Mapping)
business layer requirements, 230
JPA and, 163
mapping and managing relationships, 174–176
mapping associations, 231–233
mapping inheritance, 233–234
mapping simple classes, 230–231

orm.xml file, 172
OSs (operating systems), 645–646

configuring for use with WebLogic Server, 566–567
tuning, 645–646
tuning HP-UX, 649–650
tuning JVMs. See JVMs (Java Virtual Machines), tuning
tuning Linux, 650
tuning network, 651–652
tuning Solaris, 646–649
tuning Windows, 650
using file system security mechanisms, 755

outcome-based navigation, 43–44
out-of-container testing, 718–719

P
packaging bigrez.com

altering bigrez.com to use shared library, 292–293
compiling production builds with appc, 293–294
components, 291
projects, 291–292

packaging enterprise applications
bundled libraries, 284–286
customizing class loading, 289–291
descriptor files, 278
directory structure, 277
module types and, 287–289
optional packages, 286–287
overview of, 274–276
review, 298–299
shared Java EE libraries, 286–287
standard application.xml descriptor file, 278–280
weblogic-application.xml descriptor file, 280–282

packaging JPA persistent units, 273–274
packaging web applications

creating archive file, 144–145
creating exploded file, 139–144
directory structure and, 126–128
internal components in WEB-INF directory, 128
overview of, 125–126
precompiling JSP components, 137–139
review, 153
weblogic.xml descriptor file, 133–137
web.xml descriptor file, 128–133

paging, JMS messages, 395–396
parallel collectors, garbage collection, 654, 659
ParameterizableViewController class, 82, 84
partial pages, precompiling JSP components, 139
partial redeployment, 283, 530
pass-by semantics

calling components by reference, 198
EJB container best practices, 671–672

pass-by-reference, 671–672
pass-by-value, 671
passive cookie persistence, 748
password digests

message-level security, 352
using in SOAP messages, 358

passwords
booting WebLogic Server, 500–501
exporting, 463
remote start attributes for WebLogic Servers, 563
SNMP community names, 608–609
user-password lockouts, 755

Path Service, for JMS messages, 416–417
PathPrepend parameter, web server plug-ins, 570
PathTrim parameter, web server plug-ins, 570
PEM (Privacy-Enhanced Mail), for certificates, 471–472
performance

business layer requirements, 235
unit tests for, 724–725

776

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 777

In
de

xproducers, JMS

when to use Provider//Dispatch approach, 333
performance best practices

command pattern, 667
designing for performance, 665–666
overview of, 665
session façade, 666
value objects, 666

performance optimization, WebLogic Server
database access best practices. See database access best

practices
EJB container best practices. See EJB container best

practices
performance best practices. See performance best

practices
system performance. See system performance
troubleshooting. See troubleshooting performance problems
tuning application servers. See application servers, tuning
tuning JVMs. See JVMs (Java Virtual Machines), tuning
web container best practices. See web container best

practices
persistence context, in EntityManager, 166, 169
persistence provider, converting to TopLink and, 261
persistence unit, descriptors defining, 168–169
persistence-configuration.xml file, 209–210
persistence.xml file

Kodo deployment descriptor, 209–210
packaging JPA persistent units, 273–274
specifying EclipseLink JPA provider, 261

persistent class enhancement, JPA, 173
persistent messages, JMS, 363, 392
persistent stores, JMS

configuring, 389–391
creating, 584–586
destinations and, 374
overview of, 388–392

persistent units, JPA, 273–274
Person entity
id field, 169–170
JPA entity representing, 166–167
mapping and managing relationships to, 174–176
optimistic locking and, 183
SLSB creating, 168

pessimistic locking, 182
PING command, 600, 651
PKI

PKI Credential Mapper, 357–358
SAML and, 502

Plain Old Java Objects. See POJOs (Plain Old Java Objects)
POC (Proof of Concept), testing, 729
pointcut expression, 623
point-to-point messaging model, JMS, 363–364
poison messages

handling in JMS, 409–411
handling in MDBs, 258

POJOs (Plain Old Java Objects)
data POJOs, 306
data POJOs compared to JavaBean classes, 310
developing code-first web services, 307
EJBs as, 156–157

policies
defining web service security policies, 349–350

remote start attributes for WebLogic Servers, 563
service-level migration, 634
working with, 497–500

pools
free pool settings, 271
MDBs, 208
SLSBs, 201–202

ports
configuring admin port, 572–575
listen ports, 529

ports (innovation points), web services, 320
precompiling JSP components, 137–139
Preemptive values, JMS message quotas and, 395
prepared statement caching

database access best practices, 673–674
in OpenJPA, 220–221

presentation approaches, for bizgrez.com
composite view pattern, 60–61
external view assembly using Tiles framework, 66–67
master page assembly, 64–66
self-assembly, 61–64

presentation requirements, for bizgrez.com, 57–59
presentation-tier

basic navigation, 42
building, 45–46
client-side validation, 38–39
controllers for calling business services, 68–69
controllers for populating forms for JSPs, 69–70
display requirements, 34
displaying errors, 40–41
displaying list of model objects, 35–36
displaying model data, 35
extracting form data, 39–40
flexibility and maintainability of display, 37–38
form/update requirements, 38
interacting with business tier for updating model objects,

41–42
internationalization and, 36–37
Java EE application tiers, 32
JSP-centric architecture, 46–48
navigation requirements, 42
outcome-based navigation, 43–44
overview of, 33, 67–68
presenting role-based views of data, 36
requirements, 34
server-side validation, 40
servlet-centric (Spring MVC) architecture, 50–53
servlet-centric (Struts) architecture, 48–50
submission/bookmark controls, 44–45
updates requiring explicit service calls, 71

primary keys
entities and, 170
searching by, 177

principle of least exposure, encapsulation and, 228
Privacy-Enhanced Mail (PEM), for certificates, 471–472
problem resolution process, 680–682
producers, JMS

balancing with consumers, 664
producing messages generally, 363, 367–369

777

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 778

producers, JMS (continued)

producers, JMS (continued)
producing messages to a distributed queue, 374–375
producing messages to a distributed topic, 377–378

production environment
cluster design options, 738
complex cluster for single-site deployment, 734–737
connection filters, 751–753
data replication requirements, 740–741
deployment strategies, 727–728
designing multiple-site WebLogic clusters, 738
evaluating deployment strategies, 728–729
examining other security options, 754–756
firewall layout in, 750–751
global and local traffic management, 745
implementing clusters that span multiple sites, 741–742
implementing one cluster per site, 743–744
load balancing, 745–746
locking down web applications, 753–754
MAN replication, 744
multiple site deployment strategies, 737–738
overview of, 727
review, 757
security strategies, 749
separating from development environment, 754
server deployment strategies, 729–731
session replication, 738–740
simple cluster for single-site deployment, 732–734
single-site deployment strategies, 731–732
SSL hardware acceleration, 756
transaction collocation requirements in multiple site

deployment strategies, 740
understanding application data flow, 749
using global load balancers with WebLogic Server, 748–749
using load balancers with WebLogic Server, 747–748
WAN replication, 744–745

production redeployment
versioning applications and, 628–630
WebLogic Server models for redeploying applications, 530

projects
bigrez.com, 291–292
creating project structure in development environment,

697–698
Proof of Concept (POC), testing, 729
properties

availability maintenance pages, 117–122
main form, 109–114
rate maintenance pages, 114–117
search pages, 88–90
updating and maintaining, 108–109

PropertyAvailabilityController, 119–122
PropertyAvail.jsp, 117–122
PropertyList.jsp, 89–91, 108–109
PropertyMainController, 109–113
PropertyMain.jsp, 109–114
PropertyRatesController, 114–117
PropertyRates.jsp page, 114–117
PropertySearchController, 88–90
PropertySearch.jsp, 88–89
protocol handlers

JAX-WS, 334, 337–338
SOAP, 339–340

Provider APIs (JAX-WS)
creating dynamic web services, 328–332
when to use Provider//Dispatch approach, 333–334

provider management level, WebLogic Server security
administration, 449

providers, JMS
clusters. See JMS clustering
external. See JMS (Java Message Service), external providers
overview of, 370
Web servers, 370–371

providers, WebLogic security. See security providers
proxies

large result set proxies, 216
web service clients using stub Java class to invoke web

services, 318
public/private keys, in message-level security, 357
publish-and-subscribe messaging model, JMS, 363–364, 392
publishing, deployment in Eclipse, 708

Q
QL (query language), 177
queries

JPQL, 177–179
large result sets and, 215–216

query language (QL), 177
queues, JMS

AQ (advanced queuing), 438–440
choosing destination type and, 398
consuming messages from a distributed queue, 375–376
overview of, 363
producing messages to a distributed queue, 374
zero consumer queues, 375

quotas, JMS messages, 393–395

R
.rar file, 282
rate maintenance pages, web applications, 114–117
RDBMS

authentication, 467–469
security store, 451–452

read only concurrency strategy, 183
READ_COMMITTED, JDBC isolation levels, 200–201
realms

administering security at realm level, 448–449
security models and, 455

receive windows, TCP, 648
receivers, JMS messages. See consumers, JMS
Redelivery Delay, handling poison messages in JMS,

411–412
Redelivery Limit, handling poison messages in JMS,

411–412
REDEPLOY file, 147–148
Redirect, JMS message expiration, 408
redirection, HTTP, 87–88
references between EJBs

calling components by reference, 198–199
to external EJB, 198
in same application, 195–197

778

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 779

In
de

xscalability

relational database, for storing domain objects, 56
relationships

mapping and managing in JPA, 174–176
mapping associations, 231–233
in presentation components, 71–72

reliability, clustering and, 741
remote business interfaces

handles to EJBs, 207
JNDI and, 193–195
tuning and optimization settings, 273

remote procedure calls (RPCs)
JAX-RPC, 304, 322–323
SOAP and, 301

remote services, EJBs providing, 159
replica-aware stubs, 536
replication

cross-cluster replication, 555–557
data replication requirements in multiple site deployment,

740–741
in-memory replication, 204–207, 531
MAN and WAN replication, 535
session replication in production environment, 738–740
specifying replication groups, 534

reporting tools, for development environment, 704
request classes

configuring, 589–590
defining, 525–526
WebLogic Server, 523, 525

request/reply style, for exchanging JMS messages, 420–424
request/response model, HTTP

accessing request data, 5
buffering JSP responses, 11–12
Java servlets, 2
JSP pages and, 11
multiple parallel request processing, 4–5
response caching, 24–26

request/response model, SFSB, 159
requests, prioritizing in thread management, 664
reservation creation process, in building web application,

101–103
reservation information component, building web applications,

76–79
reservation process

availability display and room-type selection page, 94–101
bizgrez.com, 58
building web applications, 79
choosing basic controller components, 82–84
choosing form-processing controller components, 84–85
choosing handler and resolver components, 85–88
choosing Spring MVC components, 81
date selection page, 91–94
defining navigation paths, 79–81
property search/selection pages, 88–91
reservation creation process, 101–103

ReservationInfo object, 77–78
resolver, view, 86–88
resource contention, troubleshooting, 616
resource pools, 664–665
<resource-description> element, 267–268
resources
bigrez.com requiring in environment, 296

bindings and references to EJB and other resources,
267–268

control over resource loading, 290–291
ejb-local-ref elements and, 136
securing, 496–497

response times
response time request class, 523
troubleshooting, 683–684

responses. See request/response model, HTTP
result sets, large. See large result sets
reverse mapping, for generating JPA classes, 249–250
ReviewReservationController, 101–102
ReviewReservation.jsp page, 101–103
RMI

clustering for RMI-based applications, 536–538
EJBs providing remote services via Java RMI, 159
remote business interfaces and JNDI and, 193–195
tuning and optimization settings, 273
writing Java clients that use SSL, 482

role mapping
EJBs supporting, 494
security providers, 458–459

role-based views of data, 36
roles, working with, 497–500
room-type selection page, in reservation process, 94–101
Root directory, remote start attributes for WebLogic Servers,

563
round-robin algorithm, for load balancing, 536
round-robin DNS policies, 749
routing, session-based routing in WebLogic, 532–534
rpc, SOAP styles, 323–324
RPCs (remote procedure calls)

JAX-RPC, 304, 322–323
SOAP and, 301

runnable state, threads, 685
Runtime MBeans, WLST, 598

S
SAF (store-and-forward)

agent configuration, 435
MDBs and, 209
as message forwarding technology, 432
overview of, 434–436

SAML (Security Assertion Markup Language)
configuring federation services, 504–506
controlling SAML partner exports, 463
debugging, 510
identity provider partners, 508–509
managing SSO partners, 506–507
managing web services partners, 507–508
overview of, 501–502
security providers, 502–504
service provider partners, 509
WebLogic Server support, 302

SAML Token Profile, 507
scalability

business layer requirements, 235
techniques, 644

779

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 780

SCM (source code management)

SCM (source code management), 692
scripts. See also JSP (JavaServer Pages)

for complex WebLogic Server clusters, 736
JSP scripting elements, 8–9
scripting technology, 7
using JSTL tags to reduce scriptlet code, 15

search pages, property search, 88–90
second level (L2) data caches, in Kodo. See data caches
Secure Sockets Layer. See SSL (Secure Sockets Layer)
security
admin and, 152
authentication/authorization components, 105–108
business logic requirements and, 229
EJB deployment descriptors, 270
presenting role-based views of data, 36
threat models, 749

security, web service
configuring, 358–359
defining security policies, 349–350
message-level security, 352–358
overview of, 348–349
transport-level security, 350–352

security, WebLogic
administration of, 447–448
application security models, 487
auditing, 459–460
authentication, 455–457
authorization, role mapping, and adjudication, 458–459
booting WebLogic Server and, 500–501
certification path, 460–461
configuring one-way SSL, 472–473
configuring two-way SSL, 474–477
credential mapping, 460
cross domain security, 510–511
custom authentication providers, 516
debugging, 464
debugging SSL problems, 477–478
domain level, 447–448
embedded LDAP server for, 450–451
external security stores, 465
framework for, 449
identity assertion, 457–458
managing EJB security, 493–495
managing external LDAP authentication, 465–467
managing RDBMS authentication, 467–469
managing security providers, 461–464
managing users and groups, 496
obtaining X.509 certificates, 470–472
overview of, 443–446
provider management level, 449
RDBMS security store, 451–452
realm level, 448–449
realms and providers, 453–455
resources and, 496–497
review, 517
SAML. See SAML (Security Assertion Markup Language)
securing enterprise applications, 496
securing J2EE CA resource adapters, 495
securing web applications, 488–493
server level, 447–448
servlet authentication filters, 517

SSL and X.509 certificates, 469–470
SSO (single sign-on), 501, 511–516
working with roles and policies, 497–500
writing security aware Java clients, 478–479
writing security-aware Java clients that use JAAS, 479–482
writing security-aware Java clients that use SSL, 482–487

Security Assertion Markup Language. See SAML (Security
Assertion Markup Language)

security models, 454
security policies

defining web service security policies, 349–350
remote start attributes for WebLogic Servers, 563

security providers
administering security at provider management level, 449
auditing, 459–460
authentication providers, 455–457
authorization, role mapping, and adjudication, 458–459
credential mapping, 460
custom authentication providers, 516
managing, 461–464
SAML, 502–504
types and features, 453–455

Security Realms, 152–153
security stores

external, 465
RDBMS, 451–452

security strategies, in production environment
application data flow and, 749
connection filters, 751–753
examining other security options, 754–756
firewall layout, 750–751
locking down web applications, 753–754
overview of, 749
SSL hardware acceleration, 756

security-aware Java clients. See Java clients, security-aware
SEI approach, to implementing web services, 327
SelectDatesController, 92
SelectDates.jsp, 91–94
selection pages, 90–91
selectors, designing JMS message selectors, 404–407
SelectRoomTypeController, 96–97
SelectRoomType.jsp, 94–101
self-assembly approach, 61–64
self-health monitoring, 544–545
send windows, TCP, 648
sender -voucher, SAML Token Profile, 507
senders, JMS messages. See producers, JMS
separate directories, vs. separate web applications, 127
SERIALIZABLE, JDBC isolation levels, 200
server affinity, JMS, 375

JMS connection factories, 386
server architecture, WebLogic Server, 521–530

application container, 529–530
execute queues, execute threads, and work managers,

521–527
listen ports and listen threads, 529
overview of, 521
socket muxer, 527–529

server deadlocks, 663
server deployment, 729–731

horizontal scaling, 731

780

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 781

In
de

xSNMP (Simple Network Management Protocol)

JVM-to-processor ratio, 730
overview of, 729
vertical scaling, 730–731

server overload, 663–664
servers

administering security at server level, 447–448
configuring WebLogic Server instances, 551–553
creating JMS servers, 584–586
managing server failure, 632
migrating JMS servers, 584–585
monitoring performance of, 601–603
overview of JMS servers, 370–371
remote start attributes for, 563
selecting secondary server in clusters, 534–535
server states in WebLogic Server, 542–543
troubleshooting throughput, 682–683
tuning application servers, 661–665
in WebLogic architecture, 519

server-side forward, 753
server-side validation, 40
service components, EJB, 74
service consumers, RPCs and, 301
Service Level Agreements (SLAs), 632
service() method, of servlet class, 4
service provider partners, in SAML, 509
service providers, RPCs, 301
service-level migration

migrating custom singleton services, 637–638
migrating JMS servers, 584–585
migrating JMS services, 633–636
migrating JTA service, 636–637

services, creating required services for enterprise
applications, 295–296

Servlet Context Event listener classes, 131–132
servlets. See also Java servlets

application programming in JMS, 424–427
authentication filters, 517
configuring for work managers, 527
web container best practices, 669–670

session beans
cache management, 202–204
handles to EJBs, 207
idempotent methods, 207
in-memory replication, 204–207
pooling, 201–202
remote business interfaces and JNDI, 193–195
security settings, 270
stateful. See SFSB (stateful session bean)
stateless. See SLSB (stateless session bean)

session façade
business service in bigrez.com, 252–253
design pattern, 33
DTOs and, 229–230
implementing with session EJBs, 228–229
performance best practices and, 666
SLSB (stateless session beans) and, 159
transaction management and security and, 229

session IDs, cookie safety, 753–754
session persistence

changes to HttpSession object and, 535
in-memory replication, 531

JDBC, 738
session timeouts, 668
session tracking

Java servlets, 5–7
JSP, 10–11

session-based routing, WebLogic Server clusters, 532–534
session-descriptor section, of weblogic.xml, 136
sessions

JSP, 669
managing, 667–668
replication, 738–740

sessions, HTTP
storing view entities in, 187
tracking, 342–343

sessions, JMS
multicast sessions, 419–420
overview of, 366–367

sessions, sharing, 127
setAttribute() method, HttpSession, 7
SFSB (stateful session bean)

cache management, 202–204, 271
components, 159–161
in-memory replication, 204–207
lifecycle of, 191–192

shallow fetches, ORM, 232
shared libraries

altering bigrez.com to use, 292–293
Java EE (Enterprise Edition), 286–287

shutdown, server states, 542
shutdown triggers, for handling stuck threads, 544–545
Simple Network Management Protocol. See SNMP (Simple

Network Management Protocol)
Simple Object Access Protocol. See SOAP (Simple Object

Access Protocol)
Simple Protected GSSAPI Negotiation (SPNEGO), 510
Single Sign On. See SSO (Single Sign On)
single table, inheritance strategies, 188
single-site deployment strategies

complex WebLogic Server clusters, 734–737
overview of, 731–732
simple WebLogic Server clusters, 732–734

SLAs (Service Level Agreements), 632
SLSB (stateless session bean)

business-tiers interfaces, 67
with CMP entity beans, 238, 240–242
components, 158–159
controllers for calling business services, 68–69
with JDBC, 237–239
with JPA, 242–245
lifecycle of, 190–191
pooling, 201–202
session façade requirements, 236–237

Smalltalk, 32
snippets, precompiling JSP components and, 139
SNMP (Simple Network Management Protocol), 607–614

communication with WebLogic SNMP agent, 609
community names, 608–609
creating SNMP agents for servers, 607
monitoring models, 607
specifying UDP port, 607–608

781

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 782

SNMP (Simple Network Management Protocol) (continued)

SNMP (Simple Network Management Protocol) (continued)
traps, 609–612
WebNMS MIB Browser and Trap Viewer as manager for

WebLogic Server, 612–614
SnoopFilter, servlet filtering, 23–24
SOAP (Simple Object Access Protocol)

attachments, 338–341
configuring web service security and, 358–359
developing WSDL-first web services, 317–318
overview of, 301
style/use attributes, 323–325
transport-level security, 348
WebLogic Server support, 304
wrapped convention, 315

SOAP Messages with Attachments specification, 338, 341
SOAP over HTTP

deciding which web service operation to invoke, 325–326
developing WSDL-first web services, 315
invoking web services via, 303
ports (innovation points), 320

SOAP over JMS
invoking web services via, 303
JAX-RPC support for, 323
ports (innovation points), 320

SOAP UI utility, 313–314
soapUI, 724
socket multiplexing (muxers)

managing server sockets, 527–529
using native I/O muxer, 662

socket muxers
for managing server sockets, 527–529
using native I/O muxer, 662

software
installing WebLogic Server software in development

environment, 695
requirements for development environment, 692–693

Solaris, tuning, 646–649
Solarmetric, 164
source code management (SCM), 692
split directory development, 698–700
SPNEGO (Simple Protected GSSAPI Negotiation), 510
spreadsheets, creating with servlets and JSP pages, 26–29
The Spring Framework, 157
Spring MVC. See also MVC (model-view-controller)

architecture for bizgrez.com example, 59
choosing components for web application, 81
DispatcherServlet, 131
servlet-centric architecture, 50–53
web service handler, 334

SQL injection attacks, 178
sql library, JSLT, 19
SQL statements

batch updates, 675
data access requirements, 234
JPA supporting, 178

SSL (Secure Sockets Layer)
application authentication, hostname verification, and trust

managers, 486–487
configuring one-way SSL, 472–473
configuring two-way SSL, 474–477
debugging, 477–478

hardware acceleration, 756
obtaining X.509 certificates, 470–472
one-way SSL, 350–351
overview of, 469–470
SSL/TLS compared with, 755
transport-level security and, 303, 348
two-way SSL, 351–352
writing security aware Java clients, 482–487
WS-Security and, 302

SSL persistence, 756
SSL/TLS

setting up, 469
SSL compared with, 755

SSO (Single Sign On)
managing SSO partners in SAML, 506–507
overview of, 501
from Windows OS desktops, 511–516

stack traces
Java, 684, 687–688
WebLogic Server, 688–689

stand-alone deployment, of enterprise applications, 274–275
stand-alone modules, vs. system modules, 288
Standard Trust Keystore, for CA certificates, 574–575
standards, web service, 301–302
standards-defined descriptors, vs. vendor-specific descriptors,

221
standby state, servers, 542
start scripts, in WebLogic Server clusters, 734–737
state comparison, optimistic locking strategy, 213–214
state comparison version strategy, OpenJPA, 259
stateful session bean. See SFSB (stateful session bean)
stateful web services, 341–343
stateless session beans. See SLSB (stateless session bean)
static classes, advantages of SLSB components over, 159
static persist, global load balancers, 743, 749
sticky load balancing algorithm, 743
store-and-forward. See SAF (store-and-forward)
StreamMessage object, JMS, 370
strop scripts, in WebLogic Server clusters, 734–737
Structs, in servlet-centric architecture, 48–50
struts-config.xml, 49
stubs

invoking web services and, 321
replica-aware, 536
web service clients using stub Java class to invoke web

services, 318
web services, 306

style attributes, SOAP, 323–325
style sheets, 37
subdeployments, in JMS modules, 384
submission, presentation-tier controls, 44–45
subscribers, JMS

client identifiers for, 379
durable, 368
indexed subscribers, 406
overview of, 364

Sun NetBeans, 704
superclasses
bigrez.com domain model, 252
mapped superclasses supported in JPA, 188

superusers, 648

782

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 783

In
de

xtransport-level security

synchronization logic, parallel request processing an, 5
system classloader, 530
system modules, 288
system performance

core principles, 644–645
overview of, 644
tuning AIX, 649
tuning application servers. See application servers, tuning
tuning applications, 645–646
tuning HP-UX, 649–650
tuning JVMs. See JVMs (Java Virtual Machines), tuning
tuning Linux, 650
tuning network, 651–652
tuning operating systems, 645–646
tuning Solaris, 646–649
tuning Windows, 650

system requirements, 55–56
system security, 755
system-level process dumps, 684–685

T
table per class, inheritance strategies, 188
Tag Extra Information (TEI) class, 20
tag files, custom tags vs., 20–21
Tag Handler class, 20
Tag Library Descriptor (TLD), 20
tags, JSP

calling custom, 16
JSTL tag libraries, 19
list of available, 8–9
using for selected behaviors, 19–22
using JSTL tags to reduce scriptlet code, 15

target runtime, configuring in Eclipse, 706
targeted offers, web application, 103–105
TCP

time wait interval, 566
tuning, 648
unicast-based clustering, 553

TCPMON, SOAP UI utility, 313–314
TEI (Tag Extra Information) class, 20
templates, JMS, 387
terminal destinations, JMS, 416
Testing tab, WebLogic Console, 312
TextMessage object, JMS, 370, 400
thin clients, 749
thread safety

EJB components and, 159
JSP pages and, 11
servlets and, 4–5

threads
checking for stuck threads, 527
generating Java thread dumps, 686
handling stuck, 544–545
listen threads, 529
optimizing thread management, 662–664
understanding thread states, 684–685
work manager constraints, 524

threat models, 749
throughput, troubleshooting, 682–683

Tiles framework
external view assembly using, 66–67
resolving view names as Tiles definitions, 86–88
reviewreservation definitions, 101
selectdates, 91
selectroomtype definition, 98
tiles-config.xml, 104
viewproperty, 91

tiles-config.xml, 80, 104
time variables, in unit tests, 722
time wait interval

TCP, 566
tuning operating systems, 646

time-to-deliver extension, JMS, 388
time-to-live (TTL)

configuring clusters and, 553
JMS multicast messages and, 419

TLD (Tag Library Descriptor), 20
TLS (Transport Layer Security), 469
topics, JMS

choosing destination type, 398
consuming messages from a distributed topic, 378–380
producing messages to a distributed topic, 377–378
unit-of-order used with, 415

TopLink
enhancing, 261
JPA derived from, 189
vs. Kodo, 260
Oracle, 164

TopLink, converting from Kodo to
changing persistence provider, 261
enhancing TopLink, 261
fixing incompatibilities, 262–263
overview of, 260
running unit tests, 261–262
summary, 263–264
testing integrated application, 263

traffic management. See global and local traffic management
transacted sessions, JMS, 366
transaction affinity, JMS, 374
transaction batching, MDBs and, 208–209
transaction isolation

JDBC, 199–201
referencing EJBs and, 197–198
SLSBs, 159

transaction model, database access best practices, 674
transactions

business logic requirements and, 229
collocation requirements in multiple site deployment

strategies, 740
commit protocols, 581
debugging transaction timeouts, 715
EJB deployment descriptors, 270–271
MDBs and, 428–429
options for selecting for JDBC data sources, 580–582

transactions, JMS
asynchronous, 368
using, 417–419

Transport Layer Security (TLS), 469. See also SSL/TLS
transport-level security

overview of, 348–349

783

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 784

transport-level security (continued)

transport-level security (continued)
SSL and, 303
web services, 350–352

Trap Viewer, 612–614
traps, SNMP, 609–612
troubleshooting performance problems

bottleneck identification and correction, 678–680
CPU utilization and application server throughput, 682–683
disk I/O, 684
generating Java thread dumps, 686
generating system-level process dumps, 684–685
Java stack traces and, 684
overview of, 677
preparation for, 678
problem resolution, 680–682
reading core dumps, 686–687
reading Java stack traces, 687–688
response times, 683–684
understanding thread states, 684–685
understanding WebLogic Server stack traces, 688–689

trust, between domains, 510–511
trust managers, in SSL, 486–487
TTL (time-to-live)

configuring clusters and, 553
JMS multicast messages and, 419

tuning settings, deployment descriptors, 272–273
Two-Phase Commit, transaction commit protocols, 582
two-way SSL

configuring, 474–477
overview of, 469
preventing man-in-the-middle attacks, 755

typed partitioning, options for mapping inheritance, 233–234

U
UDDI (Universal Description, Discovery, and Integration), 302
UDP

multicast-based clustering, 553
unicast and multicast messages, 741

unicast messages, UDP, 741
unicast-based clustering, TCP, 553
unidirectional relationships

associations, 248
mapping associations, 231

Uniform Distributed Destinations, WebLogic Server 9.0, 373
Unit of Order, MDBs and, 209
unit tests
bigrez.com, 258–259
co-developing with code, 716–717
database services in unit test context, 721
dependency injection and, 721
for entity classes, 189
fixing incompatibilities between Kodo and TopLink, 262–263
importance of, 715–716
JUnit, 717–718
mocking frameworks, 719–720
out-of-container testing, 718–719
overview of, 715
performance and concurrency testing, 724–725
running in TopLink, 261–262

testing TopLink integrated application, 263
testing web interfaces, 722–724
testing web services, 724
time and other variables, 722

unit-of-order, JMS, 413–415
unit-of-work, JMS, 415–416
Universal Description, Discovery, and Integration (UDDI), 302
Unix/Linux OSs, installing node manager on, 561
updates

JPQL bulk updates, 179–180
requiring explicit service calls, 71

url-pattern descriptor, 127
URL-rewriting, 5
URLs

callback URL in one-way web services, 345
determining URL of deployed web service, 312
handler mapping components and, 85–86
Java servlets and, 3
JMS clients and, 382–383

use attributes, SOAP, 323–325
user configuration file, credentials stored in, 566
user names, remote start attributes for WebLogic Servers,

563
user site components

constructing, 76
core reservation process components. See reservation

process
display and source components, 74
reservation information components, 76–79
targeted offers, 103–105

userapp-servlet.xml, 80–81
usernames, booting WebLogic Server, 500–501
user-password lockouts, 755
users

creating required users when deploying web applications,
152–153

cross domain user, 511
managing, 496

Users and Groups tab, WebLogic Console, 152–153
UTMLUnit, 722

V
validation

client-side validation, 38–39
date selection validator, 92–93
of objects and data elements in business layer, 230
server-side validation, 40

value objects
design pattern, 33
generic JPA functionality, 250–252
performance best practices and, 666

VCS (Veritas Cluster Server), 735–736
vendor-specific descriptors, vs. standards-defined descriptors,

221
Veritas Cluster Server (VCS), 735–736
version fields, optimistic locking and, 181–185
version strategies, OpenJPA

field types, 212–213
state comparison, 213–214

784

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 785

In
de

xWebLogic Deployer utility (weblogic.Deployer)

versioning management, WebLogic Server applications,
628–630

in-place redeployment and, 628
production redeployment and, 628–630

versions, storing version information in hidden fields, 187
vertical partitioning, options for mapping inheritance,

233–234
vertical scaling, in server deployment, 730–731
view resolver, web application component, 86–88
viewproperty, Tiles definitions, 91
Virtual EAR feature

OEPE (Oracle Enterprise Pack for Eclipse), 698
overview of, 709–710

W
WAN (wide-area network) replication

configuring, 556–557
implementing one cluster per site, 744–745
overview of, 535

.war (web application archive) file
creating, 144–145
deploying web applications as, 147
developing code-first web services, 307–312
developing WSDL-first web services, 317
exploded deployment and, 282

watches, WLDF, 621, 627–628
web application architecture

for bizgrez.com example, 59
Java EE application tiers, 31–32
Java EE design patterns, 33
MVC (model-view-controller), 32–33
overview of, 31
presentation tier. See presentation-tier

web application archive file. See .war (web application
archive) file

web applications
building. See building web applications
calling custom tags in JSP pages, 16
custom tags used for selected behaviors, 19–22
deploying. See deploying web applications
error handling, 13–15
Excel files using servlets and JSP pages, 26–29
Expression language (EL) used in JSTL calls, 16–18
Java EE technologies for, 31
JSTL tag libraries, 19
locking down, 753–754
overview of, 13
packaging. See packaging web applications
securing, 488–493
servlet filtering used for common behaviors, 22–26
using JSTL tags to reduce scriptlet code, 15
viewing servlet code generated for JSP page, 30

web container best practices
JSP (JavaServer Pages), 669
overview of, 667
servlets, 669–670
session management, 667–668

web interfaces, unit testing, 722–724
web server plug-ins

common parameters, 570
configuring, 567–570
debugging parameters, 571–572
response time parameters, 571

web services
adding to bigrez.com, 359–361
calling asynchronously, 343–344
configuring security for, 358–359
container architecture, 303–304
creating dynamic, 327–334
creating one-way, 344
customizing mappings between Java and XML, 346–347
deciding which operation to invoke, 325–327
defining security policies, 349–350
determining URL of, 312
developing code-first, 307–312
developing for WebLogic Server, 304–307
developing web service clients, 318–322
developing WSDL-first, 314–318
handlers, 334–338
identifying and correcting bottlenecks, 679
implementing stateful, 341–343
JAX-RPC standard, 322–323
managing web services partners in SAML, 507–508
message-level security, 352–358
overview of, 301
returning multiple asynchronous, 344–346
review, 361
security features, 348–349
SOAP attachments, 338–341
SOAP style/use attributes, 323–325
standards, 301–302
testing, 313–314
transport-level security, 350–352
types of application components, 74
unit tests, 724
writing security aware Java clients, 486

Web Services Description Language. See WSDL (Web
Services Description Language)

Web Services Description Language Compiler (WSDLC),
314–316

WEB-INF directory
bundled libraries and, 285
deploying web applications and, 147–148
internal components in, 128
precompiling JSP components and, 138
web application directory structure, 126–128

WebLogic Configuration Wizard, 501, 549
WebLogic Console

changing WebLogic configuration, 539
creating users and groups when deploying web applications,

152–153
defining PKI credentials, 357–358
deploying enterprise applications, 298
deploying web applications, 150–151
determining URL of deployed web service, 312
monitoring server performance, 601–603
node manager, 541–542
WLST script, 359

WebLogic Deployer utility (weblogic.Deployer)
deploying bigrez.com application, 297–298

785

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 786

WebLogic Deployer utility (weblogic.Deployer) (continued)

WebLogic Deployer utility (weblogic.Deployer) (continued)
deploying web applications, 148–150

WebLogic Diagnostic Framework. See WLDF (WebLogic
Diagnostic Framework)

WebLogic Scripting Tool. See WLST (WebLogic Scripting Tool)
WebLogic Security Framework, 449–465

auditing, 459–460
authentication, 455–457
authorization, role mapping, and adjudication, 458–459
certification path, 460–461
credential mapping, 460
debugging, 464
embedded LDAP server for, 450–451
external security stores, 465
identity assertion, 457–458
managing security providers, 461–464
RDBMS security store, 451–452
realms and providers, 453–455

WebLogic Server
administration. See administration, WebLogic Server
application management. See application management,

WebLogic Server
application monitoring. See application monitoring, WebLogic

Server
best practices for web applications. See web applications
booting, 500–501
defining users and groups, 105
deployment architecture. See deployment architecture,

WebLogic Server
developing web services for, 304–307
EJB container. See EJB container, WebLogic Server
installing on development machines, 695
integrating AQ with older server releases, 440
Java servlets. See Java servlets
JMS. See JMS (Java Message Service)
JMS clients. See JMS clients
JMS Foreign Server, 437
JNDI provider, 437
JSP pages. See JSP (JavaServer Pages)
MDBs (message-driven beans) used with, 436
Messaging Bridge, 433
packaging applications. See packaging enterprise

applications
PKI Credential Mapper, 357
registering servlets, 3
SAF (store-and-forward), 434–436
sample HTTP servlets, 3
security model, 36
steps in packing and deployment process, 125
Uniform Distributed Destinations in version 9.0, 373
XML Catalog, 321

WebLogic Test Client, 313
weblogic.Admin, 600–601
weblogic.appc, 137–139
weblogic-application.xml descriptor file, 280–282
weblogic.Deployer (WebLogic Deployer utility), 148–150,

297–298
weblogic-ejb-jar.xml, 272–273
weblogic-version section, of weblogic.xml, 136
weblogic.xml, 133–137
WebNMS MIB Browser, as SNMP manager for WebLogic

Server, 612–614

WebServiceContext object, JAX-WS, 342
web.xml

defining filter in, 24
descriptor file, 128–133
error-page element, 15
web application security and, 105–106

white box testing, 719
whole server migration. See WSM (whole server migration)
wide-area network (WAN) replication, 535, 556–557
Windows OSs

SSO (single sign-on) from Windows desktop, 511–516
tuning, 650

Windows OSs, installing node manager on, 561
wlappc, Ant build tool, 137
wldeploy, Ant build tool, 150
WLDF (WebLogic Diagnostic Framework)

exporting diagnostic data, 626
harvesting metric information, 625–626
instrumenting bigrez.com, 622–625
managing diagnostic archive, 627–628
modules, 287–288
overview of, 621–622
watches and notifications, 627–628

WLIOTimeoutSecs, web server plug-ins, 570
WLLogFile, web server plug-ins, 571–572
@WLServlet annotation, for registering servlets, 3, 28
WLST (WebLogic Scripting Tool)

for changing WebLogic configuration, 539
commands, 597–600
modes of execution and operational states, 596
overview of, 595–596
start script for starting node managers, 565–566
starting admin server, 596–597
WebLogic Console and, 359

work managers, 521–527
components of, 523
configuring, 589–590
configuring servlets or JSP to use, 527
constraints, 524
defining, 525–526
dispatch policy and, 136

workstations, for developers, 692
wrapped document style, SOAP, 315, 324–325
wrapper exceptions, JAX-WS, 310
WS Reliable Messaging. See WS-RM (WS Reliable

Messaging)
WS-Addressing

deciding which web service operation to invoke, 326–327
supporting callback URL, 345
WebLogic Server support, 302

WSDL (Web Services Description Language)
Ant wsdl task for accessing, 321
deciding which web service operation to invoke, 325–327
defining web service security policies, 349
developing WSDL-first web services, 314–318
overview of, 302
WebLogic Server support, 304
WSDL-first web services, 306, 318

wsdl task, Ant build tool, 321
WSDLC (Web Services Description Language Compiler),

314–316

786

Patrick bindex.tex V3 - 09/21/2009 11:02am Page 787

In
de

xzero consumer queues, JMS

wsdlc task, Ant build tool, 314–316
WS-I (WS-Interoperability)

overview of, 302
support for SOAP style/use combinations, 324–325
supporting HTTP cookies, 343
web services container architecture, 303
WSI Analyzer checking, 313–314

WSI Analyzer, SOAP UI utility, 313–314
WS-Interoperability. See WS-I (WS-Interoperability)
WSM (whole server migration)

migrating JMS servers and, 585
overview of, 638–639
requirements for using, 639
setting up, 639–640
WebLogic Server, 564

WS-Policy, defining web service security
policies, 349

WS-RM (WS Reliable Messaging)
JAX-RPC support for, 323
SAF support for, 434
WebLogic Server support, 302

WS-SecureConversation 1.3, 323
WS-Security

defining web service security policies, 349
message-level security, 348, 352–358
overview of, 302
SAML Token Profile, 507
Web Service Identity Providers, 508
web services container architecture, 303

WS-Trust 1.3 (clients only), 323

X
X.509 certificates, 351, 355, 565

certification path, 460–461
certification path for, 460–461
identity assertion and, 457
obtaining, 470–472
overview of, 469–470
SAML and, 502

XA Connection Factory Enabled, JMS, 386
XML

APIs for dynamic web services, 333
customizing mappings between Java and XML, 346–347
embedding XML tags within JSP pages, 12, 16
mapping to Java, 306
Provider//Dispatch approach supporting XML processing

tools, 333
SOAP using, 301–302

XML Catalog, WebLogic Server, 321
XML library, JSLT, 19
XMLMessage, JMS, 400–401
XP (Extreme Programming), 716
XPath, 333
XQuery, 333
XSLT, 333

Z
zero consumer queues, JMS, 375

787

Take your library
wherever you go.
Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Library. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

Programmer to ProgrammerTM

• ASP.NET
• C#/C++
• Database
• General
• Java
• Mac
• Microsoft Office

• .NET
• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd 1wrox_24x7_BOB_ad_final.indd 1 9/8/2007 4:26:08 PM9/8/2007 4:26:08 PM

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.comBest practices for developing
WebLogic Server applications

Robert Patrick, Gregory Nyberg, and Philip Aston, with Josh Bregman and Paul Done $49.99 USA
 $59.99 CAN

Written by a team of Oracle insiders and experts in the development
of enterprise-class Java EE applications, this professional-level book
provides best practices for developing and deploying WebLogic
Server applications. The authors share their real-world experience and
knowledge of WebLogic Server and its features to help you understand
not only how things can be done, but also how things should be done.

• Includes tips for choosing a Java EE application architecture

• Walks you through various design solutions, architectures, construction
techniques, deployment options, and management techniques

• Features a realistic example application that leverages key technologies
such as JSP, Spring MVC, EJB 3.0, JPA, and JAX-WS

• Details each aspect of the decisions made during the development
and deployment of the sample application

• Contains best practices for configuring, managing, and tuning
development and production environments

• Explores techniques for using WebLogic Server JMS and WebLogic security

Robert Patrick is a VP in Oracle’s Fusion Middleware Development organization
responsible for a team of Solution Architects. He specializes in designing and building
large, mission-critical systems with WebLogic Server and other middleware technology.
He is coauthor of Mastering BEA WebLogic Server.

Gregory Nyberg has more than 20 years of experience in the design and
development of object-oriented systems and specializes in large mission-critical
systems using WebLogic Server. He is coauthor of Mastering BEA WebLogic Server.

Philip Aston works for Oracle’s SOA Consulting team in the UK. He is widely
respected throughout Oracle for his expertise in WebLogic Server.

With Josh Bregman and Paul Done

Wrox Professional guides are planned and written by working programmers to
meet the real-world needs of programmers, developers, and IT professionals. Focused
and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all
designed to help programmers do a better job.

Object Technologies / Java

Professional

Oracle®

WebLogic Server

O
racle

® W
ebLogic Server

Patrick, et al.

Professional

	Professional Oracle WebLogic Server
	About the Authors
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Source Code
	Errata
	Online Appendix

	Chapter 1: Building Web Applications in WebLogic
	Java Servlets and JSP Key Concepts
	Web Application Best Practices
	Chapter Review

	Chapter 2: Choosing a Web Application Architecture
	Architecture Key Concepts
	Presentation-Tier Architecture Selection
	Candidate Presentation-Tier Architectures
	Chapter Review

	Chapter 3: Designing an Example Java EE Application
	Application Requirements
	Business Domain Models
	Presentation Requirements
	Web Application Architecture
	Presentation Approach
	Business-Tier Interfaces
	Chapter Review

	Chapter 4: Building an Example Web Application
	Overview of Application Components
	Constructing the Application Skeleton
	Constructing the User Site Components
	Construction of Administration Site Components
	Chapter Review

	Chapter 5: Packaging and Deploying WebLogic Web Applications
	Packaging Web Applications
	Deploying Web Applications
	Chapter Review

	Chapter 6: Building Enterprise JavaBeans in WebLogic Server
	EJB Technology Overview
	EJB 3.0
	EJB Component Types
	The Java Persistence API
	WebLogic Server EJB Container
	General WebLogic Server EJB Features
	Session Bean Features
	Message-Driven Bean Features
	OpenJPA and Kodo Features
	Deployment Descriptors or Annotations?
	Chapter Review

	Chapter 7: Building an Example EJB Application
	Business Layer Requirements
	Business Layer Architecture Options
	The bigrez.com Implementation
	Using TopLink instead of Kodo
	Chapter Review

	Chapter 8: Packaging and Deploying WebLogic Applications
	Creating an EJB Archive File
	Packaging JPA Persistence Units
	Enterprise Applications
	Packaging bigrez.com
	Deploying Applications
	Chapter Review

	Chapter 9: Developing and Deploying Web Services
	Summarizing Web Services Standards
	Creating Web Services with WebLogic Server
	Moving Past the Basics
	Using Web Services Security
	Adding Web Services to bigrez.com
	Chapter Review

	Chapter 10: Using WebLogic JMS
	JMS Key Concepts
	The WebLogic JMS Provider
	WebLogic JMS Application Design
	WebLogic JMS Application Programming
	External JMS Providers
	Chapter Review

	Chapter 11: Using WebLogic Security
	WebLogic Security Overview
	WebLogic Security Framework
	Using External Security Stores
	Setting Up SSL/TLS
	Writing Security-Aware Java Clients
	Managing Application Security
	Single Sign-On
	Chapter Review

	Chapter 12: Administering and Deploying Applications in WebLogic Server
	WebLogic Architecture Key Concepts
	WebLogic Administration Key Concepts
	Configuring a WebLogic Server Domain
	Monitoring WebLogic Server Applications
	Managing WebLogic Server Applications
	Chapter Review

	Chapter 13: Optimizing WebLogic Server Performance
	Overview of System Performance
	Performance Best Practices
	Troubleshooting Performance Problems
	Chapter Review

	Chapter 14: Development Environment Best Practices
	Defining Required Hardware and Software
	Installing WebLogic Server Software
	Development Project Structure
	Streamlining the Development Cycle
	Establishing a Build Process
	Integrated Development Environments
	Creating a Unit Testing Infrastructure
	Chapter Review

	Chapter 15: Production Environment Best Practices
	Deployment Strategies
	Global and Local Traffic Management
	Production Security Strategies
	Chapter Review

	Index

